logo
Alauda Container Platform
English
简体中文
English
简体中文
logo
Alauda Container Platform
Navigation

Overview

Architecture
Release Notes

Install

Overview

Prepare for Installation

Prerequisites
Download
Node Preprocessing
Installing
global Cluster Disaster Recovery

Upgrade

Overview
Pre-Upgrade Preparation
Upgrade the global cluster
Upgrade Workload Clusters

User Interface

Web Console

Overview
Accessing the Web Console
Customizing the Web Console
Customizing the Left Navigation
CLI Tools

Configure

Feature Gate

Clusters

Overview
Creating an On-Premise Cluster
etcd Encryption
Automated Rotate Kuberentes Certificates

How to

Add External Address for Built-in Registry
Choosing a Container Runtime
Updating Public Repository Credentials

Networking

Introduction

Architecture

Understanding Kube-OVN
Understanding ALB
Understanding MetalLB

Concepts

Auth
Ingress-nginx Annotation Compatibility
TCP/HTTP Keepalive
ModSecurity
Comparison Among Different Ingress Method
HTTP Redirect
L4/L7 Timeout
GatewayAPI
OTel

Guides

Creating Services
Creating Ingresses
Configure Gateway
Create Ingress-Nginx
Creating a Domain Name
Creating Certificates
Creating External IP Address Pool
Creating BGP Peers
Configure Subnets
Configure Network Policies
Creating Admin Network Policies
Configure Cluster Network Policies

How To

Deploy High Available VIP for ALB
Soft Data Center LB Solution (Alpha)
Preparing Kube-OVN Underlay Physical Network
Automatic Interconnection of Underlay and Overlay Subnets
Use OAuth Proxy with ALB
Creating GatewayAPI Gateway
Configure a Load Balancer
How to properly allocate CPU and memory resources
Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster
Calico Network Supports WireGuard Encryption
Kube-OVN Overlay Network Supports IPsec Encryption
ALB Monitoring
Load Balancing Session Affinity Policy in Application Load Balancer (ALB)

Trouble Shooting

How to Solve Inter-node Communication Issues in ARM Environments?
Find Who Cause the Error

Machine Configuration

Overview
Managing Node Configuration with MachineConfig
Node Disruption Policies

Storage

Introduction

Concepts

Core Concepts
Persistent Volume
Access Modes and Volume Modes

Guides

Creating CephFS File Storage Type Storage Class
Creating CephRBD Block Storage Class
Create TopoLVM Local Storage Class
Creating an NFS Shared Storage Class
Deploy Volume Snapshot Component
Creating a PV
Creating PVCs
Using Volume Snapshots

How To

Setting the naming rules for subdirectories in the NFS Shared Storage Class
Generic ephemeral volumes
Using an emptyDir
Third‑Party Storage Capability Annotation Guide

Troubleshooting

Recover From PVC Expansion Failure

Storage

Ceph Distributed Storage

Introduction

Install

Create Standard Type Cluster
Create Stretch Type Cluster
Architecture

Concepts

Core Concepts

Guides

Accessing Storage Services
Managing Storage Pools
Node-specific Component Deployment
Adding Devices/Device Classes
Monitoring and Alerts

How To

Configure a Dedicated Cluster for Distributed Storage
Cleanup Distributed Storage

Disaster Recovery

File Storage Disaster Recovery
Block Storage Disaster Recovery
Object Storagge Disaster Recovery
Update the optimization parameters
Create ceph object store user

MinIO Object Storage

Introduction
Install
Architecture

Concepts

Core Concepts

Guides

Adding a Storage Pool
Monitoring & Alerts

How To

Data Disaster Recovery

TopoLVM Local Storage

Introduction
Install

Guides

Device Management
Monitoring and Alerting

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero

Security

Alauda Container Security

Security and Compliance

Compliance

Introduction
Installation

HowTo

Private Registry Access Configuration
Image Signature Verification Policy
Image Signature Verification Policy with Secrets
Image Registry Validation Policy
Container Escape Prevention Policy
Security Context Enforcement Policy
Network Security Policy
Volume Security Policy

API Refiner

Introduction
Install

Users and Roles

User

Introduction

Guides

Manage User Roles
Create User
User Management

Group

Introduction

Guides

Manage User Group Roles
Create Local User Group
Manage Local User Group Membership

Role

Introduction

Guides

Create Role
Manage Custom Roles

IDP

Introduction

Guides

LDAP Management
OIDC Management

Troubleshooting

Delete User

User Policy

Introduction

Multitenancy(Project)

Introduction

Guides

Create Project
Manage Project
Manage Project Cluster
Manage Project Members

Audit

Introduction

Telemetry

Install

Virtualization

Virtualization

Overview

Introduction
Install

Images

Introduction

Guides

Adding Virtual Machine Images
Update/Delete Virtual Machine Images
Update/Delete Image Credentials

How To

Creating Windows Images Based on ISO using KubeVirt
Creating Linux Images Based on ISO Using KubeVirt
Exporting Virtual Machine Images
Permissions

Virtual Machine

Introduction

Guides

Creating Virtual Machines/Virtual Machine Groups
Batch Operations on Virtual Machines
Logging into the Virtual Machine using VNC
Managing Key Pairs
Managing Virtual Machines
Monitoring and Alerts
Quick Location of Virtual Machines

How To

Configuring USB host passthrough
Virtual Machine Hot Migration
Virtual Machine Recovery
Clone Virtual Machines on KubeVirt
Physical GPU Passthrough Environment Preparation
Configuring High Availability for Virtual Machines
Create a VM Template from an Existing Virtual Machine

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes
Hot Migration Error Messages and Solutions

Network

Introduction

Guides

Configure Network

How To

Control Virtual Machine Network Requests Through Network Policy
Configuring SR-IOV
Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support

Storage

Introduction

Guides

Managing Virtual Disks

Backup and Recovery

Introduction

Guides

Using Snapshots

Developer

Overview

Quick Start

Creating a simple application via image

Building Applications

Concepts

Application Types
Custom Applications
Workload Types
Understanding Parameters
Understanding Environment Variables
Understanding Startup Commands
Resource Unit Description

Namespaces

Creating Namespaces
Importing Namespaces
Resource Quota
Limit Range
Pod Security Admission
Overcommit Ratio
Managing Namespace Members
Updating Namespaces
Deleting/Removing Namespaces

Creating Applications

Creating applications from Image
Creating applications from Chart
Creating applications from YAML
Creating applications from Code
Creating applications from Operator Backed
Creating applications by using CLI

Operation and Maintaining Applications

Application Rollout

Installing Alauda Container Platform Argo Rollouts
Application Blue Green Deployment
Application Canary Deployment
Status Description

KEDA(Kubernetes Event-driven Autoscaling)

KEDA Overview
Installing KEDA

How To

Integrating ACP Monitoring with Prometheus Plugin
Pausing Autoscaling in KEDA
Configuring HPA
Starting and Stopping Applications
Configuring VerticalPodAutoscaler (VPA)
Configuring CronHPA
Updating Applications
Exporting Applications
Updating and deleting Chart Applications
Version Management for Applications
Deleting Applications
Health Checks

Workloads

Deployments
DaemonSets
StatefulSets
CronJobs
Jobs
Pods
Containers
Working with Helm charts

Configurations

Configuring ConfigMap
Configuring Secrets

Application Observability

Monitoring Dashboards
Logs
Events

How To

Setting Scheduled Task Trigger Rules

Registry

Introduction

Install

Install Via YAML
Install Via Web UI

How To

Common CLI Command Operations
Using Alauda Container Platform Registry in Kubernetes Clusters

Source to Image

Introduction

Install

Installing Alauda Container Platform Builds

Upgrading

Upgrading Alauda Container Platform Builds
Architecture

Guides

Managing applications created from Code

How To

Creating an application from Code

Node Isolation Strategy

Introduction
Architecture

Concepts

Core Concepts

Guides

Create Node Isolation Strategy
Permissions
FAQ

GitOps

Introduction

Install

Installing Alauda Build of Argo CD
Installing Alauda Container Platform GitOps

Upgrade

Upgrading Alauda Container Platform GitOps
Architecture

Concepts

GitOps

Argo CD Concept

Introduction
Application
ApplicationSet
Tool
Helm
Kustomize
Directory
Sync
Health

Alauda Container Platform GitOps Concepts

Introduction
Alauda Container Platform GitOps Sync and Health Status

Guides

Creating GitOps Application

Creating GitOps Application
Creating GitOps ApplicationSet

GitOps Observability

Argo CD Component Monitoring
GitOps Applications Ops

How To

Integrating Code Repositories via Argo CD dashboard
Creating an Argo CD Application via Argo CD dashboard
Creating an Argo CD Application via the web console
How to Obtain Argo CD Access Information
Troubleshooting

Extend

Operator
Cluster Plugin

Observability

Overview

Monitoring

Introduction
Install

Architecture

Monitoring Module Architecture
Monitoring Component Selection Guide
Concepts

Guides

Management of Metrics
Management of Alert
Management of Notification
Management of Monitoring Dashboards
Management of Probe

How To

Backup and Restore of Prometheus Monitoring Data
VictoriaMetrics Backup and Recovery of Monitoring Data
Collect Network Data from Custom-Named Network Interfaces

Distributed Tracing

Introduction
Install
Architecture
Concepts

Guides

Query Tracing
Query Trace Logs

How To

Non-Intrusive Integration of Tracing in Java Applications
Business Log Associated with the TraceID

Troubleshooting

Unable to Query the Required Tracing
Incomplete Tracing Data

Logs

Introduction
Install

Architecture

Log Module Architecture
Log Component Selection Guide
Log Component Capacity Planning
Concepts

Guides

Logs

How To

How to Archive Logs to Third-Party Storage
How to Interface with External ES Storage Clusters

Events

Introduction
Events

Inspection

Introduction
Architecture

Guides

Inspection
Component Health Status

Hardware accelerators

Overview

Introduction
Features
Install

Application Development

Introduction

Guides

CUDA Driver and Runtime Compatibility
Add Custom Devices Using ConfigMap

Troubleshooting

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM
Paddle Autogrow Memory Allocation Crash on GPU-Manager

Configuration Management

Introduction

Guides

Configure Hardware accelerator on GPU nodes

Resource Monitoring

Introduction

Guides

GPU Resource Monitoring

Alauda Service Mesh

About Alauda Service Mesh

Alauda AI

About Alauda AI

Alauda DevOps

About Alauda DevOps

Alauda Cost Management

About Alauda Cost Management

Alauda Application Services

Overview

Introduction
Architecture
Install
Upgrade

Alauda Database Service for MySQL

About Alauda Database Service for MySQL-MGR
About Alauda Database Service for MySQL-PXC

Alauda Cache Service for Redis OSS

About Alauda Cache Service for Redis OSS

Alauda Streaming Service for Kafka

About Alauda Streaming Service for Kafka

Alauda Streaming Service for RabbitMQ

About Alauda Streaming Service for RabbitMQ

Alauda support for PostgreSQL

About Alauda support for PostgreSQL

Operations Management

Introduction

Parameter Template Management

Introduction

Guides

Parameter Template Management

Backup Management

Introduction

Guides

External S3 Storage
Backup Management

Inspection Management

Introduction

Guides

Create Inspection Task
Exec Inspection Task
Update and Delete Inspection Tasks

How To

How to set Inspection scheduling?

Inspection Optimization Recommendations

MySQL

MySQL IO Load Optimization
MySQL Memory Usage Optimization
MySQL Storage Space Optimization
MySQL Active Thread Count Optimization
MySQL Row Lock Optimization

Redis

Redis BigKey
High CPU Usage in Redis
High Memory Usage in Redis

Kafka

High CPU Utilization in Kafka
Kafka Rebalance Optimization
Kafka Memory Usage Optimization
Kafka Storage Space Optimization

RabbitMQ

RabbitMQ Mnesia Database Exception Handling

Alert Management

Introduction

Guides

Relationship with Platform Capabilities

Upgrade Management

Introduction

Guides

Instance Upgrade

API Reference

Overview

Introduction
Kubernetes API Usage Guide

Advanced APIs

Alert APIs

AlertHistories [v1]
AlertHistoryMessages [v1]
AlertStatus [v2]
SilenceStatus [v2]

Event APIs

Search

Log APIs

Aggregation
Archive
Context
Search

Monitoring APIs

Indicators [monitoring.alauda.io/v1beta1]
Metrics [monitoring.alauda.io/v1beta1]
Variables [monitoring.alauda.io/v1beta1]

Kubernetes APIs

Alert APIs

AlertTemplate [alerttemplates.aiops.alauda.io/v1beta1]
PrometheusRule [prometheusrules.monitoring.coreos.com/v1]

Inspection APIs

Inspection [inspections.ait.alauda.io/v1alpha1]

Notification APIs

Notification [notifications.ait.alauda.io/v1beta1]
NotificationGroup [notificationgroups.ait.alauda.io/v1beta1]
NotificationTemplate [notificationtemplates.ait.alauda.io/v1beta1]
📝 Edit this page on GitHub
Previous PagePrepare for Installation
Next PageDownload

#Prerequisites

Before installing the global cluster, you need to prepare hardware, network, and OS that meet the requirements.

INFO
  1. The platform currently does not support direct installation of the global cluster in an existing Kubernetes environment. If your environment already has a Kubernetes cluster, please back up your data and clean the environment before installation.
  2. If you plan to use global Cluster Disaster Recovery, please first read global Cluster Disaster Recovery.

#TOC

#Capacity Planning

Before installation, you must select an appropriate installation scenario based on your goals and actual needs. Different scenarios have significant differences in infrastructure resource configuration and architecture design requirements. The following are planning recommendations for three typical scenarios:

Single Node
Single Cluster
Multi-Cluster

Scope of Application Suitable for platform function verification, demo , or technical feasibility testing. This scenario is only used to verify the core functions of the platform and does not carry production-level application traffic. The resource configuration is at the minimum level.

Resource Configuration Requirements

DimensionSpecification Requirements
Number of Nodes1 (physical machine or virtual machine)
CPU≥16 cores
Memory≥32GB

Architecture Description

  • All-in-one: The cluster has only one node, and all control plane components and applications run on that node.
  • Lightweight Load: Can only load Demo applications with no more than 10 Pods.
  • Non-Production Use: Does not support horizontal scaling and does not meet application continuity and high availability requirements.
TIP
  1. Resource Redundancy: Production environments are recommended to reserve at least 30% resource margin to cope with sudden loads.
  2. Network Planning: The global cluster should be deployed in an independent VPC or VLAN to ensure bandwidth ≥1Gbps.
  3. Storage Isolation: ETCD storage is recommended to use NVMe SSD and be physically isolated from application storage.

#Machines

INFO

This section describes the minimum hardware requirements for building a highly available global cluster. If you have completed capacity planning, please prepare the corresponding resources according to Capacity Planning, or scale up as needed after installation.

#Basic Requirements

At least 3 physical machines or virtual machines must be provided as control plane nodes for the cluster. The minimum configuration for each node is as follows:

CategoryMinimum Requirements
CPU≥ 8 cores, clock speed ≥ 2.5GHz
No over-provisioning; disable power saving mode
Memory≥ 16GB
No over-provisioning; recommended to use at least six-channel DDR4
Hard DriveSingle device IOPS ≥ 2000
Throughput ≥ 200MB/s
Must use SSD

#ARM Architecture Requirements

For ARM architectures (such as Kunpeng 920), it is recommended to increase the configuration to 2 times that of the x86 minimum configuration, but not less than 1.5 times.

For example: If x86 requires 8 cores 16GB, then ARM should reach at least 12 cores 24GB, and the recommended configuration is 16 cores 32GB.

#Supported OS and Kernels

INFO
  1. Kernel Version Requirements: These kernel versions have been officially released and validated by our platform tests. In your actual deployment, adherence to the A.B.C major version numbers is crucial, while subsequent minor versions can vary.
  2. Unsupported Environments: If the OS, kernel version, or CPU architecture does not meet the requirements, please contact technical support.
Red Hat Enterprise Linux (RHEL)
CentOS
Ubuntu
Kylin Linux Advanced Server
  • RHEL 7.8: 3.10.0-1127.el7.x86_64
  • RHEL 8.0 to 8.6: 4.18.0-80.el8.x86_64 to 4.18.0-372.9.1.el8.x86_64
WARNING

RHEL 7.8 does not support Calico Vxlan IPv6.

#Network

Before installation, the following network resources must be pre-configured. If a hardware LoadBalancer cannot be provided, the installer supports configuring haproxy + keepalived as a software load balancer, but you need to understand:

  • Poorer Performance: Software load balancing performance is lower than hardware LoadBalancer.
  • Higher Complexity: If you are not familiar with keepalived, it may cause the global cluster to be unavailable, problem troubleshooting will take a long time, and seriously affect platform reliability.

#Network Resources

ResourceMandatoryQuantityDescription
global VIPMandatory1Used for nodes in the cluster to access kube-apiserver, configured in the load balancing device to ensure high availability.
This IP can also be used as the access address for the platform Web UI.
Workload clusters in the same network as the global cluster can also access the global cluster through this IP.
External IPOptionalOn DemandWhen there are workload clusters that are not in the same network as the global cluster, such as a hybrid cloud scenario, it must be provided. Workload clusters in other networks access the global cluster through this IP.
This IP needs to be configured in the load balancing device to ensure high availability.
This IP can also be used as the access address for the platform Web UI.
Domain NameOptionalOn DemandIf you need to access the global cluster or platform Web UI through a domain name, please provide it in advance and ensure that the domain name resolution is correct.
CertificateOptionalOn DemandIt is recommended to use a trusted certificate to avoid browser security warnings; if not provided, the installer will generate a self-signed certificate, but there may be security risks when using HTTPS.
INFO

A domain name must be provided in the following cases:

  1. The global cluster needs to support IPv6 access.
  2. A disaster recovery plan for the global cluster is planned.
NOTE

If the platform needs to configure multiple access addresses (for example, addresses for internal and external networks), please prepare the corresponding IP addresses or domain names in advance according to the table above. You can configure them in the installation parameters later, or add them according to the product documentation after installation.

#Network Configuration

TypeRequirement Description
Network SpeedSpeed of global cluster and workload cluster in the same network ≥1Gbps (recommended 10Gbps); cross-network speed ≥100Mbps (recommended 1Gbps).
Insufficient speed will significantly reduce data query performance.
Network LatencyLatency ≤2ms in the same network; latency ≤100ms (recommended ≤30ms) across networks.
Network PolicyPlease refer to LoadBalancer Forwarding Rules to ensure that the necessary ports are open; when using Calico CNI, ensure that the IP-in-IP protocol is enabled.
IP Address RangeThe global cluster nodes should avoid using the 172.16-32 network segment. If it has been used, please adjust the Docker configuration (add the bip parameter) to avoid conflicts.

#LoadBalancer Forwarding Rules

This rule is designed to ensure that the global cluster can receive traffic from the LoadBalancer normally. Please check the network policy according to the following table to ensure that the relevant ports are open.

Source IPProtocolDestination IPDestination PortDescription
global VIP, External IPTCPAll control plane node IPs443

Provides access services for the platform Web UI, image repository, and Kubernetes API Server through the HTTPS protocol. The default port is 443. If you need to use a custom HTTPS port, please do the following:

  • Replace the destination port in the port forwarding rule with your custom port number.
  • Later, in the Web UI installation parameters, fill in your custom port number.
global VIP, External IPTCPAll control plane node IPs6443

This port provides access to the Kubernetes API Server for nodes within the cluster.

global VIP, External IPTCPAll control plane node IPs11443

This port provides access to the image repository for nodes within the cluster.
Note: If you plan to use an external image repository instead of the default image repository provided by the global cluster, you do not need to configure this port.

TIP
  • It is recommended to configure health checks on the LoadBalancer to monitor the port status.
  • If you plan to implement a disaster recovery plan for the global cluster, you need to open port 2379 for all control plane nodes for ETCD data synchronization between the primary and disaster recovery clusters.
  • The platform only supports HTTPS by default. If HTTP support is required, you need to open the HTTP port for all control plane nodes.