logo
Alauda Container Platform
English
简体中文
English
简体中文
logo
Alauda Container Platform
Navigation

Overview

Architecture
Release Notes

Install

Overview

Prepare for Installation

Prerequisites
Download
Node Preprocessing
Installing
global Cluster Disaster Recovery

Upgrade

Overview
Pre-Upgrade Preparation
Upgrade the global cluster
Upgrade Workload Clusters

User Interface

Web Console

Overview
Accessing the Web Console
Customizing the Web Console
Customizing the Left Navigation
CLI Tools

Configure

Feature Gate

Clusters

Overview
Creating an On-Premise Cluster
etcd Encryption
Automated Rotate Kuberentes Certificates

How to

Add External Address for Built-in Registry
Choosing a Container Runtime
Updating Public Repository Credentials

Networking

Introduction

Architecture

Understanding Kube-OVN
Understanding ALB
Understanding MetalLB

Concepts

Auth
Ingress-nginx Annotation Compatibility
TCP/HTTP Keepalive
ModSecurity
Comparison Among Different Ingress Method
HTTP Redirect
L4/L7 Timeout
GatewayAPI
OTel

Guides

Creating Services
Creating Ingresses
Configure Gateway
Create Ingress-Nginx
Creating a Domain Name
Creating Certificates
Creating External IP Address Pool
Creating BGP Peers
Configure Subnets
Configure Network Policies
Creating Admin Network Policies
Configure Cluster Network Policies

How To

Deploy High Available VIP for ALB
Soft Data Center LB Solution (Alpha)
Preparing Kube-OVN Underlay Physical Network
Automatic Interconnection of Underlay and Overlay Subnets
Use OAuth Proxy with ALB
Creating GatewayAPI Gateway
Configure a Load Balancer
How to properly allocate CPU and memory resources
Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster
Calico Network Supports WireGuard Encryption
Kube-OVN Overlay Network Supports IPsec Encryption
ALB Monitoring
Load Balancing Session Affinity Policy in Application Load Balancer (ALB)

Trouble Shooting

How to Solve Inter-node Communication Issues in ARM Environments?
Find Who Cause the Error

Machine Configuration

Overview
Managing Node Configuration with MachineConfig
Node Disruption Policies

Storage

Introduction

Concepts

Core Concepts
Persistent Volume
Access Modes and Volume Modes

Guides

Creating CephFS File Storage Type Storage Class
Creating CephRBD Block Storage Class
Create TopoLVM Local Storage Class
Creating an NFS Shared Storage Class
Deploy Volume Snapshot Component
Creating a PV
Creating PVCs
Using Volume Snapshots

How To

Setting the naming rules for subdirectories in the NFS Shared Storage Class
Generic ephemeral volumes
Using an emptyDir
Third‑Party Storage Capability Annotation Guide

Troubleshooting

Recover From PVC Expansion Failure

Storage

Ceph Distributed Storage

Introduction

Install

Create Standard Type Cluster
Create Stretch Type Cluster
Architecture

Concepts

Core Concepts

Guides

Accessing Storage Services
Managing Storage Pools
Node-specific Component Deployment
Adding Devices/Device Classes
Monitoring and Alerts

How To

Configure a Dedicated Cluster for Distributed Storage
Cleanup Distributed Storage

Disaster Recovery

File Storage Disaster Recovery
Block Storage Disaster Recovery
Object Storagge Disaster Recovery
Update the optimization parameters
Create ceph object store user

MinIO Object Storage

Introduction
Install
Architecture

Concepts

Core Concepts

Guides

Adding a Storage Pool
Monitoring & Alerts

How To

Data Disaster Recovery

TopoLVM Local Storage

Introduction
Install

Guides

Device Management
Monitoring and Alerting

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero

Security

Alauda Container Security

Security and Compliance

Compliance

Introduction
Installation

HowTo

Private Registry Access Configuration
Image Signature Verification Policy
Image Signature Verification Policy with Secrets
Image Registry Validation Policy
Container Escape Prevention Policy
Security Context Enforcement Policy
Network Security Policy
Volume Security Policy

API Refiner

Introduction
Install

Users and Roles

User

Introduction

Guides

Manage User Roles
Create User
User Management

Group

Introduction

Guides

Manage User Group Roles
Create Local User Group
Manage Local User Group Membership

Role

Introduction

Guides

Create Role
Manage Custom Roles

IDP

Introduction

Guides

LDAP Management
OIDC Management

Troubleshooting

Delete User

User Policy

Introduction

Multitenancy(Project)

Introduction

Guides

Create Project
Manage Project
Manage Project Cluster
Manage Project Members

Audit

Introduction

Telemetry

Install

Virtualization

Virtualization

Overview

Introduction
Install

Images

Introduction

Guides

Adding Virtual Machine Images
Update/Delete Virtual Machine Images
Update/Delete Image Credentials

How To

Creating Windows Images Based on ISO using KubeVirt
Creating Linux Images Based on ISO Using KubeVirt
Exporting Virtual Machine Images
Permissions

Virtual Machine

Introduction

Guides

Creating Virtual Machines/Virtual Machine Groups
Batch Operations on Virtual Machines
Logging into the Virtual Machine using VNC
Managing Key Pairs
Managing Virtual Machines
Monitoring and Alerts
Quick Location of Virtual Machines

How To

Configuring USB host passthrough
Virtual Machine Hot Migration
Virtual Machine Recovery
Clone Virtual Machines on KubeVirt
Physical GPU Passthrough Environment Preparation
Configuring High Availability for Virtual Machines
Create a VM Template from an Existing Virtual Machine

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes
Hot Migration Error Messages and Solutions

Network

Introduction

Guides

Configure Network

How To

Control Virtual Machine Network Requests Through Network Policy
Configuring SR-IOV
Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support

Storage

Introduction

Guides

Managing Virtual Disks

Backup and Recovery

Introduction

Guides

Using Snapshots

Developer

Overview

Quick Start

Creating a simple application via image

Building Applications

Concepts

Application Types
Custom Applications
Workload Types
Understanding Parameters
Understanding Environment Variables
Understanding Startup Commands
Resource Unit Description

Namespaces

Creating Namespaces
Importing Namespaces
Resource Quota
Limit Range
Pod Security Admission
Overcommit Ratio
Managing Namespace Members
Updating Namespaces
Deleting/Removing Namespaces

Creating Applications

Creating applications from Image
Creating applications from Chart
Creating applications from YAML
Creating applications from Code
Creating applications from Operator Backed
Creating applications by using CLI

Operation and Maintaining Applications

Application Rollout

Installing Alauda Container Platform Argo Rollouts
Application Blue Green Deployment
Application Canary Deployment
Status Description

KEDA(Kubernetes Event-driven Autoscaling)

KEDA Overview
Installing KEDA

How To

Integrating ACP Monitoring with Prometheus Plugin
Pausing Autoscaling in KEDA
Configuring HPA
Starting and Stopping Applications
Configuring VerticalPodAutoscaler (VPA)
Configuring CronHPA
Updating Applications
Exporting Applications
Updating and deleting Chart Applications
Version Management for Applications
Deleting Applications
Health Checks

Workloads

Deployments
DaemonSets
StatefulSets
CronJobs
Jobs
Pods
Containers
Working with Helm charts

Configurations

Configuring ConfigMap
Configuring Secrets

Application Observability

Monitoring Dashboards
Logs
Events

How To

Setting Scheduled Task Trigger Rules

Registry

Introduction

Install

Install Via YAML
Install Via Web UI

How To

Common CLI Command Operations
Using Alauda Container Platform Registry in Kubernetes Clusters

Source to Image

Introduction

Install

Installing Alauda Container Platform Builds

Upgrading

Upgrading Alauda Container Platform Builds
Architecture

Guides

Managing applications created from Code

How To

Creating an application from Code

Node Isolation Strategy

Introduction
Architecture

Concepts

Core Concepts

Guides

Create Node Isolation Strategy
Permissions
FAQ

GitOps

Introduction

Install

Installing Alauda Build of Argo CD
Installing Alauda Container Platform GitOps

Upgrade

Upgrading Alauda Container Platform GitOps
Architecture

Concepts

GitOps

Argo CD Concept

Introduction
Application
ApplicationSet
Tool
Helm
Kustomize
Directory
Sync
Health

Alauda Container Platform GitOps Concepts

Introduction
Alauda Container Platform GitOps Sync and Health Status

Guides

Creating GitOps Application

Creating GitOps Application
Creating GitOps ApplicationSet

GitOps Observability

Argo CD Component Monitoring
GitOps Applications Ops

How To

Integrating Code Repositories via Argo CD dashboard
Creating an Argo CD Application via Argo CD dashboard
Creating an Argo CD Application via the web console
How to Obtain Argo CD Access Information
Troubleshooting

Extend

Operator
Cluster Plugin

Observability

Overview

Monitoring

Introduction
Install

Architecture

Monitoring Module Architecture
Monitoring Component Selection Guide
Concepts

Guides

Management of Metrics
Management of Alert
Management of Notification
Management of Monitoring Dashboards
Management of Probe

How To

Backup and Restore of Prometheus Monitoring Data
VictoriaMetrics Backup and Recovery of Monitoring Data
Collect Network Data from Custom-Named Network Interfaces

Distributed Tracing

Introduction
Install
Architecture
Concepts

Guides

Query Tracing
Query Trace Logs

How To

Non-Intrusive Integration of Tracing in Java Applications
Business Log Associated with the TraceID

Troubleshooting

Unable to Query the Required Tracing
Incomplete Tracing Data

Logs

Introduction
Install

Architecture

Log Module Architecture
Log Component Selection Guide
Log Component Capacity Planning
Concepts

Guides

Logs

How To

How to Archive Logs to Third-Party Storage
How to Interface with External ES Storage Clusters

Events

Introduction
Events

Inspection

Introduction
Architecture

Guides

Inspection
Component Health Status

Hardware accelerators

Overview

Introduction
Features
Install

Application Development

Introduction

Guides

CUDA Driver and Runtime Compatibility
Add Custom Devices Using ConfigMap

Troubleshooting

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM
Paddle Autogrow Memory Allocation Crash on GPU-Manager

Configuration Management

Introduction

Guides

Configure Hardware accelerator on GPU nodes

Resource Monitoring

Introduction

Guides

GPU Resource Monitoring

Alauda Service Mesh

About Alauda Service Mesh

Alauda AI

About Alauda AI

Alauda DevOps

About Alauda DevOps

Alauda Cost Management

About Alauda Cost Management

Alauda Application Services

Overview

Introduction
Architecture
Install
Upgrade

Alauda Database Service for MySQL

About Alauda Database Service for MySQL-MGR
About Alauda Database Service for MySQL-PXC

Alauda Cache Service for Redis OSS

About Alauda Cache Service for Redis OSS

Alauda Streaming Service for Kafka

About Alauda Streaming Service for Kafka

Alauda Streaming Service for RabbitMQ

About Alauda Streaming Service for RabbitMQ

Alauda support for PostgreSQL

About Alauda support for PostgreSQL

Operations Management

Introduction

Parameter Template Management

Introduction

Guides

Parameter Template Management

Backup Management

Introduction

Guides

External S3 Storage
Backup Management

Inspection Management

Introduction

Guides

Create Inspection Task
Exec Inspection Task
Update and Delete Inspection Tasks

How To

How to set Inspection scheduling?

Inspection Optimization Recommendations

MySQL

MySQL IO Load Optimization
MySQL Memory Usage Optimization
MySQL Storage Space Optimization
MySQL Active Thread Count Optimization
MySQL Row Lock Optimization

Redis

Redis BigKey
High CPU Usage in Redis
High Memory Usage in Redis

Kafka

High CPU Utilization in Kafka
Kafka Rebalance Optimization
Kafka Memory Usage Optimization
Kafka Storage Space Optimization

RabbitMQ

RabbitMQ Mnesia Database Exception Handling

Alert Management

Introduction

Guides

Relationship with Platform Capabilities

Upgrade Management

Introduction

Guides

Instance Upgrade

API Reference

Overview

Introduction
Kubernetes API Usage Guide

Advanced APIs

Alert APIs

AlertHistories [v1]
AlertHistoryMessages [v1]
AlertStatus [v2]
SilenceStatus [v2]

Event APIs

Search

Log APIs

Aggregation
Archive
Context
Search

Monitoring APIs

Indicators [monitoring.alauda.io/v1beta1]
Metrics [monitoring.alauda.io/v1beta1]
Variables [monitoring.alauda.io/v1beta1]

Kubernetes APIs

Alert APIs

AlertTemplate [alerttemplates.aiops.alauda.io/v1beta1]
PrometheusRule [prometheusrules.monitoring.coreos.com/v1]

Inspection APIs

Inspection [inspections.ait.alauda.io/v1alpha1]

Notification APIs

Notification [notifications.ait.alauda.io/v1beta1]
NotificationGroup [notificationgroups.ait.alauda.io/v1beta1]
NotificationTemplate [notificationtemplates.ait.alauda.io/v1beta1]
📝 Edit this page on GitHub
Previous PageMachine Configuration
Next PageManaging Node Configuration with MachineConfig

#Overview

#TOC

#How Machine Configuration Works

Machine Configuration handles file updates, systemd unit management, and SSH public key deployment across cluster nodes. The system provides a MachineConfig Custom Resource Definition (CRD) for writing configuration files to hosts, and a MachineConfigPool CRD for organizing nodes into configuration groups.

Each MachineConfigPool governs a set of nodes and their associated MachineConfigs. Node roles determine MachineConfigPool membership—pools manage nodes based on their role labels.

During cluster installation, the system automatically creates two MachineConfigPools (master and worker) along with two empty MachineConfigs (00-master and 00-worker). The master pool manages the 00-master configuration, while the worker pool manages the 00-worker configuration.

You can create custom MachineConfigPools for worker nodes that require specialized configurations. Master nodes cannot use custom pools.

Custom MachineConfigPools inherit all configurations from the worker pool and add their own specific settings. Any changes to the worker pool automatically propagate to custom pools. Machine Configuration does not support custom pools that don't inherit from the worker pool.

The cluster includes a default MachineConfiguration CR named "cluster" for setting global node update policies. See the Node Disruption Policy documentation for details.

Sometimes node configurations drift from their intended state. The machine-config-daemon continuously monitors for configuration drift and marks affected nodes as Degraded until an administrator resolves the issue. Degraded nodes remain operational but cannot receive updates.

#Key Concepts

Configuration Processing MachineConfigs are processed alphabetically. The first configuration serves as the base, with subsequent configs layered on top. Each MachineConfigPool renders its managed configs into a single MachineConfig named: render-<pool-name>-<content-hash>, which gets applied to all nodes in that pool.

Update Strategy Machine Configuration updates nodes by age, starting with the oldest. The maxUnavailable field in each MachineConfigPool controls how many nodes update simultaneously.

Scope of Management Machine Configuration only manages explicitly configured items. Manual system changes remain untouched by the Machine Configuration Operator.

Configuration Format All MachineConfigs use the Ignition v3.4.0 specification format.

Drift Detection When Machine Configuration-managed files change outside the system, machine-config-daemon marks the node as Degraded but doesn't overwrite the modified files.

Pool Benefits MachineConfigPools ensure that new nodes automatically receive the correct configuration when they join the cluster.

Supported Modifications

  • Regular files (in writable, non-root directories)
  • systemd units and their configurations
  • SSH public keys for the boot user only

Machine Configuration doesn't create users or groups. You must create the boot user and group before configuring SSH keys.

Important: Avoid manual node modifications—they can cause configuration conflicts.

#Configuration Types

Files Create or modify file content and permissions. Files can only be managed if their containing partition is writable.

Systemd Units Define new systemd services or extend existing ones with additional configuration.

SSH Public Keys Configure SSH access for the boot user. Keys for other users are rejected as invalid.

#Node Update Process

When you apply a MachineConfig, Machine Configuration ensures all affected nodes reach the desired state. The Machine Configuration Operator generates a new rendered configuration and machine-config-daemon executes these steps on each node:

  1. Cordon - Mark node unschedulable for new workloads
  2. Drain - Terminate existing workloads and reschedule them elsewhere
  3. Apply - Write the new configuration to disk
  4. Reboot - Restart the node to activate changes
  5. Uncordon - Mark node schedulable again

#Checking MachineConfigPool Status

Check pool status with:

kubectl get machineconfigpool

Example output:

NAME     CONFIG                    UPDATED  UPDATING  DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT  DEGRADEDMACHINECOUNT  AGE
master   rendered-master-06c9c4    True     False     False     3             3                  3                    0                     4h42m
worker   rendered-worker-f4b64     False    True      False     3             2                  2                    0                     4h42m

Field Reference:

  • NAME: Pool identifier
  • CONFIG: Most recently applied configuration across all pool nodes
  • UPDATED: True when all nodes have the current config; False during updates
  • UPDATING: True when at least one node is updating; False when all are current
  • DEGRADED: True when config cannot be applied to at least one node
  • MACHINECOUNT: Total nodes in the pool
  • READYMACHINECOUNT: Nodes with current config in healthy, schedulable state
  • UPDATEDMACHINECOUNT: Nodes that have applied the current config
  • DEGRADEDMACHINECOUNT: Nodes marked as degraded or unreconcilable

In this example, all three master nodes are current, while the worker pool is updating—two nodes are complete and one is in progress.

Get detailed pool information:

kubectl describe machineconfigpool worker

View all MachineConfigs:

kubectl get machineconfig

Example output:

NAME                    IGNITIONVERSION  AGE
00-master               3.4.0            3h2m
00-worker               3.4.0            3h2m
rendered-master-ccb     3.4.0            1h12m
rendered-worker-bad     3.4.0            1h20m

Examine specific configurations:

kubectl describe machineconfig 00-master

Check individual node status:

kubectl get node -o custom-columns=NODE:.metadata.name,DESIRED:.metadata.annotations."machineconfiguration\.alauda\.io/desiredConfig",CURRENT:.metadata.annotations."machineconfiguration\.alauda\.io/currentConfig",STATE:.metadata.annotations."machineconfiguration\.alauda\.io/state"

Example output:

NODE              DESIRED                                    CURRENT                                    STATE
192.168.132.216   rendered-master-98db9ca4f4b4cd             rendered-master-98db9ca4f4b4cd             Degraded
192.168.135.83    rendered-worker-05f27341ba49cf86dc4b      rendered-master-e08d9cab50e383             Working
192.168.134.99    rendered-worker-05f27341ba49cf86dc4b      rendered-worker-05f27341ba49cf86dc4b      Done

Node State Reference:

  • NODE: Node identifier
  • DESIRED: Target configuration for the node
  • CURRENT: Currently applied configuration
  • STATE: Configuration status
    • Done: Node healthy with matching desired and current configs
    • Working: Node updating (current ≠ desired)
    • Degraded: Configuration drift detected or application failed—check logs for root cause