logo
Alauda Container Platform
English
简体中文
English
简体中文
logo
Alauda Container Platform
Navigation

Overview

Architecture
Release Notes

Install

Overview

Prepare for Installation

Prerequisites
Download
Node Preprocessing
Installing
global Cluster Disaster Recovery

Upgrade

Overview
Pre-Upgrade Preparation
Upgrade the global cluster
Upgrade Workload Clusters

User Interface

Web Console

Overview
Accessing the Web Console
Customizing the Web Console
Customizing the Left Navigation
CLI Tools

Configure

Feature Gate

Clusters

Overview
Creating an On-Premise Cluster
etcd Encryption
Automated Rotate Kuberentes Certificates

How to

Add External Address for Built-in Registry
Choosing a Container Runtime
Updating Public Repository Credentials

Networking

Introduction

Architecture

Understanding Kube-OVN
Understanding ALB
Understanding MetalLB

Concepts

Auth
Ingress-nginx Annotation Compatibility
TCP/HTTP Keepalive
ModSecurity
Comparison Among Different Ingress Method
HTTP Redirect
L4/L7 Timeout
GatewayAPI
OTel

Guides

Creating Services
Creating Ingresses
Configure Gateway
Create Ingress-Nginx
Creating a Domain Name
Creating Certificates
Creating External IP Address Pool
Creating BGP Peers
Configure Subnets
Configure Network Policies
Creating Admin Network Policies
Configure Cluster Network Policies

How To

Deploy High Available VIP for ALB
Soft Data Center LB Solution (Alpha)
Preparing Kube-OVN Underlay Physical Network
Automatic Interconnection of Underlay and Overlay Subnets
Use OAuth Proxy with ALB
Creating GatewayAPI Gateway
Configure a Load Balancer
How to properly allocate CPU and memory resources
Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster
Calico Network Supports WireGuard Encryption
Kube-OVN Overlay Network Supports IPsec Encryption
ALB Monitoring
Load Balancing Session Affinity Policy in Application Load Balancer (ALB)

Trouble Shooting

How to Solve Inter-node Communication Issues in ARM Environments?
Find Who Cause the Error

Machine Configuration

Overview
Managing Node Configuration with MachineConfig
Node Disruption Policies

Storage

Introduction

Concepts

Core Concepts
Persistent Volume
Access Modes and Volume Modes

Guides

Creating CephFS File Storage Type Storage Class
Creating CephRBD Block Storage Class
Create TopoLVM Local Storage Class
Creating an NFS Shared Storage Class
Deploy Volume Snapshot Component
Creating a PV
Creating PVCs
Using Volume Snapshots

How To

Setting the naming rules for subdirectories in the NFS Shared Storage Class
Generic ephemeral volumes
Using an emptyDir
Third‑Party Storage Capability Annotation Guide

Troubleshooting

Recover From PVC Expansion Failure

Storage

Ceph Distributed Storage

Introduction

Install

Create Standard Type Cluster
Create Stretch Type Cluster
Architecture

Concepts

Core Concepts

Guides

Accessing Storage Services
Managing Storage Pools
Node-specific Component Deployment
Adding Devices/Device Classes
Monitoring and Alerts

How To

Configure a Dedicated Cluster for Distributed Storage
Cleanup Distributed Storage

Disaster Recovery

File Storage Disaster Recovery
Block Storage Disaster Recovery
Object Storagge Disaster Recovery
Update the optimization parameters
Create ceph object store user

MinIO Object Storage

Introduction
Install
Architecture

Concepts

Core Concepts

Guides

Adding a Storage Pool
Monitoring & Alerts

How To

Data Disaster Recovery

TopoLVM Local Storage

Introduction
Install

Guides

Device Management
Monitoring and Alerting

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero

Security

Alauda Container Security

Security and Compliance

Compliance

Introduction
Installation

HowTo

Private Registry Access Configuration
Image Signature Verification Policy
Image Signature Verification Policy with Secrets
Image Registry Validation Policy
Container Escape Prevention Policy
Security Context Enforcement Policy
Network Security Policy
Volume Security Policy

API Refiner

Introduction
Install

Users and Roles

User

Introduction

Guides

Manage User Roles
Create User
User Management

Group

Introduction

Guides

Manage User Group Roles
Create Local User Group
Manage Local User Group Membership

Role

Introduction

Guides

Create Role
Manage Custom Roles

IDP

Introduction

Guides

LDAP Management
OIDC Management

Troubleshooting

Delete User

User Policy

Introduction

Multitenancy(Project)

Introduction

Guides

Create Project
Manage Project
Manage Project Cluster
Manage Project Members

Audit

Introduction

Telemetry

Install

Virtualization

Virtualization

Overview

Introduction
Install

Images

Introduction

Guides

Adding Virtual Machine Images
Update/Delete Virtual Machine Images
Update/Delete Image Credentials

How To

Creating Windows Images Based on ISO using KubeVirt
Creating Linux Images Based on ISO Using KubeVirt
Exporting Virtual Machine Images
Permissions

Virtual Machine

Introduction

Guides

Creating Virtual Machines/Virtual Machine Groups
Batch Operations on Virtual Machines
Logging into the Virtual Machine using VNC
Managing Key Pairs
Managing Virtual Machines
Monitoring and Alerts
Quick Location of Virtual Machines

How To

Configuring USB host passthrough
Virtual Machine Hot Migration
Virtual Machine Recovery
Clone Virtual Machines on KubeVirt
Physical GPU Passthrough Environment Preparation
Configuring High Availability for Virtual Machines
Create a VM Template from an Existing Virtual Machine

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes
Hot Migration Error Messages and Solutions

Network

Introduction

Guides

Configure Network

How To

Control Virtual Machine Network Requests Through Network Policy
Configuring SR-IOV
Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support

Storage

Introduction

Guides

Managing Virtual Disks

Backup and Recovery

Introduction

Guides

Using Snapshots

Developer

Overview

Quick Start

Creating a simple application via image

Building Applications

Concepts

Application Types
Custom Applications
Workload Types
Understanding Parameters
Understanding Environment Variables
Understanding Startup Commands
Resource Unit Description

Namespaces

Creating Namespaces
Importing Namespaces
Resource Quota
Limit Range
Pod Security Admission
Overcommit Ratio
Managing Namespace Members
Updating Namespaces
Deleting/Removing Namespaces

Creating Applications

Creating applications from Image
Creating applications from Chart
Creating applications from YAML
Creating applications from Code
Creating applications from Operator Backed
Creating applications by using CLI

Operation and Maintaining Applications

Application Rollout

Installing Alauda Container Platform Argo Rollouts
Application Blue Green Deployment
Application Canary Deployment
Status Description

KEDA(Kubernetes Event-driven Autoscaling)

KEDA Overview
Installing KEDA

How To

Integrating ACP Monitoring with Prometheus Plugin
Pausing Autoscaling in KEDA
Configuring HPA
Starting and Stopping Applications
Configuring VerticalPodAutoscaler (VPA)
Configuring CronHPA
Updating Applications
Exporting Applications
Updating and deleting Chart Applications
Version Management for Applications
Deleting Applications
Health Checks

Workloads

Deployments
DaemonSets
StatefulSets
CronJobs
Jobs
Pods
Containers
Working with Helm charts

Configurations

Configuring ConfigMap
Configuring Secrets

Application Observability

Monitoring Dashboards
Logs
Events

How To

Setting Scheduled Task Trigger Rules

Registry

Introduction

Install

Install Via YAML
Install Via Web UI

How To

Common CLI Command Operations
Using Alauda Container Platform Registry in Kubernetes Clusters

Source to Image

Introduction

Install

Installing Alauda Container Platform Builds

Upgrading

Upgrading Alauda Container Platform Builds
Architecture

Guides

Managing applications created from Code

How To

Creating an application from Code

Node Isolation Strategy

Introduction
Architecture

Concepts

Core Concepts

Guides

Create Node Isolation Strategy
Permissions
FAQ

GitOps

Introduction

Install

Installing Alauda Build of Argo CD
Installing Alauda Container Platform GitOps

Upgrade

Upgrading Alauda Container Platform GitOps
Architecture

Concepts

GitOps

Argo CD Concept

Introduction
Application
ApplicationSet
Tool
Helm
Kustomize
Directory
Sync
Health

Alauda Container Platform GitOps Concepts

Introduction
Alauda Container Platform GitOps Sync and Health Status

Guides

Creating GitOps Application

Creating GitOps Application
Creating GitOps ApplicationSet

GitOps Observability

Argo CD Component Monitoring
GitOps Applications Ops

How To

Integrating Code Repositories via Argo CD dashboard
Creating an Argo CD Application via Argo CD dashboard
Creating an Argo CD Application via the web console
How to Obtain Argo CD Access Information
Troubleshooting

Extend

Operator
Cluster Plugin

Observability

Overview

Monitoring

Introduction
Install

Architecture

Monitoring Module Architecture
Monitoring Component Selection Guide
Concepts

Guides

Management of Metrics
Management of Alert
Management of Notification
Management of Monitoring Dashboards
Management of Probe

How To

Backup and Restore of Prometheus Monitoring Data
VictoriaMetrics Backup and Recovery of Monitoring Data
Collect Network Data from Custom-Named Network Interfaces

Distributed Tracing

Introduction
Install
Architecture
Concepts

Guides

Query Tracing
Query Trace Logs

How To

Non-Intrusive Integration of Tracing in Java Applications
Business Log Associated with the TraceID

Troubleshooting

Unable to Query the Required Tracing
Incomplete Tracing Data

Logs

Introduction
Install

Architecture

Log Module Architecture
Log Component Selection Guide
Log Component Capacity Planning
Concepts

Guides

Logs

How To

How to Archive Logs to Third-Party Storage
How to Interface with External ES Storage Clusters

Events

Introduction
Events

Inspection

Introduction
Architecture

Guides

Inspection
Component Health Status

Hardware accelerators

Overview

Introduction
Features
Install

Application Development

Introduction

Guides

CUDA Driver and Runtime Compatibility
Add Custom Devices Using ConfigMap

Troubleshooting

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM
Paddle Autogrow Memory Allocation Crash on GPU-Manager

Configuration Management

Introduction

Guides

Configure Hardware accelerator on GPU nodes

Resource Monitoring

Introduction

Guides

GPU Resource Monitoring

Alauda Service Mesh

About Alauda Service Mesh

Alauda AI

About Alauda AI

Alauda DevOps

About Alauda DevOps

Alauda Cost Management

About Alauda Cost Management

Alauda Application Services

Overview

Introduction
Architecture
Install
Upgrade

Alauda Database Service for MySQL

About Alauda Database Service for MySQL-MGR
About Alauda Database Service for MySQL-PXC

Alauda Cache Service for Redis OSS

About Alauda Cache Service for Redis OSS

Alauda Streaming Service for Kafka

About Alauda Streaming Service for Kafka

Alauda Streaming Service for RabbitMQ

About Alauda Streaming Service for RabbitMQ

Alauda support for PostgreSQL

About Alauda support for PostgreSQL

Operations Management

Introduction

Parameter Template Management

Introduction

Guides

Parameter Template Management

Backup Management

Introduction

Guides

External S3 Storage
Backup Management

Inspection Management

Introduction

Guides

Create Inspection Task
Exec Inspection Task
Update and Delete Inspection Tasks

How To

How to set Inspection scheduling?

Inspection Optimization Recommendations

MySQL

MySQL IO Load Optimization
MySQL Memory Usage Optimization
MySQL Storage Space Optimization
MySQL Active Thread Count Optimization
MySQL Row Lock Optimization

Redis

Redis BigKey
High CPU Usage in Redis
High Memory Usage in Redis

Kafka

High CPU Utilization in Kafka
Kafka Rebalance Optimization
Kafka Memory Usage Optimization
Kafka Storage Space Optimization

RabbitMQ

RabbitMQ Mnesia Database Exception Handling

Alert Management

Introduction

Guides

Relationship with Platform Capabilities

Upgrade Management

Introduction

Guides

Instance Upgrade

API Reference

Overview

Introduction
Kubernetes API Usage Guide

Advanced APIs

Alert APIs

AlertHistories [v1]
AlertHistoryMessages [v1]
AlertStatus [v2]
SilenceStatus [v2]

Event APIs

Search

Log APIs

Aggregation
Archive
Context
Search

Monitoring APIs

Indicators [monitoring.alauda.io/v1beta1]
Metrics [monitoring.alauda.io/v1beta1]
Variables [monitoring.alauda.io/v1beta1]

Kubernetes APIs

Alert APIs

AlertTemplate [alerttemplates.aiops.alauda.io/v1beta1]
PrometheusRule [prometheusrules.monitoring.coreos.com/v1]

Inspection APIs

Inspection [inspections.ait.alauda.io/v1alpha1]

Notification APIs

Notification [notifications.ait.alauda.io/v1beta1]
NotificationGroup [notificationgroups.ait.alauda.io/v1beta1]
NotificationTemplate [notificationtemplates.ait.alauda.io/v1beta1]
📝 Edit this page on GitHub
Previous PageImage Registry Validation Policy
Next PageSecurity Context Enforcement Policy

#Container Escape Prevention Policy

This guide demonstrates how to configure Kyverno to prevent container escape attacks by blocking high-risk container configurations that could allow containers to break out of their isolation boundaries.

#TOC

#What is Container Escape Prevention?

Container escape prevention involves detecting and blocking dangerous container configurations that could allow attackers to escape container isolation and gain access to the host system. This includes:

  • Privileged containers: Containers running with elevated privileges
  • Host namespace access: Containers sharing host PID, network, or IPC namespaces
  • Host path mounts: Containers mounting host filesystem paths
  • Dangerous capabilities: Containers with excessive Linux capabilities
  • Host port access: Containers binding to host network ports

#Quick Start

#1. Block Privileged Containers

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: disallow-privileged-containers
  annotations:
    policies.kyverno.io/title: Disallow Privileged Containers
    policies.kyverno.io/category: Pod Security Standards (Baseline)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Privileged mode disables most security mechanisms and must not be allowed.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: privileged-containers
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Privileged mode is disallowed. The fields spec.containers[*].securityContext.privileged,
          spec.initContainers[*].securityContext.privileged, and spec.ephemeralContainers[*].securityContext.privileged 
          must be unset or set to false.
        pattern:
          spec:
            =(ephemeralContainers):
              - =(securityContext):
                  =(privileged): "false"
            =(initContainers):
              - =(securityContext):
                  =(privileged): "false"
            containers:
              - =(securityContext):
                  =(privileged): "false"

#2. Test the Policy

# Apply the policy
kubectl apply -f disallow-privileged-containers.yaml

# Try to create a privileged container (should fail)
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-privileged
spec:
  containers:
  - name: nginx
    image: nginx
    securityContext:
      privileged: true
EOF

# Try to create a normal container (should work)
kubectl run test-normal --image=nginx

# Clean up
kubectl delete pod test-privileged test-normal --ignore-not-found

#Core Container Escape Prevention Policies

#Policy 1: Disallow Host Namespace Access

Prevent containers from accessing host namespaces:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: disallow-host-namespaces
  annotations:
    policies.kyverno.io/title: Disallow Host Namespaces
    policies.kyverno.io/category: Pod Security Standards (Baseline)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Host namespaces (Process ID namespace, Inter-Process Communication namespace, and 
      network namespace) allow access to shared information and can be used to elevate 
      privileges. Pods should not be allowed access to host namespaces.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: host-namespaces
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Sharing the host namespaces is disallowed. The fields spec.hostNetwork,
          spec.hostIPC, and spec.hostPID must be unset or set to false.
        pattern:
          spec:
            =(hostPID): "false"
            =(hostIPC): "false"
            =(hostNetwork): "false"

#Policy 2: Disallow Host Path Mounts

Block containers from mounting host filesystem paths:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: disallow-host-path
  annotations:
    policies.kyverno.io/title: Disallow Host Path
    policies.kyverno.io/category: Pod Security Standards (Baseline)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod,Volume
    policies.kyverno.io/description: >-
      HostPath volumes let Pods use host directories and volumes in containers.
      Using host resources can be used to access shared data or escalate privileges
      and should not be allowed.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: host-path
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          HostPath volumes are forbidden. The field spec.volumes[*].hostPath must be unset.
        pattern:
          spec:
            =(volumes):
              - X(hostPath): "null"

#Policy 3: Disallow Host Ports

Prevent containers from binding to host network ports:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: disallow-host-ports
  annotations:
    policies.kyverno.io/title: Disallow Host Ports
    policies.kyverno.io/category: Pod Security Standards (Baseline)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Access to host ports allows potential snooping of network traffic and should not be
      allowed, or at minimum restricted to a known list.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: host-ports-none
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Use of host ports is disallowed. The fields spec.containers[*].ports[*].hostPort,
          spec.initContainers[*].ports[*].hostPort, and spec.ephemeralContainers[*].ports[*].hostPort
          must either be unset or set to 0.
        pattern:
          spec:
            =(ephemeralContainers):
              - =(ports):
                  - =(hostPort): 0
            =(initContainers):
              - =(ports):
                  - =(hostPort): 0
            containers:
              - =(ports):
                  - =(hostPort): 0

#Policy 4: Disallow Dangerous Capabilities

Block containers from adding dangerous Linux capabilities:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: disallow-capabilities-strict
  annotations:
    policies.kyverno.io/title: Disallow Capabilities (Strict)
    policies.kyverno.io/category: Pod Security Standards (Restricted)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Adding capabilities other than `NET_BIND_SERVICE` is disallowed. In addition,
      all containers must explicitly drop `ALL` capabilities.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: require-drop-all
      match:
        any:
        - resources:
            kinds:
            - Pod
      preconditions:
        all:
        - key: "{{ request.operation || 'BACKGROUND' }}"
          operator: NotEquals
          value: DELETE
      validate:
        message: >-
          Containers must drop `ALL` capabilities.
        foreach:
        - list: request.object.spec.[ephemeralContainers, initContainers, containers][]
          deny:
            conditions:
              all:
              - key: ALL
                operator: AnyNotIn
                value: "{{ element.securityContext.capabilities.drop || `[]` }}"
    - name: adding-capabilities
      match:
        any:
        - resources:
            kinds:
            - Pod
      preconditions:
        all:
        - key: "{{ request.operation || 'BACKGROUND' }}"
          operator: NotEquals
          value: DELETE
      validate:
        message: >-
          Any capabilities added other than NET_BIND_SERVICE are disallowed.
        foreach:
        - list: request.object.spec.[ephemeralContainers, initContainers, containers][]
          deny:
            conditions:
              any:
              - key: "{{ element.securityContext.capabilities.add || `[]` }}"
                operator: AnyNotIn
                value:
                - NET_BIND_SERVICE

#Policy 5: Require Non-Root Containers

Ensure containers run as non-root users:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: require-run-as-nonroot
  annotations:
    policies.kyverno.io/title: Require Run As Non-Root User
    policies.kyverno.io/category: Pod Security Standards (Restricted)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Containers must run as a non-root user. This policy ensures runAsNonRoot is set to true.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: run-as-non-root
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Running as root is not allowed. Either the field spec.securityContext.runAsNonRoot 
          must be set to true, or the field spec.containers[*].securityContext.runAsNonRoot 
          must be set to true.
        anyPattern:
        - spec:
            securityContext:
              runAsNonRoot: "true"
        - spec:
            containers:
            - securityContext:
                runAsNonRoot: "true"

#Advanced Scenarios

#Scenario 1: Environment-Specific Policies

Different security levels for different environments:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: environment-container-security
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    # Production: Strict security
    - name: production-strict-security
      match:
        any:
        - resources:
            kinds:
            - Pod
            namespaces:
            - production
            - prod-*
      validate:
        message: "Production environments require strict container security"
        pattern:
          spec:
            =(hostPID): "false"
            =(hostIPC): "false"
            =(hostNetwork): "false"
            securityContext:
              runAsNonRoot: "true"
            containers:
            - securityContext:
                privileged: "false"
                runAsNonRoot: "true"
                capabilities:
                  drop:
                  - ALL
    
    # Development: More permissive but still secure
    - name: development-basic-security
      match:
        any:
        - resources:
            kinds:
            - Pod
            namespaces:
            - development
            - dev-*
            - staging
      validate:
        message: "Development environments require basic container security"
        pattern:
          spec:
            =(hostPID): "false"
            =(hostIPC): "false"
            containers:
            - securityContext:
                =(privileged): "false"

#Scenario 2: Workload-Specific Exceptions

Allow specific workloads with controlled exceptions:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: workload-specific-security
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: system-workloads-exception
      match:
        any:
        - resources:
            kinds:
            - Pod
      exclude:
        any:
        - resources:
            namespaces:
            - kube-system
            - kyverno
        - resources:
            kinds:
            - Pod
            names:
            - "monitoring-*"
            - "logging-*"
      validate:
        message: "Container security policies apply to application workloads"
        pattern:
          spec:
            =(hostNetwork): "false"
            containers:
            - securityContext:
                =(privileged): "false"

#Testing and Validation

#Test Privileged Container

# This should be blocked
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-privileged
spec:
  containers:
  - name: test
    image: nginx
    securityContext:
      privileged: true
EOF

#Test Host Namespace Access

# This should be blocked
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-host-network
spec:
  hostNetwork: true
  containers:
  - name: test
    image: nginx
EOF

#Test Host Path Mount

# This should be blocked
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-hostpath
spec:
  containers:
  - name: test
    image: nginx
    volumeMounts:
    - name: host-vol
      mountPath: /host
  volumes:
  - name: host-vol
    hostPath:
      path: /
EOF

#Test Valid Secure Container

# This should be allowed
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-secure
spec:
  securityContext:
    runAsNonRoot: true
    runAsUser: 1000
  containers:
  - name: test
    image: nginx
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop:
        - ALL
      readOnlyRootFilesystem: true
      runAsNonRoot: true
      runAsUser: 1000
EOF

#Best Practices

#1. Start with Audit Mode

spec:
  validationFailureAction: Audit  # Start with warnings, not blocking

#2. Exclude System Namespaces

exclude:
  any:
  - resources:
      namespaces:
      - kube-system
      - kyverno
      - kube-public