logo
Alauda Container Platform
English
Русский
English
Русский
logo
Alauda Container Platform
Navigation

Overview

Architecture
Release Notes

Install

Overview

Prepare for Installation

Prerequisites
Download
Node Preprocessing
Installing
Global Cluster Disaster Recovery

Upgrade

Overview
Pre-Upgrade Preparation
Upgrade the global cluster
Upgrade Workload Clusters

User Interface

Web Console

Overview
Accessing the Web Console
Customizing the Web Console
Customizing the Left Navigation

CLI Tools

ACP CLI (ac)

Getting Started with ACP CLI
Configuring ACP CLI
Usage of ac and kubectl Commands
Managing CLI Profiles
Extending ACP CLI with Plugins
AC CLI Developer Command Reference
AC CLI Administrator Command Reference
violet CLI

Configure

Feature Gate

Clusters

Overview
Immutable Infrastructure

Node Management

Overview
Add Nodes to On-Premises Clusters
Manage Nodes
Node Monitoring

Managed Clusters

overview

Import Clusters

Overview
Import Standard Kubernetes Cluster
Import OpenShift Cluster
Import Amazon EKS Cluster
Import GKE Cluster
Import Huawei Cloud CCE Cluster (Public Cloud)
Import Azure AKS Cluster
Import Alibaba Cloud ACK Cluster
Import Tencent Cloud TKE Cluster
Register Cluster

Public Cloud Cluster Initialization

Network Initialization

AWS EKS Cluster Network Initialization Configuration
AWS EKS Supplementary Information
Huawei Cloud CCE Cluster Network Initialization Configuration
Azure AKS Cluster Network Initialization Configuration
Google GKE Cluster Network Initialization Configuration

Storage Initialization

Overview
AWS EKS Cluster Storage Initialization Configuration
Huawei Cloud CCE Cluster Storage Initialization Configuration
Azure AKS Cluster Storage Initialization Configuration
Google GKE Cluster Storage Initialization Configuration

How to

Network Configuration for Import Clusters
Fetch import cluster information
Trust an insecure image registry
Collect Network Data from Custom Named Network Cards
Creating an On-Premise Cluster
Hosted Control Plane
Cluster Node Planning
etcd Encryption

How to

Add External Address for Built-in Registry
Choosing a Container Runtime
Updating Public Repository Credentials

Backup and Recovery

Overview
Install
Backup repository

Backup Management

ETCD Backup
Create an application backup schedule
Hooks

Recovery Management

Run an Application Restore Task
Image Registry Replacement

Networking

Introduction

Architecture

Understanding Kube-OVN
Understanding ALB
Understanding MetalLB

Concepts

ALB with Ingress-NGINX Annotation Compatibility
Comparison Among Service, Ingress, Gateway API, and ALB Rule
GatewayAPI

Guides

Creating Services
Creating Ingresses
Creating a Domain Name
Creating Certificates
Creating External IP Address Pool
Creating BGP Peers
Configure Subnets
Configure Network Policies
Creating Admin Network Policies
Configuring Kube-OVN Network to Support Pod Multi-Network Interfaces (Alpha)
Configure Cluster Network Policies
Configure Egress Gateway
Network Observability
Configure ALB Rules
Cluster Interconnection (Alpha)
Endpoint Health Checker
NodeLocal DNSCache

How To

Preparing Kube-OVN Underlay Physical Network
Soft Data Center LB Solution (Alpha)
Automatic Interconnection of Underlay and Overlay Subnets
Install Ingress-Nginx via Cluster Plugin
Install Ingress-Nginx via Ingress Nginx Operator
Tasks for Ingress-Nginx

ALB

Auth
Deploy High Available VIP for ALB
Header Modification
HTTP Redirect
L4/L7 Timeout
ModSecurity
TCP/HTTP Keepalive
Use OAuth Proxy with ALB
Configure GatewayApi Gateway via ALB
Bind NIC in ALB
Decision‑Making for ALB Performance Selection
Deploy ALB
Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster via ALB
OTel
ALB Monitoring
CORS
Load Balancing Session Affinity Policy in ALB
URL Rewrite
Calico Network Supports WireGuard Encryption
Kube-OVN Overlay Network Supports IPsec Encryption
DeepFlow User Guide

Trouble Shooting

How to Solve Inter-node Communication Issues in ARM Environments?
Find Who Cause the Error

Storage

Introduction

Concepts

Core Concepts
Persistent Volume
Access Modes and Volume Modes

Guides

Creating CephFS File Storage Type Storage Class
Creating CephRBD Block Storage Class
Create TopoLVM Local Storage Class
Creating an NFS Shared Storage Class
Deploy Volume Snapshot Component
Creating a PV
Creating PVCs
Using Volume Snapshots

How To

Generic ephemeral volumes
Using an emptyDir
Configuring Persistent Storage Using NFS
Third‑Party Storage Capability Annotation Guide

Troubleshooting

Recover From PVC Expansion Failure
Machine Configuration

Scalability and Performance

Evaluating Resources for Global Cluster
Evaluating Resources for Workload Cluster
Improving Kubernetes Stability for Large-Scale Clusters
Disk Configuration

Storage

Ceph Distributed Storage

Introduction

Install

Create Standard Type Cluster
Create Stretch Type Cluster
Architecture

Concepts

Core Concepts

Guides

Accessing Storage Services
Managing Storage Pools
Node-specific Component Deployment
Adding Devices/Device Classes
Monitoring and Alerts

How To

Configure a Dedicated Cluster for Distributed Storage
Cleanup Distributed Storage

Disaster Recovery

File Storage Disaster Recovery
Block Storage Disaster Recovery
Object Storage Disaster Recovery
Update the optimization parameters
Create ceph object store user

MinIO Object Storage

Introduction
Install
Architecture

Concepts

Core Concepts

Guides

Adding a Storage Pool
Monitoring & Alerts

How To

Data Disaster Recovery

TopoLVM Local Storage

Introduction
Install

Guides

Device Management
Monitoring and Alerting

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero

Security

Alauda Container Security

Security and Compliance

Compliance

Introduction
Install Alauda Container Platform Compliance with Kyverno

HowTo

Private Registry Access Configuration
Image Signature Verification Policy
Image Signature Verification Policy with Secrets
Image Registry Validation Policy
Container Escape Prevention Policy
Security Context Enforcement Policy
Network Security Policy
Volume Security Policy

API Refiner

Introduction
Install Alauda Container Platform API Refiner
About Alauda Container Platform Compliance Service

Users and Roles

User

Introduction

Guides

Manage User Roles
Create User
User Management

Group

Introduction

Guides

Manage User Group Roles
Create Local User Group
Manage Local User Group Membership

Role

Introduction

Guides

Create Role
Manage Custom Roles

IDP

Introduction

Guides

LDAP Management
OIDC Management

Troubleshooting

Delete User

User Policy

Introduction

Multitenancy(Project)

Introduction

Guides

Create Project
Manage Project Quotas
Manage Project
Manage Project Cluster
Manage Project Members

Audit

Introduction

Telemetry

Install

Certificates

Automated Kubernetes Certificate Rotation
cert-manager
OLM Certificates
Certificate Monitoring

Virtualization

Virtualization

Overview

Introduction
Install

Images

Introduction

Guides

Adding Virtual Machine Images
Update/Delete Virtual Machine Images
Update/Delete Image Credentials

How To

Creating Windows Images Based on ISO using KubeVirt
Creating Linux Images Based on ISO Using KubeVirt
Exporting Virtual Machine Images
Permissions

Virtual Machine

Introduction

Guides

Creating Virtual Machines/Virtual Machine Groups
Batch Operations on Virtual Machines
Logging into the Virtual Machine using VNC
Managing Key Pairs
Managing Virtual Machines
Monitoring and Alerts
Quick Location of Virtual Machines

How To

Configuring USB host passthrough
Virtual Machine Hot Migration
Virtual Machine Recovery
Clone Virtual Machines on KubeVirt
Physical GPU Passthrough Environment Preparation
Configuring High Availability for Virtual Machines
Create a VM Template from an Existing Virtual Machine

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes
Hot Migration Error Messages and Solutions

Network

Introduction

Guides

Configure Network

How To

Control Virtual Machine Network Requests Through Network Policy
Configuring SR-IOV
Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support

Storage

Introduction

Guides

Managing Virtual Disks

Backup and Recovery

Introduction

Guides

Using Snapshots

Developer

Overview

Quick Start

Creating a simple application via image

Building Applications

Build application architecture

Concepts

Application Types
Custom Applications
Workload Types
Understanding Parameters
Understanding Environment Variables
Understanding Startup Commands
Resource Unit Description

Namespaces

Creating Namespaces
Importing Namespaces
Resource Quota
Limit Range
Pod Security Admission
UID/GID Assignment
Overcommit Ratio
Managing Namespace Members
Updating Namespaces
Deleting/Removing Namespaces

Creating Applications

Creating applications from Image
Creating applications from Chart
Creating applications from YAML
Creating applications from Code
Creating applications from Operator Backed
Creating applications by using CLI

Operation and Maintaining Applications

Application Rollout

Installing Alauda Container Platform Argo Rollouts
Application Blue Green Deployment
Application Canary Deployment
Status Description

KEDA(Kubernetes Event-driven Autoscaling)

KEDA Overview
Installing KEDA

How To

Integrating ACP Monitoring with Prometheus Plugin
Pausing Autoscaling in KEDA
Configuring HPA
Starting and Stopping Applications
Configuring VerticalPodAutoscaler (VPA)
Configuring CronHPA
Updating Applications
Exporting Applications
Updating and deleting Chart Applications
Version Management for Applications
Deleting Applications
Handling Out of Resource Errors
Health Checks

Workloads

Deployments
DaemonSets
StatefulSets
CronJobs
Jobs
Pods
Containers
Working with Helm charts

Configurations

Configuring ConfigMap
Configuring Secrets

Application Observability

Monitoring Dashboards
Logs
Events

How To

Setting Scheduled Task Trigger Rules

Images

Overview of images

How To

Creating images
Managing images

Registry

Introduction

Install

Install Via YAML
Install Via Web UI

How To

Common CLI Command Operations
Using Alauda Container Platform Registry in Kubernetes Clusters

Source to Image

Overview

Introduction
Architecture
Release Notes
Lifecycle Policy

Install

Installing Alauda Container Platform Builds

Upgrade

Upgrading Alauda Container Platform Builds

Guides

Managing applications created from Code

How To

Creating an application from Code

Node Isolation Strategy

Introduction
Architecture

Concepts

Core Concepts

Guides

Create Node Isolation Strategy
Permissions
FAQ

GitOps

Introduction

Install

Installing Alauda Build of Argo CD
Installing Alauda Container Platform GitOps

Upgrade

Upgrading Alauda Container Platform GitOps
Architecture

Concepts

GitOps

Argo CD Concept

Introduction
Application
ApplicationSet
Tool
Helm
Kustomize
Directory
Sync
Health

Alauda Container Platform GitOps Concepts

Introduction
Alauda Container Platform GitOps Sync and Health Status

Guides

Creating GitOps Application

Creating GitOps Application
Creating GitOps ApplicationSet

GitOps Observability

Argo CD Component Monitoring
GitOps Applications Ops

How To

Integrating Code Repositories via Argo CD dashboard
Creating an Argo CD Application via Argo CD dashboard
Creating an Argo CD Application via the web console
How to Obtain Argo CD Access Information
Troubleshooting

Extend

Overview
Operator
Cluster Plugin
Upload Packages

Observability

Overview

Monitoring

Introduction
Install

Architecture

Monitoring Module Architecture
Monitoring Component Selection Guide
Monitor Component Capacity Planning
Concepts

Guides

Management of Metrics
Management of Alert
Management of Notification
Management of Monitoring Dashboards
Management of Probe

How To

Backup and Restore of Prometheus Monitoring Data
VictoriaMetrics Backup and Recovery of Monitoring Data
Collect Network Data from Custom-Named Network Interfaces

Distributed Tracing

Introduction
Install
Architecture
Concepts

Guides

Query Tracing
Query Trace Logs

How To

Non-Intrusive Integration of Tracing in Java Applications
Business Log Associated with the TraceID

Troubleshooting

Unable to Query the Required Tracing
Incomplete Tracing Data

Logs

Introduction
Install

Architecture

Log Module Architecture
Log Component Selection Guide
Log Component Capacity Planning
Concepts

Guides

Logs

How To

How to Archive Logs to Third-Party Storage
How to Interface with External ES Storage Clusters

Events

Introduction
Events

Inspection

Introduction
Architecture

Guides

Inspection
Component Health Status

Hardware accelerators

About Alauda Build of Hami
About Alauda Build of NVIDIA GPU Device Plugin

Alauda Service Mesh

Service Mesh 1.x
Service Mesh 2.x

Alauda AI

About Alauda AI

Alauda DevOps

About Alauda DevOps

Alauda Cost Management

About Alauda Cost Management

Alauda Application Services

Overview

Introduction
Architecture
Install
Upgrade

Alauda Database Service for MySQL

About Alauda Database Service for MySQL-MGR
About Alauda Database Service for MySQL-PXC

Alauda Cache Service for Redis OSS

About Alauda Cache Service for Redis OSS

Alauda Streaming Service for Kafka

About Alauda Streaming Service for Kafka

Alauda Streaming Service for RabbitMQ

About Alauda Streaming Service for RabbitMQ

Alauda support for PostgreSQL

About Alauda support for PostgreSQL

Operations Management

Introduction

Parameter Template Management

Introduction

Guides

Parameter Template Management

Backup Management

Introduction

Guides

External S3 Storage
Backup Management

Inspection Management

Introduction

Guides

Create Inspection Task
Exec Inspection Task
Update and Delete Inspection Tasks

How To

How to set Inspection scheduling?

Inspection Optimization Recommendations

MySQL

MySQL IO Load Optimization
MySQL Memory Usage Optimization
MySQL Storage Space Optimization
MySQL Active Thread Count Optimization
MySQL Row Lock Optimization

Redis

Redis BigKey
High CPU Usage in Redis
High Memory Usage in Redis

Kafka

High CPU Utilization in Kafka
Kafka Rebalance Optimization
Kafka Memory Usage Optimization
Kafka Storage Space Optimization

RabbitMQ

RabbitMQ Mnesia Database Exception Handling

Alert Management

Introduction

Guides

Relationship with Platform Capabilities

Upgrade Management

Introduction

Guides

Instance Upgrade

API Reference

Overview

Introduction
Kubernetes API Usage Guide

Advanced APIs

Alert APIs

AlertHistories [v1]
AlertHistoryMessages [v1]
AlertStatus [v2]
SilenceStatus [v2]

Event APIs

Search

Log APIs

Aggregation
Archive
Context
Search

Monitoring APIs

Indicators [monitoring.alauda.io/v1beta1]
Metrics [monitoring.alauda.io/v1beta1]
Variables [monitoring.alauda.io/v1beta1]

Kubernetes APIs

Alert APIs

AlertTemplate [alerttemplates.aiops.alauda.io/v1beta1]
PrometheusRule [prometheusrules.monitoring.coreos.com/v1]

Inspection APIs

Inspection [inspections.ait.alauda.io/v1alpha1]

Notification APIs

Notification [notifications.ait.alauda.io/v1beta1]
NotificationGroup [notificationgroups.ait.alauda.io/v1beta1]
NotificationTemplate [notificationtemplates.ait.alauda.io/v1beta1]
Previous PageSecurity Context Enforcement Policy
Next PageVolume Security Policy

View full docs as PDF

#Network Security Policy

This guide demonstrates how to configure Kyverno to enforce network security policies that control container network access and prevent network-based attacks.

#TOC

#What is Network Security?

Network security involves controlling how containers access and interact with network resources. Proper network security prevents:

  • Host network access: Containers accessing host network interfaces
  • Privilege escalation via networking: Using network access to gain elevated permissions
  • Port scanning and reconnaissance: Unauthorized network discovery activities
  • Lateral movement: Containers accessing unintended network resources
  • Data exfiltration: Unauthorized network communications

#Quick Start

#1. Disallow Host Network Access

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: disallow-host-network
  annotations:
    policies.kyverno.io/title: Disallow Host Network
    policies.kyverno.io/category: Pod Security Standards (Baseline)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Access to the host network allows potential snooping of network traffic and should not be allowed.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: host-network
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Use of host network is disallowed. The field spec.hostNetwork must be unset or set to false.
        pattern:
          spec:
            =(hostNetwork): "false"

#2. Test the Policy

# Apply the policy
kubectl apply -f disallow-host-network.yaml

# Try to create a pod with host network (should fail)
kubectl run test-hostnet --image=nginx --overrides='{"spec":{"hostNetwork":true}}'

# Try to create a normal pod (should work)
kubectl run test-normal --image=nginx

#Core Network Security Policies

#Policy 1: Disallow Host Ports

Prevent containers from binding to host network ports:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: disallow-host-ports
  annotations:
    policies.kyverno.io/title: Disallow Host Ports
    policies.kyverno.io/category: Pod Security Standards (Baseline)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Access to host ports allows potential snooping of network traffic and should not be
      allowed, or at minimum restricted to a known list.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: host-ports-none
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Use of host ports is disallowed. The fields spec.containers[*].ports[*].hostPort,
          spec.initContainers[*].ports[*].hostPort, and spec.ephemeralContainers[*].ports[*].hostPort
          must either be unset or set to 0.
        pattern:
          spec:
            =(ephemeralContainers):
              - =(ports):
                  - =(hostPort): 0
            =(initContainers):
              - =(ports):
                  - =(hostPort): 0
            containers:
              - =(ports):
                  - =(hostPort): 0

#Policy 2: Restrict Host Port Range

Allow specific host port ranges for controlled access:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: restrict-host-port-range
  annotations:
    policies.kyverno.io/title: Restrict Host Port Range
    policies.kyverno.io/category: Pod Security Standards (Baseline)
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Host ports, if used, must be within an allowed range to prevent conflicts and security issues.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: host-port-range
      match:
        any:
        - resources:
            kinds:
            - Pod
      preconditions:
        all:
        - key: "{{ request.object.spec.containers[].ports[?hostPort] | length(@) }}"
          operator: GreaterThan
          value: 0
      validate:
        message: >-
          Host ports must be within the allowed range 30000-32767.
        foreach:
        - list: request.object.spec.[ephemeralContainers, initContainers, containers][].ports[]
          preconditions:
            any:
            - key: "{{ element.hostPort }}"
              operator: GreaterThan
              value: 0
          deny:
            conditions:
              any:
              - key: "{{ element.hostPort }}"
                operator: LessThan
                value: 30000
              - key: "{{ element.hostPort }}"
                operator: GreaterThan
                value: 32767

#Policy 3: Require Network Policies

Ensure pods have associated NetworkPolicies for traffic control:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: require-network-policies
  annotations:
    policies.kyverno.io/title: Require Network Policies
    policies.kyverno.io/category: Network Security
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod,NetworkPolicy
    policies.kyverno.io/description: >-
      Pods should have associated NetworkPolicies to control network traffic.
spec:
  validationFailureAction: Enforce
  background: false
  rules:
    - name: require-netpol
      match:
        any:
        - resources:
            kinds:
            - Pod
      exclude:
        any:
        - resources:
            namespaces:
            - kube-system
            - kyverno
      context:
      - name: netpols
        apiCall:
          urlPath: "/apis/networking.k8s.io/v1/namespaces/{{ request.namespace }}/networkpolicies"
          jmesPath: "items[?spec.podSelector.matchLabels.app == '{{ request.object.metadata.labels.app }}'] | length(@)"
      validate:
        message: >-
          Pods must have an associated NetworkPolicy. Create a NetworkPolicy that selects this pod.
        deny:
          conditions:
            all:
            - key: "{{ netpols }}"
              operator: Equals
              value: 0

#Policy 4: Restrict Service Types

Control which service types can be created:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: restrict-service-types
  annotations:
    policies.kyverno.io/title: Restrict Service Types
    policies.kyverno.io/category: Network Security
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Service
    policies.kyverno.io/description: >-
      Restrict Service types to prevent exposure of services to external networks.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: restrict-nodeport
      match:
        any:
        - resources:
            kinds:
            - Service
      validate:
        message: >-
          NodePort services are not allowed. Use ClusterIP or LoadBalancer instead.
        pattern:
          spec:
            type: "!NodePort"
    - name: restrict-loadbalancer
      match:
        any:
        - resources:
            kinds:
            - Service
            namespaces:
            - development
            - dev-*
            - staging
      validate:
        message: >-
          LoadBalancer services are not allowed in development environments.
        pattern:
          spec:
            type: "!LoadBalancer"

#Policy 5: Control Ingress Configurations

Enforce secure Ingress configurations:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: secure-ingress-configuration
  annotations:
    policies.kyverno.io/title: Secure Ingress Configuration
    policies.kyverno.io/category: Network Security
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Ingress
    policies.kyverno.io/description: >-
      Ingress resources must be configured securely with TLS and proper annotations.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: require-tls
      match:
        any:
        - resources:
            kinds:
            - Ingress
      validate:
        message: >-
          Ingress must use TLS. The field spec.tls must be specified.
        pattern:
          spec:
            tls:
            - hosts:
              - "*"
    - name: require-security-annotations
      match:
        any:
        - resources:
            kinds:
            - Ingress
      validate:
        message: >-
          Ingress must have security annotations for SSL redirect and HSTS.
        pattern:
          metadata:
            annotations:
              nginx.ingress.kubernetes.io/ssl-redirect: "true"
              nginx.ingress.kubernetes.io/force-ssl-redirect: "true"

#Policy 6: Restrict DNS Configuration

Control DNS settings to prevent DNS-based attacks:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: restrict-dns-configuration
  annotations:
    policies.kyverno.io/title: Restrict DNS Configuration
    policies.kyverno.io/category: Network Security
    policies.kyverno.io/severity: medium
    policies.kyverno.io/subject: Pod
    policies.kyverno.io/description: >-
      Restrict DNS configuration to prevent DNS hijacking and data exfiltration.
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: restrict-dns-policy
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Custom DNS policy is not allowed. Use Default or ClusterFirst only.
        pattern:
          spec:
            =(dnsPolicy): "Default | ClusterFirst"
    - name: restrict-custom-dns
      match:
        any:
        - resources:
            kinds:
            - Pod
      validate:
        message: >-
          Custom DNS configuration is not allowed in production environments.
        pattern:
          spec:
            X(dnsConfig): "null"

#Advanced Scenarios

#Scenario 1: Environment-Specific Network Policies

Different network restrictions for different environments:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: environment-network-security
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    # Production: Strict network controls
    - name: production-network-restrictions
      match:
        any:
        - resources:
            kinds:
            - Pod
            namespaces:
            - production
            - prod-*
      validate:
        message: "Production environments require strict network security"
        pattern:
          spec:
            hostNetwork: "false"
            dnsPolicy: "ClusterFirst"
            containers:
            - ports:
              - =(hostPort): 0
    
    # Development: Basic network security
    - name: development-network-restrictions
      match:
        any:
        - resources:
            kinds:
            - Pod
            namespaces:
            - development
            - dev-*
            - staging
      validate:
        message: "Development environments require basic network security"
        pattern:
          spec:
            hostNetwork: "false"

#Scenario 2: Application-Specific Network Policies

Different network policies for different application types:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: application-network-policies
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    # Database applications: No external network access
    - name: database-network-policy
      match:
        any:
        - resources:
            kinds:
            - Pod
            selector:
              matchLabels:
                app.type: database
      validate:
        message: "Database applications cannot use host network or host ports"
        pattern:
          spec:
            hostNetwork: "false"
            containers:
            - ports:
              - =(hostPort): 0
    
    # Web applications: Controlled port access
    - name: web-app-network-policy
      match:
        any:
        - resources:
            kinds:
            - Pod
            selector:
              matchLabels:
                app.type: web
      validate:
        message: "Web applications can only use standard HTTP/HTTPS ports"
        foreach:
        - list: request.object.spec.containers[].ports[]
          deny:
            conditions:
              any:
              - key: "{{ element.containerPort }}"
                operator: AnyNotIn
                value:
                - 80
                - 443
                - 8080
                - 8443

#Scenario 3: Network Segmentation Enforcement

Enforce network segmentation between different tiers:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
  name: network-segmentation-enforcement
spec:
  validationFailureAction: Enforce
  background: true
  rules:
    - name: frontend-backend-separation
      match:
        any:
        - resources:
            kinds:
            - Pod
            selector:
              matchLabels:
                tier: frontend
      validate:
        message: "Frontend pods cannot access backend network directly"
        deny:
          conditions:
            any:
            - key: "{{ request.object.metadata.labels.tier }}"
              operator: Equals
              value: backend
    - name: require-network-labels
      match:
        any:
        - resources:
            kinds:
            - Pod
      exclude:
        any:
        - resources:
            namespaces:
            - kube-system
            - kyverno
      validate:
        message: "Pods must have network tier labels for segmentation"
        pattern:
          metadata:
            labels:
              tier: "frontend | backend | database"

#Testing and Validation

#Test Host Network Access (Should Fail)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-host-network
spec:
  hostNetwork: true
  containers:
  - name: test
    image: nginx
EOF

#Test Host Port Binding (Should Fail)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-host-port
spec:
  containers:
  - name: test
    image: nginx
    ports:
    - containerPort: 80
      hostPort: 8080
EOF

#Test NodePort Service (Should Fail)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
  name: test-nodeport
spec:
  type: NodePort
  ports:
  - port: 80
    targetPort: 80
    nodePort: 30080
  selector:
    app: test
EOF

#Test Valid Network Configuration (Should Pass)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: test-secure-network
  labels:
    app: web-app
    tier: frontend
spec:
  dnsPolicy: ClusterFirst
  containers:
  - name: test
    image: nginx
    ports:
    - containerPort: 80
      protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
  name: test-service
spec:
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80
  selector:
    app: web-app
EOF