
Alauda Container Security

Alauda Container Security

Security and Compliance

Compliance

API Refiner

About Alauda Container Platform Compliance Service

Users and Roles

User

Security

Menu

Security - Alauda Container Platform

Group

Role

IDP

User Policy

Multitenancy(Project)

Introduction

Guides

Audit

Project

Namespaces

Relationship Between Clusters, Projects, and Namespaces

Security - Alauda Container Platform

Introduction

Telemetry

Install

Certificates

Automated Kubernetes Certificate Rotation

cert-manager

Prerequisites

Procedure

Search Results

Prerequisites

Installation Steps

Enable Online Operations

Uninstallation Steps

Installation

How it works

Operation Considerations

Overview

How it works

Identifying cert-manager Managed Certificates

Related Resources

Security - Alauda Container Platform

OLM Certificates

Certificate Monitoring

Certificate Status Monitoring

Built-in Alert Rules

Security - Alauda Container Platform

Alauda Container Security is a comprehensive security solution designed for Kubernetes and

containerized environments. It provides centralized management, automated vulnerability

scanning, policy enforcement, and compliance checks to help organizations secure their

container infrastructure across multiple clusters.

Alauda Container Security adopts a distributed, container-based architecture, consisting of

Central Services (for management, API, and UI) and Secured Cluster Services (for monitoring,

policy enforcement, and data collection). It integrates with CI/CD pipelines, SIEM, logging

systems, and supports the built-in Scanner V4 vulnerability scanner.

Note

Because Alauda Container Security releases on a different cadence from Alauda Container

Platform, the Alauda Container Security documentation is now available as a separate

documentation set at Alauda Container Security .

Alauda Container Security

↗

Menu

Alauda Container Security - Alauda Container Platform

https://docs.alauda.io/alauda-container-security/
https://docs.alauda.io/alauda-container-security/
https://docs.alauda.io/alauda-container-security/

Compliance

Introduction

Install Alauda Container Platform Compliance with Kyverno

HowTo

API Refiner

Introduction

Security and Compliance

Install via console

Install via YAML

Uninstallation Procedures

Product Introduction

Limitations

Menu

Security and Compliance - Alauda Container Platform

Install Alauda Container Platform API Refiner

About Alauda Container Platform Compliance Service

About Alauda Container Platform Compliance Service

Install via console

Install via YAML

Uninstallation Procedures

Default Configuration

Security and Compliance - Alauda Container Platform

Introduction

Introduction

Install Alauda Container Platform Compliance with Kyverno

Install Alauda Container Platform Compliance with Kyverno

HowTo

Private Registry Access Configuration

Compliance

Install via console

Install via YAML

Uninstallation Procedures

Why Does Kyverno Need Registry Access?

Quick Start

Menu

Compliance - Alauda Container Platform

Image Signature Verification Policy

Image Signature Verification Policy with Secrets

Image Registry Validation Policy

Container Escape Prevention Policy

What is Image Signature Verification?

Quick Start

Common Use Cases

Why Use Secrets for Public Keys?

Quick Start

Secret Creation Methods

Common Use Cases

What is Image Registry Validation?

Quick Start

Common Scenarios

Advanced Patterns

Best Practices

What is Container Escape Prevention?

Quick Start

Core Container Escape Prevention Policies

Advanced Scenarios

Testing and Validation

Best Practices

Compliance - Alauda Container Platform

Security Context Enforcement Policy

Network Security Policy

Volume Security Policy

What is Security Context Enforcement?

Quick Start

Core Security Context Policies

Advanced Scenarios

Testing and Validation

What is Network Security?

Quick Start

Core Network Security Policies

Advanced Scenarios

Testing and Validation

What is Volume Security?

Quick Start

Core Volume Security Policies

Advanced Scenarios

Testing and Validation

Compliance - Alauda Container Platform

ACP provides compliance functionality based on the open-source Kyverno component,

enabling organizations to define and enforce policies across their Kubernetes clusters.

This feature addresses the challenge of maintaining consistent security, governance, and

operational standards by allowing users to create custom policies using Kyverno's YAML

syntax and automatically validate resources against these policies.

The compliance functionality provides comprehensive violation monitoring and reporting

capabilities, offering both resource-level and policy-level views of compliance violations

through an intuitive interface, helping teams quickly identify non-compliant resources and take

appropriate remediation actions to maintain their desired security posture and regulatory

compliance.

INFO

For more information about Kyverno, read the Kyverno Documentation .

Introduction

↗

Menu

Introduction - Alauda Container Platform

https://kyverno.io/docs/introduction/
https://kyverno.io/docs/introduction/
https://kyverno.io/docs/introduction/

Alauda Container Platform Compliance with Kyverno is a platform service that integrates

Kyverno for managing compliance policies on the Alauda Container Platform.

Install via console

Install via YAML

1. Check available versions

2. Create a ModuleInfo

Uninstallation Procedures

1. Navigate to Administrator

2. In the left navigation bar, click Marketplace > Cluster Plugins

3. Search for Alauda Container Platform Compliance with Kyverno and click to view its

details

4. Click Install to deploy the plugin

Install Alauda Container Platform Compliance
with Kyverno

TOC

Install via console

Install via YAML

Menu ON THIS PAGE

Install Alauda Container Platform Compliance with Kyverno - Alauda Container Platform

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in global cluster :

This indicates that the ModulePlugin kyverno exists in the cluster and version v4.0.4 is

published.

Create a ModuleInfo resource to install the plugin without any configuration parameters:

Field explanations:

1. Check available versions

kubectl get moduleplugins kyverno

NAME AGE

kyverno 4d20h

kubectl get moduleconfigs -l cpaas.io/module-name=kyverno

NAME AGE

kyverno-v4.0.4 4d21h

2. Create a ModuleInfo

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 annotations:

 cpaas.io/display-name: kyverno

 cpaas.io/module-name: '{"en": "Alauda Container Platform Compliance for Kyverno",

 "zh": "Alauda Container Platform Compliance for Kyverno"}'

 labels:

 cpaas.io/cluster-name: global

 cpaas.io/module-name: kyverno

 cpaas.io/module-type: plugin

 cpaas.io/product: Platform-Center

 name: kyverno-global

spec:

 version: v4.2.0

Install Alauda Container Platform Compliance with Kyverno - Alauda Container Platform

name : Temporary name for the cluster plugin. The platform will rename it after creation

based on the content, in the format <cluster-name>-<hash of content> , e.g., global-

ee98c9991ea1464aaa8054bdacbab313 .

label cpaas.io/cluster-name : Specifies the cluster where the plugin should be installed.

label cpaas.io/module-name : Plugin name, must match the ModulePlugin resource.

label cpaas.io/module-type : Fixed field, must be plugin ; missing this field causes

installation failure.

.spec.config : If the corresponding ModuleConfig is empty, this field can be left empty.

.spec.version : Specifies the plugin version to install, must match .spec.version in

ModuleConfig.

1. Follow steps 1-3 from the installation process to locate the plugin

2. Click Uninstall to remove the plugin

Uninstallation Procedures

Install Alauda Container Platform Compliance with Kyverno - Alauda Container Platform

Private Registry Access Configuration

Image Signature Verification Policy

Image Signature Verification Policy with Secrets

Image Registry Validation Policy

HowTo

Why Does Kyverno Need Registry Access?

Quick Start

What is Image Signature Verification?

Quick Start

Common Use Cases

Why Use Secrets for Public Keys?

Quick Start

Secret Creation Methods

Common Use Cases

What is Image Registry Validation?

Quick Start

Common Scenarios

Advanced Patterns

Best Practices

Menu

HowTo - Alauda Container Platform

Container Escape Prevention Policy

Security Context Enforcement Policy

Network Security Policy

Volume Security Policy

What is Container Escape Prevention?

Quick Start

Core Container Escape Prevention Policies

Advanced Scenarios

Testing and Validation

Best Practices

What is Security Context Enforcement?

Quick Start

Core Security Context Policies

Advanced Scenarios

Testing and Validation

What is Network Security?

Quick Start

Core Network Security Policies

Advanced Scenarios

Testing and Validation

What is Volume Security?

Quick Start

Core Volume Security Policies

Advanced Scenarios

Testing and Validation

HowTo - Alauda Container Platform

HowTo - Alauda Container Platform

This guide demonstrates how to configure Kyverno to access private container registries.

When Kyverno needs to verify image signatures or check image details, it requires proper

credentials to access private registries - just like a key card is needed to enter a secure

building.

Why Does Kyverno Need Registry Access?

Quick Start

1. Create Registry Secret

2. Configure Kyverno to Use the Secret (Recommended)

3. Kyverno Deployment Configuration

Kyverno needs to access registries when it:

Verifies image signatures: Downloads signature data to check if images are properly

signed

Checks image metadata: Reads image labels, annotations, and manifest information

Scans for vulnerabilities: Downloads images for security scanning

Validates image contents: Inspects what's actually inside container images

Think of it like a security guard who needs to check ID - Kyverno needs to "see" the images to

verify them.

Private Registry Access Configuration

TOC

Why Does Kyverno Need Registry Access?

Menu ON THIS PAGE

Private Registry Access Configuration - Alauda Container Platform

If more control is needed, the Kyverno deployment can be modified directly:

Quick Start

1. Create Registry Secret

For company's private registry

kubectl create secret docker-registry my-registry-secret \

 --docker-server=registry.company.com \

 --docker-username=<username> \

 --docker-password=<password> \

 --docker-email=<email@company.com> \

 -n kyverno

2. Configure Kyverno to Use the Secret (Recommended)

apiVersion: v1

kind: ServiceAccount

metadata:

 name: kyverno

 namespace: kyverno

imagePullSecrets:

- name: my-registry-secret

3. Kyverno Deployment Configuration

Private Registry Access Configuration - Alauda Container Platform

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kyverno

 namespace: kyverno

spec:

 replicas: 1

 selector:

 matchLabels:

 app: kyverno

 template:

 metadata:

 labels:

 app: kyverno

 spec:

 serviceAccountName: kyverno

 imagePullSecrets:

 - name: my-registry-secret

 - name: gcr-secret

 - name: dockerhub-secret

 containers:

 - name: kyverno

 image: ghcr.io/kyverno/kyverno:latest

 env:

 - name: REGISTRY_CREDENTIAL_HELPERS

 value: "ecr-login,gcr,acr-env" # Enable credential helpers

 # ... other configuration

Private Registry Access Configuration - Alauda Container Platform

This guide demonstrates how to configure Kyverno to verify that container images are

properly signed before they can run in a Kubernetes cluster. Think of it like checking an ID

card - only images with valid "signatures" are allowed in.

What is Image Signature Verification?

Quick Start

1. Generate Keys

2. Sign Images

3. Create Basic Verification Policy

4. Test It

Common Use Cases

Scenario 1: Multiple Teams Need to Sign Critical Images

Scenario 2: Different Rules for Different Environments

Scenario 3: Using Certificates Instead of Keys

Image signature verification is like having a security guard check IDs at the door. It ensures:

Images are authentic: They come from who they claim to come from

Images are untampered: No one has modified them after signing

Only trusted images run: Unsigned or improperly signed images are blocked

Image Signature Verification Policy

TOC

What is Image Signature Verification?

Menu ON THIS PAGE

Image Signature Verification Policy - Alauda Container Platform

Audit trail: Track which images were verified and when

Quick Start

1. Generate Keys

Create a signing key pair (like creating an ID card system)

cosign generate-key-pair

This creates: cosign.key (private, keep secret) and cosign.pub (public, share freely)

2. Sign Images

Sign images (like putting an official stamp on it)

cosign sign --key cosign.key registry.company.com/app:v1.0.0

3. Create Basic Verification Policy

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-signed-images

spec:

 validationFailureAction: Enforce # Block unsigned images

 background: false

 rules:

 - name: check-signatures

 match:

 any:

 - resources:

 kinds:

 - Pod

 verifyImages:

 - imageReferences:

 - "registry.company.com/*" # Check images from company registry

 attestors:

 - count: 1

 entries:

 - keys:

 publicKeys: |-

 -----BEGIN PUBLIC KEY-----

 # Paste the cosign.pub content here

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8nXRh950IZbRj8Ra/N9sbqOPZrfM

 5/KAQN0/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6JWVGHpDguIyakZA==

 -----END PUBLIC KEY-----

 mutateDigest: true # Convert tags to secure digest format

4. Test It

Apply the policy

kubectl apply -f signature-policy.yaml

Try to run an unsigned image (should fail)

kubectl run test --image=nginx:latest

Try to run a signed image (should work)

kubectl run test --image=registry.company.com/app:v1.0.0

Image Signature Verification Policy - Alauda Container Platform

For critical applications, both the development team AND security team might need to sign

images:

Common Use Cases

Scenario 1: Multiple Teams Need to Sign Critical Images

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-dual-signatures

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: critical-app-signatures

 match:

 any:

 - resources:

 kinds:

 - Pod

 verifyImages:

 - imageReferences:

 - "registry.company.com/critical/*"

 attestors:

 # Both teams must sign

 - count: 1 # Security team signature

 entries:

 - keys:

 publicKeys: |-

 -----BEGIN PUBLIC KEY-----

 # Security team's public key

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8nXRh950IZbRj8Ra/N9sbqOPZrfM

 5/KAQN0/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6JWVGHpDguIyakZA==

 -----END PUBLIC KEY-----

 - count: 1 # Development team signature

 entries:

 - keys:

 publicKeys: |-

 -----BEGIN PUBLIC KEY-----

 # Development team's public key

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEyctVd7iEcnessRQjU917hmKO6JWV

 GHpDguIyakZA8nXRh950IZbRj8Ra/N9sbqOPZrfM5/KAQN0/KjHcorm/J5==

 -----END PUBLIC KEY-----

 mutateDigest: true

Scenario 2: Different Rules for Different Environments

Image Signature Verification Policy - Alauda Container Platform

Production needs strict verification, development can be more relaxed:

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: environment-specific-verification

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 # Strict rules for production

 - name: production-must-be-signed

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - production

 verifyImages:

 - imageReferences:

 - "*" # All images must be signed

 failureAction: Enforce # Block if not signed

 attestors:

 - count: 1

 entries:

 - keys:

 publicKeys: |-

 -----BEGIN PUBLIC KEY-----

 # Production signing key

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8nXRh950IZbRj8Ra/N9sbqOPZrfM

 5/KAQN0/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6JWVGHpDguIyakZA==

 -----END PUBLIC KEY-----

 mutateDigest: true

 # Relaxed rules for development

 - name: development-warn-unsigned

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - development

 - staging

Image Signature Verification Policy - Alauda Container Platform

For enterprise environments, X.509 certificates might be used:

 verifyImages:

 - imageReferences:

 - "registry.company.com/*" # Only check company images

 failureAction: Audit # Audit but allow unsigned images

 attestors:

 - count: 1

 entries:

 - keys:

 publicKeys: |-

 -----BEGIN PUBLIC KEY-----

 # Development signing key

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEyctVd7iEcnessRQjU917hmKO6JWV

 GHpDguIyakZA8nXRh950IZbRj8Ra/N9sbqOPZrfM5/KAQN0/KjHcorm/J5==

 -----END PUBLIC KEY-----

 mutateDigest: true

Scenario 3: Using Certificates Instead of Keys

Sign with certificate

cosign sign --cert company-cert.pem --cert-chain ca-chain.pem \

 registry.company.com/myapp:v1.0.0

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: certificate-verification

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: verify-with-certificates

 match:

 any:

 - resources:

 kinds:

 - Pod

 verifyImages:

 - imageReferences:

 - "registry.company.com/*"

 attestors:

 - count: 1

 entries:

 - certificates:

 cert: |-

 -----BEGIN CERTIFICATE-----

 # Company's signing certificate (replace with real certificate)

 MIIDXTCCAkWgAwIBAgIJAKoK/heBjcOuMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV

 BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX

 aWRnaXRzIFB0eSBMdGQwHhcNMTcwODI4MTExNzQwWhcNMTgwODI4MTExNzQwWjBF

 MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50

 ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIB

 CgKCAQEAuuExVilGcXIZ3ulNuL7wLrA7VkqJoGpB1YPmYnlS7sobTggOGSqMUvqU

 BdLXcAo3ZCOXuKrBHBlltvcNdFHynfxOtkAOCZjirD6uQBrNPiQDlgMYMy14QIDAQAB

 o1AwTjAdBgNVHQ4EFgQUhKs8VQFhVLp5J4W1sFVLOVgnQxwwHwYDVR0jBBgwFoAU

 hKs8VQFhVLp5J4W1sFVLOVgnQxwwDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUF

 AAOCAQEAuuExVilGcXIZ3ulNuL7wLrA7VkqJoGpB1YPmYnlS7sobTggOGSqMUvqU

 -----END CERTIFICATE-----

 rekor:

 url: https://rekor.sigstore.dev

 mutateDigest: true

Image Signature Verification Policy - Alauda Container Platform

This guide demonstrates how to use Kubernetes Secrets to store public keys for Kyverno

image signature verification, providing better security and key management compared to

embedding keys directly in policies.

Why Use Secrets for Public Keys?

Quick Start

1. Generate and Store Keys in Secret

2. RBAC Configuration for Keyverno

3. Create Policy Using Secret Reference

4. Test the Configuration

Secret Creation Methods

Method 1: From File

Method 2: From Literal String

Method 3: From YAML Manifest

Common Use Cases

Scenario 1: Single Team with One Secret

Scenario 2: Multi-Team with Different Secrets

Scenario 3: Critical Images Requiring Multiple Signatures

Scenario 4: Offline Environment with Secrets

Image Signature Verification Policy with
Secrets

TOC

Why Use Secrets for Public Keys?

Menu ON THIS PAGE

Image Signature Verification Policy with Secrets - Alauda Container Platform

Using Kubernetes Secrets for storing public keys offers several advantages:

Enhanced Security: Keys are stored securely in the Kubernetes Secret store

Easy Key Rotation: Update keys without modifying policies

Access Control: Use RBAC to control who can access the secrets

Create Service Account for Kyverno

Create Role for Secret Access

Quick Start

1. Generate and Store Keys in Secret

Generate cosign key pair

cosign generate-key-pair

Create secret from the public key file

kubectl create secret generic cosign-public-key \

 --from-file=cosign.pub=./cosign.pub \

 --namespace=kyverno

Verify the secret was created

kubectl get secret cosign-public-key -n kyverno

2. RBAC Configuration for Keyverno

apiVersion: v1

kind: ServiceAccount

metadata:

 name: kyverno-secret-reader

 namespace: kyverno

Image Signature Verification Policy with Secrets - Alauda Container Platform

Bind Role to Service Account

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: kyverno

 name: secret-reader

rules:

- apiGroups: [""]

 resources: ["secrets"]

 verbs: ["get", "list", "watch"]

 resourceNames: ["cosign-public-key", "team-keys"] # Specific secrets only

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: read-secrets

 namespace: kyverno

subjects:

- kind: ServiceAccount

 name: kyverno-secret-reader

 namespace: kyverno

roleRef:

 kind: Role

 name: secret-reader

 apiGroup: rbac.authorization.k8s.io

3. Create Policy Using Secret Reference

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: verify-with-secret

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: check-signatures

 match:

 any:

 - resources:

 kinds: [Pod]

 verifyImages:

 - imageReferences:

 - "registry.company.com/*"

 attestors:

 - count: 1

 entries:

 - keys:

 secret:

 name: cosign-public-key

 namespace: kyverno

 key: cosign.pub

 rekor:

 url: https://rekor.sigstore.dev

 mutateDigest: true

4. Test the Configuration

Image Signature Verification Policy with Secrets - Alauda Container Platform

Sign an image

cosign sign --key cosign.key registry.company.com/app:v1.0.0

Apply the policy

kubectl apply -f verify-with-secret.yaml

Test with signed image (should work)

kubectl run test --image=registry.company.com/app:v1.0.0

Test with unsigned image (should fail)

kubectl run test-fail --image=nginx:latest

Secret Creation Methods

Method 1: From File

Create secret from existing cosign public key file

kubectl create secret generic cosign-public-key \

 --from-file=cosign.pub=./cosign.pub \

 --namespace=kyverno

Method 2: From Literal String

Create secret with inline public key content

kubectl create secret generic cosign-public-key \

 --from-literal=cosign.pub="-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8nXRh950IZbRj8Ra/N9sbqOPZrfM

5/KAQN0/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6JWVGHpDguIyakZA==

-----END PUBLIC KEY-----" \

 --namespace=kyverno

Method 3: From YAML Manifest

Image Signature Verification Policy with Secrets - Alauda Container Platform

Simple setup where one team manages all image signatures:

apiVersion: v1

kind: Secret

metadata:

 name: cosign-public-key

 namespace: kyverno

 labels:

 app: kyverno

 component: image-verification

type: Opaque

stringData:

 cosign.pub: |

 -----BEGIN PUBLIC KEY-----

 MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8nXRh950IZbRj8Ra/N9sbqOPZrfM

 5/KAQN0/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6JWVGHpDguIyakZA==

 -----END PUBLIC KEY-----

kubectl apply -f cosign-secret.yaml

Common Use Cases

Scenario 1: Single Team with One Secret

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: single-team-verification

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: verify-team-signatures

 match:

 any:

 - resources:

 kinds: [Pod, Deployment, StatefulSet, DaemonSet]

 exclude:

 any:

 - resources:

 namespaces: [kube-system, kyverno]

 verifyImages:

 - imageReferences:

 - "registry.company.com/*"

 - "gcr.io/myproject/*"

 failureAction: Enforce

 attestors:

 - count: 1

 entries:

 - keys:

 secret:

 name: team-cosign-key

 namespace: kyverno

 key: cosign.pub

 rekor:

 url: https://rekor.sigstore.dev

 mutateDigest: true

 verifyDigest: true

 required: true

Scenario 2: Multi-Team with Different Secrets

Image Signature Verification Policy with Secrets - Alauda Container Platform

Different teams have their own signing keys and secrets:

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: multi-team-verification

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 # Frontend team images

 - name: verify-frontend-images

 match:

 any:

 - resources:

 kinds: [Pod]

 namespaces: [frontend-*]

 verifyImages:

 - imageReferences:

 - "registry.company.com/frontend/*"

 attestors:

 - count: 1

 entries:

 - keys:

 secret:

 name: frontend-team-key

 namespace: kyverno

 key: cosign.pub

 rekor:

 url: https://rekor.sigstore.dev

 mutateDigest: true

 required: true

 # Backend team images

 - name: verify-backend-images

 match:

 any:

 - resources:

 kinds: [Pod]

 namespaces: [backend-*]

 verifyImages:

Image Signature Verification Policy with Secrets - Alauda Container Platform

High-security environments where multiple teams must sign critical images:

 - imageReferences:

 - "registry.company.com/backend/*"

 attestors:

 - count: 1

 entries:

 - keys:

 secret:

 name: backend-team-key

 namespace: kyverno

 key: cosign.pub

 rekor:

 url: https://rekor.sigstore.dev

 mutateDigest: true

 required: true

Scenario 3: Critical Images Requiring Multiple Signatures

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: critical-multi-signature

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: verify-critical-images

 match:

 any:

 - resources:

 kinds: [Pod]

 namespaces: [production]

 verifyImages:

 - imageReferences:

 - "registry.company.com/critical/*"

 failureAction: Enforce

 attestors:

 # Security team signature (required)

 - count: 1

 entries:

 - keys:

 secret:

 name: security-team-key

 namespace: kyverno

 key: security.pub

 rekor:

 url: https://rekor.sigstore.dev

 # Development team signature (required)

 - count: 1

 entries:

 - keys:

 secret:

 name: dev-team-key

 namespace: kyverno

 key: development.pub

 rekor:

 url: https://rekor.sigstore.dev

Image Signature Verification Policy with Secrets - Alauda Container Platform

Using secrets in air-gapped environments:

 # Release team signature (required)

 - count: 1

 entries:

 - keys:

 secret:

 name: release-team-key

 namespace: kyverno

 key: release.pub

 rekor:

 url: https://rekor.sigstore.dev

 mutateDigest: true

 required: true

Scenario 4: Offline Environment with Secrets

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: offline-verification-with-secret

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: verify-offline-images

 match:

 any:

 - resources:

 kinds: [Pod, Deployment, StatefulSet, DaemonSet]

 verifyImages:

 - imageReferences:

 - "registry.internal.com/*"

 - "airgap.company.com/*"

 failureAction: Enforce

 emitWarning: false

 attestors:

 - count: 1

 entries:

 - keys:

 secret:

 name: offline-cosign-key

 namespace: kyverno

 key: cosign.pub

 # Offline mode configuration

 rekor:

 url: "" # Empty URL for offline mode

 ignoreTlog: true # Ignore transparency log

 ignoreSCT: true # Ignore SCT

 ctlog:

 ignoreTlog: true # Ignore certificate transparency log

 ignoreSCT: true # Ignore SCT

 mutateDigest: true

 verifyDigest: true

Image Signature Verification Policy with Secrets - Alauda Container Platform

 required: true

Image Signature Verification Policy with Secrets - Alauda Container Platform

This guide demonstrates how to configure Kyverno to control which container registries can

be used in a Kubernetes cluster. It implements registry access control policies to ensure only

images from approved and trusted registries are deployed.

What is Image Registry Validation?

Quick Start

1. Block All Except Company Registry

2. Test It

Common Scenarios

Scenario 1: Allow Multiple Trusted Registries

Scenario 2: Different Rules for Different Environments

Scenario 3: Block Specific Risky Registries

Scenario 4: Team-Specific Registry Access

Advanced Patterns

Using Wildcards Effectively

Best Practices

Start with Warnings

Exclude System Namespaces

Common Issues

Image Registry Validation Policy

TOC

What is Image Registry Validation?

Menu ON THIS PAGE

Image Registry Validation Policy - Alauda Container Platform

Registry validation provides centralized control over image sources. It enables:

Control image sources: Only allow images from trusted registries

Block risky registries: Prevent use of unknown or compromised registries

Enforce compliance: Meet security requirements about image sources

Different rules per environment: Strict rules for production, relaxed for development

Track usage: Monitor which registries are being utilized

Quick Start

1. Block All Except Company Registry

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: company-registry-only

spec:

 validationFailureAction: Enforce # Block non-approved images

 background: false

 rules:

 - name: check-registry

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: "Only company registry allowed: registry.company.com"

 pattern:

 spec:

 containers:

 - image: "registry.company.com/*"

2. Test It

Image Registry Validation Policy - Alauda Container Platform

Organizations typically use several registries:

Apply the policy

kubectl apply -f registry-policy.yaml

This should fail (nginx from Docker Hub)

kubectl run test --image=nginx:latest

This should work (if images exist in the registry)

kubectl run test --image=registry.company.com/nginx:latest

Common Scenarios

Scenario 1: Allow Multiple Trusted Registries

Image Registry Validation Policy - Alauda Container Platform

Production environments should be strict, development can be more flexible:

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: multiple-trusted-registries

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: check-approved-registries

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: "Images must come from approved registries: company registry, GCR, or

official Docker images"

 anyPattern:

 - spec:

 containers:

 - image: "registry.company.com/*" # Company registry

 - spec:

 containers:

 - image: "gcr.io/project-name/*" # Google Container Registry

 - spec:

 containers:

 - image: "docker.io/library/*" # Official Docker images only

 - spec:

 containers:

 - image: "quay.io/organization/*" # Red Hat Quay

Scenario 2: Different Rules for Different Environments

Image Registry Validation Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: environment-based-registry-rules

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 # Production: Only certified images

 - name: production-strict-registries

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - production

 - prod-*

 validate:

 message: "Production only allows certified company images"

 pattern:

 spec:

 containers:

 - image: "registry.company.com/certified/*"

 # Development: More registries allowed

 - name: development-flexible-registries

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - development

 - dev-*

 - staging

 - test-*

 validate:

 message: "Development can use company registry, GCR, or official Docker images"

 anyPattern:

 - spec:

 containers:

 - image: "registry.company.com/*"

Image Registry Validation Policy - Alauda Container Platform

Block specific registries while allowing others:

 - spec:

 containers:

 - image: "gcr.io/dev-project/*"

 - spec:

 containers:

 - image: "docker.io/library/*"

 - spec:

 containers:

 - image: "docker.io/organization/*"

Scenario 3: Block Specific Risky Registries

Image Registry Validation Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: block-risky-registries

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 # Method 1: Use deny list approach

 - name: block-untrusted-registries

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: "Images from untrusted-registry.com are not allowed"

 deny:

 conditions:

 - key: "{{ request.object.spec.containers[?contains(image, 'untrusted-

registry.com')] | length(@) }}"

 operator: GreaterThan

 value: 0

 # Method 2: Use allow list for Docker Hub (only official images)

 - name: allow-only-official-dockerhub

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: "Only official Docker Hub images are allowed (docker.io/library/*)"

 deny:

 conditions:

 - key: "{{ request.object.spec.containers[?starts_with(image, 'docker.io/') &&

!starts_with(image, 'docker.io/library/')] | length(@) }}"

 operator: GreaterThan

 value: 0

Scenario 4: Team-Specific Registry Access

Image Registry Validation Policy - Alauda Container Platform

Different teams can have access to different registries:

Image Registry Validation Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: team-specific-registries

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 # Frontend team can use Node.js images

 - name: frontend-team-registries

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - frontend-*

 validate:

 message: "Frontend team can use company registry and official Node.js images"

 anyPattern:

 - spec:

 containers:

 - image: "registry.company.com/*"

 - spec:

 containers:

 - image: "docker.io/library/node:*"

 - spec:

 containers:

 - image: "docker.io/library/nginx:*"

 # Data team can use ML/AI registries

 - name: data-team-registries

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - data-*

 - ml-*

 validate:

 message: "Data team can use company registry and ML/AI images"

 anyPattern:

Image Registry Validation Policy - Alauda Container Platform

 - spec:

 containers:

 - image: "registry.company.com/*"

 - spec:

 containers:

 - image: "docker.io/tensorflow/*"

 - spec:

 containers:

 - image: "docker.io/pytorch/*"

 - spec:

 containers:

 - image: "nvcr.io/nvidia/*"

Advanced Patterns

Using Wildcards Effectively

Match patterns:

- image: "registry.company.com/*" # Any image from this registry

- image: "registry.company.com/team-a/*" # Only team-a images

- image: "*/database:*" # Any database image from any registry

- image: "gcr.io/project-*/app:*" # Any app from project-* in GCR

Best Practices

Start with Warnings

spec:

 validationFailureAction: Audit # Start with audit mode, not blocking

Exclude System Namespaces

Image Registry Validation Policy - Alauda Container Platform

1. Wrong image format:

❌ registry.company.com:5000/app (missing protocol)

✅ registry.company.com/app:latest

2. Wildcard confusion:

❌ registry.company.com* (missing slash)

✅ registry.company.com/*

3. Docker Hub format:

❌ nginx (implicit docker.io)

✅ docker.io/library/nginx

rules:

 - name: check-registries

 match:

 any:

 - resources:

 kinds:

 - Pod

 exclude:

 any:

 - resources:

 namespaces:

 - kube-system

 - kyverno

 - kube-public

Common Issues

Image Registry Validation Policy - Alauda Container Platform

This guide demonstrates how to configure Kyverno to prevent container escape attacks by

blocking high-risk container configurations that could allow containers to break out of their

isolation boundaries.

What is Container Escape Prevention?

Quick Start

1. Block Privileged Containers

2. Test the Policy

Core Container Escape Prevention Policies

Policy 1: Disallow Host Namespace Access

Policy 2: Disallow Host Path Mounts

Policy 3: Disallow Host Ports

Policy 4: Disallow Dangerous Capabilities

Policy 5: Require Non-Root Containers

Advanced Scenarios

Scenario 1: Environment-Specific Policies

Scenario 2: Workload-Specific Exceptions

Testing and Validation

Test Privileged Container

Test Host Namespace Access

Test Host Path Mount

Test Valid Secure Container

Best Practices

1. Start with Audit Mode

Container Escape Prevention Policy

TOC

Menu ON THIS PAGE

Container Escape Prevention Policy - Alauda Container Platform

2. Exclude System Namespaces

Container escape prevention involves detecting and blocking dangerous container

configurations that could allow attackers to escape container isolation and gain access to the

host system. This includes:

Privileged containers: Containers running with elevated privileges

Host namespace access: Containers sharing host PID, network, or IPC namespaces

Host path mounts: Containers mounting host filesystem paths

Dangerous capabilities: Containers with excessive Linux capabilities

Host port access: Containers binding to host network ports

What is Container Escape Prevention?

Quick Start

1. Block Privileged Containers

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-privileged-containers

 annotations:

 policies.kyverno.io/title: Disallow Privileged Containers

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Privileged mode disables most security mechanisms and must not be allowed.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: privileged-containers

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Privileged mode is disallowed. The fields

spec.containers[*].securityContext.privileged,

 spec.initContainers[*].securityContext.privileged, and

spec.ephemeralContainers[*].securityContext.privileged

 must be unset or set to false.

 pattern:

 spec:

 =(ephemeralContainers):

 - =(securityContext):

 =(privileged): "false"

 =(initContainers):

 - =(securityContext):

 =(privileged): "false"

 containers:

 - =(securityContext):

 =(privileged): "false"

2. Test the Policy

Container Escape Prevention Policy - Alauda Container Platform

Prevent containers from accessing host namespaces:

Apply the policy

kubectl apply -f disallow-privileged-containers.yaml

Try to create a privileged container (should fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-privileged

spec:

 containers:

 - name: nginx

 image: nginx

 securityContext:

 privileged: true

EOF

Try to create a normal container (should work)

kubectl run test-normal --image=nginx

Clean up

kubectl delete pod test-privileged test-normal --ignore-not-found

Core Container Escape Prevention Policies

Policy 1: Disallow Host Namespace Access

Container Escape Prevention Policy - Alauda Container Platform

Block containers from mounting host filesystem paths:

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-host-namespaces

 annotations:

 policies.kyverno.io/title: Disallow Host Namespaces

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Host namespaces (Process ID namespace, Inter-Process Communication namespace, and

 network namespace) allow access to shared information and can be used to elevate

 privileges. Pods should not be allowed access to host namespaces.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-namespaces

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Sharing the host namespaces is disallowed. The fields spec.hostNetwork,

 spec.hostIPC, and spec.hostPID must be unset or set to false.

 pattern:

 spec:

 =(hostPID): "false"

 =(hostIPC): "false"

 =(hostNetwork): "false"

Policy 2: Disallow Host Path Mounts

Container Escape Prevention Policy - Alauda Container Platform

Prevent containers from binding to host network ports:

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-host-path

 annotations:

 policies.kyverno.io/title: Disallow Host Path

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod,Volume

 policies.kyverno.io/description: >-

 HostPath volumes let Pods use host directories and volumes in containers.

 Using host resources can be used to access shared data or escalate privileges

 and should not be allowed.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-path

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 HostPath volumes are forbidden. The field spec.volumes[*].hostPath must be

unset.

 pattern:

 spec:

 =(volumes):

 - X(hostPath): "null"

Policy 3: Disallow Host Ports

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-host-ports

 annotations:

 policies.kyverno.io/title: Disallow Host Ports

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Access to host ports allows potential snooping of network traffic and should not be

 allowed, or at minimum restricted to a known list.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-ports-none

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Use of host ports is disallowed. The fields

spec.containers[*].ports[*].hostPort,

 spec.initContainers[*].ports[*].hostPort, and

spec.ephemeralContainers[*].ports[*].hostPort

 must either be unset or set to 0.

 pattern:

 spec:

 =(ephemeralContainers):

 - =(ports):

 - =(hostPort): 0

 =(initContainers):

 - =(ports):

 - =(hostPort): 0

 containers:

 - =(ports):

 - =(hostPort): 0

Container Escape Prevention Policy - Alauda Container Platform

Block containers from adding dangerous Linux capabilities:

Policy 4: Disallow Dangerous Capabilities

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-capabilities-strict

 annotations:

 policies.kyverno.io/title: Disallow Capabilities (Strict)

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Adding capabilities other than `NET_BIND_SERVICE` is disallowed. In addition,

 all containers must explicitly drop `ALL` capabilities.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: require-drop-all

 match:

 any:

 - resources:

 kinds:

 - Pod

 preconditions:

 all:

 - key: "{{ request.operation || 'BACKGROUND' }}"

 operator: NotEquals

 value: DELETE

 validate:

 message: >-

 Containers must drop `ALL` capabilities.

 foreach:

 - list: request.object.spec.[ephemeralContainers, initContainers, containers][]

 deny:

 conditions:

 all:

 - key: ALL

 operator: AnyNotIn

 value: "{{ element.securityContext.capabilities.drop || `[]` }}"

 - name: adding-capabilities

 match:

 any:

 - resources:

 kinds:

Container Escape Prevention Policy - Alauda Container Platform

Ensure containers run as non-root users:

 - Pod

 preconditions:

 all:

 - key: "{{ request.operation || 'BACKGROUND' }}"

 operator: NotEquals

 value: DELETE

 validate:

 message: >-

 Any capabilities added other than NET_BIND_SERVICE are disallowed.

 foreach:

 - list: request.object.spec.[ephemeralContainers, initContainers, containers][]

 deny:

 conditions:

 any:

 - key: "{{ element.securityContext.capabilities.add || `[]` }}"

 operator: AnyNotIn

 value:

 - NET_BIND_SERVICE

Policy 5: Require Non-Root Containers

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-run-as-nonroot

 annotations:

 policies.kyverno.io/title: Require Run As Non-Root User

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Containers must run as a non-root user. This policy ensures runAsNonRoot is set to

true.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: run-as-non-root

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Running as root is not allowed. Either the field

spec.securityContext.runAsNonRoot

 must be set to true, or the field

spec.containers[*].securityContext.runAsNonRoot

 must be set to true.

 anyPattern:

 - spec:

 securityContext:

 runAsNonRoot: "true"

 - spec:

 containers:

 - securityContext:

 runAsNonRoot: "true"

Advanced Scenarios

Container Escape Prevention Policy - Alauda Container Platform

Different security levels for different environments:

Scenario 1: Environment-Specific Policies

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: environment-container-security

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Production: Strict security

 - name: production-strict-security

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - production

 - prod-*

 validate:

 message: "Production environments require strict container security"

 pattern:

 spec:

 =(hostPID): "false"

 =(hostIPC): "false"

 =(hostNetwork): "false"

 securityContext:

 runAsNonRoot: "true"

 containers:

 - securityContext:

 privileged: "false"

 runAsNonRoot: "true"

 capabilities:

 drop:

 - ALL

 # Development: More permissive but still secure

 - name: development-basic-security

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

Container Escape Prevention Policy - Alauda Container Platform

Allow specific workloads with controlled exceptions:

 - development

 - dev-*

 - staging

 validate:

 message: "Development environments require basic container security"

 pattern:

 spec:

 =(hostPID): "false"

 =(hostIPC): "false"

 containers:

 - securityContext:

 =(privileged): "false"

Scenario 2: Workload-Specific Exceptions

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: workload-specific-security

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: system-workloads-exception

 match:

 any:

 - resources:

 kinds:

 - Pod

 exclude:

 any:

 - resources:

 namespaces:

 - kube-system

 - kyverno

 - resources:

 kinds:

 - Pod

 names:

 - "monitoring-*"

 - "logging-*"

 validate:

 message: "Container security policies apply to application workloads"

 pattern:

 spec:

 =(hostNetwork): "false"

 containers:

 - securityContext:

 =(privileged): "false"

Testing and Validation

Test Privileged Container

Container Escape Prevention Policy - Alauda Container Platform

This should be blocked

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-privileged

spec:

 containers:

 - name: test

 image: nginx

 securityContext:

 privileged: true

EOF

Test Host Namespace Access

This should be blocked

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-host-network

spec:

 hostNetwork: true

 containers:

 - name: test

 image: nginx

EOF

Test Host Path Mount

Container Escape Prevention Policy - Alauda Container Platform

This should be blocked

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-hostpath

spec:

 containers:

 - name: test

 image: nginx

 volumeMounts:

 - name: host-vol

 mountPath: /host

 volumes:

 - name: host-vol

 hostPath:

 path: /

EOF

Test Valid Secure Container

Container Escape Prevention Policy - Alauda Container Platform

This should be allowed

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-secure

spec:

 securityContext:

 runAsNonRoot: true

 runAsUser: 1000

 containers:

 - name: test

 image: nginx

 securityContext:

 allowPrivilegeEscalation: false

 capabilities:

 drop:

 - ALL

 readOnlyRootFilesystem: true

 runAsNonRoot: true

 runAsUser: 1000

EOF

Best Practices

1. Start with Audit Mode

spec:

 validationFailureAction: Audit # Start with warnings, not blocking

2. Exclude System Namespaces

Container Escape Prevention Policy - Alauda Container Platform

exclude:

 any:

 - resources:

 namespaces:

 - kube-system

 - kyverno

 - kube-public

Container Escape Prevention Policy - Alauda Container Platform

This guide demonstrates how to configure Kyverno to enforce proper security contexts for

containers, ensuring they run with appropriate security settings and restrictions.

What is Security Context Enforcement?

Quick Start

1. Require Non-Root Containers Policy

2. Test the Policy

Core Security Context Policies

Policy 1: Disallow Privilege Escalation

Policy 2: Require Specific User ID Range

Policy 3: Require Non-Root Groups

Policy 4: Restrict Seccomp Profiles

Policy 5: Require Dropping ALL Capabilities

Policy 6: Restrict AppArmor Profiles

Advanced Scenarios

Scenario 1: Environment-Specific Security Contexts

Scenario 2: Application-Specific Security Contexts

Scenario 3: Graduated Security Context Enforcement

Testing and Validation

Test Root Container (Should Fail)

Test Privilege Escalation (Should Fail)

Test Missing Capabilities Drop (Should Fail)

Test Valid Secure Container (Should Pass)

Security Context Enforcement Policy

TOC

Menu ON THIS PAGE

Security Context Enforcement Policy - Alauda Container Platform

Security context enforcement involves controlling how containers run by setting security-

related parameters. Proper security context configuration prevents:

Root privilege escalation: Containers running as root user

Privilege escalation attacks: Containers gaining elevated permissions

Insecure process execution: Containers running with dangerous capabilities

Filesystem tampering: Containers with writable root filesystems

Security bypass: Containers circumventing security mechanisms

What is Security Context Enforcement?

Quick Start

1. Require Non-Root Containers Policy

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-run-as-nonroot

 annotations:

 policies.kyverno.io/title: Require Run As Non-Root User

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Containers must run as a non-root user. This policy ensures runAsNonRoot is set to

true.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: run-as-non-root

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Running as root is not allowed. Either the field

spec.securityContext.runAsNonRoot

 must be set to true, or the field

spec.containers[*].securityContext.runAsNonRoot

 must be set to true.

 anyPattern:

 - spec:

 securityContext:

 runAsNonRoot: "true"

 - spec:

 containers:

 - securityContext:

 runAsNonRoot: "true"

2. Test the Policy

Security Context Enforcement Policy - Alauda Container Platform

Apply the policy

kubectl apply -f require-run-as-nonroot.yaml

Try to create a container explicitly running as root (should fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-root

spec:

 containers:

 - name: nginx

 image: nginx

 securityContext:

 runAsUser: 0

 runAsNonRoot: false

EOF

Try to create a container with non-root user (should work)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-nonroot

spec:

 securityContext:

 runAsNonRoot: true

 runAsUser: 1000

 containers:

 - name: nginx

 image: nginx

EOF

Clean up

kubectl delete pod test-root test-nonroot --ignore-not-found

Core Security Context Policies

Security Context Enforcement Policy - Alauda Container Platform

Prevent containers from escalating privileges:

Policy 1: Disallow Privilege Escalation

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-privilege-escalation

 annotations:

 policies.kyverno.io/title: Disallow Privilege Escalation

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Privilege escalation, such as via set-user-ID or set-group-ID file mode, should not

be allowed.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: privilege-escalation

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Privilege escalation is disallowed. The fields

 spec.containers[*].securityContext.allowPrivilegeEscalation,

 spec.initContainers[*].securityContext.allowPrivilegeEscalation,

 and spec.ephemeralContainers[*].securityContext.allowPrivilegeEscalation

 must be set to false.

 pattern:

 spec:

 =(ephemeralContainers):

 - securityContext:

 allowPrivilegeEscalation: "false"

 =(initContainers):

 - securityContext:

 allowPrivilegeEscalation: "false"

 containers:

 - securityContext:

 allowPrivilegeEscalation: "false"

Security Context Enforcement Policy - Alauda Container Platform

Ensure containers run with specific user IDs:

Policy 2: Require Specific User ID Range

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-user-id-range

 annotations:

 policies.kyverno.io/title: Require User ID Range

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Containers must run with a specific user ID range to prevent privilege escalation.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: user-id-range

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Containers must run with user ID between 1000 and 65535.

 deny:

 conditions:

 any:

 # Check pod-level security context

 - key: "{{ request.object.spec.securityContext.runAsUser || 0 }}"

 operator: LessThan

 value: 1000

 - key: "{{ request.object.spec.securityContext.runAsUser || 0 }}"

 operator: GreaterThan

 value: 65535

 # Check container-level security contexts

 - key: "{{ request.object.spec.containers[?securityContext.runAsUser &&

(securityContext.runAsUser < `1000` || securityContext.runAsUser > `65535`)] | length(@)

}}"

 operator: GreaterThan

 value: 0

Security Context Enforcement Policy - Alauda Container Platform

Ensure containers run with non-root group IDs:

Policy 3: Require Non-Root Groups

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-non-root-groups

 annotations:

 policies.kyverno.io/title: Require Non-Root Groups

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Containers should be required to run with a non-root group ID or supplemental

groups.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: non-root-groups

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Containers must run with non-root group ID. Either

spec.securityContext.runAsGroup

 or spec.containers[*].securityContext.runAsGroup must be set and not be 0.

 deny:

 conditions:

 any:

 # Check if pod-level runAsGroup is 0

 - key: "{{ request.object.spec.securityContext.runAsGroup || 0 }}"

 operator: Equals

 value: 0

 # Check if any container has runAsGroup set to 0

 - key: "{{ request.object.spec.containers[?securityContext.runAsGroup == `0`]

| length(@) }}"

 operator: GreaterThan

 value: 0

Policy 4: Restrict Seccomp Profiles

Security Context Enforcement Policy - Alauda Container Platform

Enforce secure seccomp profiles:

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: restrict-seccomp-strict

 annotations:

 policies.kyverno.io/title: Restrict Seccomp (Strict)

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Seccomp profile must be explicitly set to one of the allowed values.

 Both the Unconfined profile and the absence of a profile are prohibited.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: seccomp-strict

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Use of custom Seccomp profiles is disallowed. The field

 spec.securityContext.seccompProfile.type must be set to RuntimeDefault or

Localhost.

 anyPattern:

 - spec:

 securityContext:

 seccompProfile:

 type: RuntimeDefault

 - spec:

 securityContext:

 seccompProfile:

 type: Localhost

 - spec:

 containers:

 - securityContext:

 seccompProfile:

 type: RuntimeDefault

 - spec:

 containers:

Security Context Enforcement Policy - Alauda Container Platform

Ensure containers drop all capabilities:

 - securityContext:

 seccompProfile:

 type: Localhost

Policy 5: Require Dropping ALL Capabilities

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-drop-all-capabilities

 annotations:

 policies.kyverno.io/title: Require Drop ALL Capabilities

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Containers must drop all capabilities and only add back those that are specifically

needed.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: require-drop-all

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Containers must drop ALL capabilities.

 foreach:

 - list: request.object.spec.[ephemeralContainers, initContainers, containers][]

 deny:

 conditions:

 all:

 - key: ALL

 operator: AnyNotIn

 value: "{{ element.securityContext.capabilities.drop || `[]` }}"

Security Context Enforcement Policy - Alauda Container Platform

Control AppArmor profile usage:

Policy 6: Restrict AppArmor Profiles

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: restrict-apparmor-profiles

 annotations:

 policies.kyverno.io/title: Restrict AppArmor Profiles

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 On supported hosts, the runtime/default AppArmor profile is applied by default.

 The baseline policy should prevent overriding or disabling the default AppArmor

profile.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: apparmor-profiles

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 AppArmor profile must be set to runtime/default or a custom profile.

 Unconfined profiles are not allowed.

 pattern:

 metadata:

 =(annotations):

 =(container.apparmor.security.beta.kubernetes.io/*): "!unconfined"

Advanced Scenarios

Security Context Enforcement Policy - Alauda Container Platform

Different security requirements for different environments:

Scenario 1: Environment-Specific Security Contexts

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: environment-security-contexts

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Production: Strict security contexts

 - name: production-strict-security

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - production

 - prod-*

 validate:

 message: "Production environments require strict security contexts"

 pattern:

 spec:

 securityContext:

 runAsNonRoot: "true"

 runAsUser: "1000-65535"

 runAsGroup: "1000-65535"

 seccompProfile:

 type: RuntimeDefault

 containers:

 - securityContext:

 allowPrivilegeEscalation: "false"

 readOnlyRootFilesystem: "true"

 runAsNonRoot: "true"

 capabilities:

 drop:

 - ALL

 # Development: Basic security requirements

 - name: development-basic-security

 match:

 any:

 - resources:

 kinds:

Security Context Enforcement Policy - Alauda Container Platform

Different security contexts for different application types:

 - Pod

 namespaces:

 - development

 - dev-*

 - staging

 validate:

 message: "Development environments require basic security contexts"

 pattern:

 spec:

 containers:

 - securityContext:

 allowPrivilegeEscalation: "false"

 runAsNonRoot: "true"

Scenario 2: Application-Specific Security Contexts

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: application-security-contexts

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Database applications: Specific user/group IDs

 - name: database-security-context

 match:

 any:

 - resources:

 kinds:

 - Pod

 selector:

 matchLabels:

 app.type: database

 validate:

 message: "Database applications must use specific security contexts"

 pattern:

 spec:

 securityContext:

 runAsUser: "999"

 runAsGroup: "999"

 fsGroup: "999"

 containers:

 - securityContext:

 runAsNonRoot: "true"

 readOnlyRootFilesystem: "true"

 # Web applications: Standard security context

 - name: web-app-security-context

 match:

 any:

 - resources:

 kinds:

 - Pod

 selector:

 matchLabels:

 app.type: web

 validate:

 message: "Web applications must use standard security contexts"

Security Context Enforcement Policy - Alauda Container Platform

Implement progressive security context requirements:

 pattern:

 spec:

 containers:

 - securityContext:

 runAsNonRoot: "true"

 allowPrivilegeEscalation: "false"

 capabilities:

 drop:

 - ALL

 add:

 - NET_BIND_SERVICE

Scenario 3: Graduated Security Context Enforcement

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: graduated-security-contexts

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Level 1: Basic security (all namespaces)

 - name: basic-security-level

 match:

 any:

 - resources:

 kinds:

 - Pod

 exclude:

 any:

 - resources:

 namespaces:

 - kube-system

 - kyverno

 validate:

 message: "All containers must have basic security contexts"

 pattern:

 spec:

 containers:

 - securityContext:

 allowPrivilegeEscalation: "false"

 # Level 2: Enhanced security (sensitive namespaces)

 - name: enhanced-security-level

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - finance-*

 - hr-*

 - security-*

 validate:

 message: "Sensitive namespaces require enhanced security contexts"

 pattern:

Security Context Enforcement Policy - Alauda Container Platform

 spec:

 securityContext:

 runAsNonRoot: "true"

 containers:

 - securityContext:

 readOnlyRootFilesystem: "true"

 capabilities:

 drop:

 - ALL

 # Level 3: Maximum security (critical namespaces)

 - name: maximum-security-level

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - critical-*

 - payment-*

 validate:

 message: "Critical namespaces require maximum security contexts"

 pattern:

 spec:

 securityContext:

 runAsNonRoot: "true"

 runAsUser: "1000-1999"

 runAsGroup: "1000-1999"

 seccompProfile:

 type: RuntimeDefault

 containers:

 - securityContext:

 allowPrivilegeEscalation: "false"

 readOnlyRootFilesystem: "true"

 runAsNonRoot: "true"

 capabilities:

 drop:

 - ALL

Testing and Validation

Security Context Enforcement Policy - Alauda Container Platform

Test Root Container (Should Fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-root-user

spec:

 containers:

 - name: test

 image: nginx

 securityContext:

 runAsUser: 0

EOF

Test Privilege Escalation (Should Fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-privilege-escalation

spec:

 containers:

 - name: test

 image: nginx

 securityContext:

 allowPrivilegeEscalation: true

EOF

Test Missing Capabilities Drop (Should Fail)

Security Context Enforcement Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-missing-drop-all

spec:

 containers:

 - name: test

 image: nginx

 securityContext:

 capabilities:

 add:

 - NET_ADMIN

EOF

Test Valid Secure Container (Should Pass)

Security Context Enforcement Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-secure-context

spec:

 securityContext:

 runAsNonRoot: true

 runAsUser: 1000

 runAsGroup: 1000

 seccompProfile:

 type: RuntimeDefault

 containers:

 - name: test

 image: nginx

 securityContext:

 allowPrivilegeEscalation: false

 readOnlyRootFilesystem: true

 runAsNonRoot: true

 runAsUser: 1000

 capabilities:

 drop:

 - ALL

 add:

 - NET_BIND_SERVICE

EOF

Security Context Enforcement Policy - Alauda Container Platform

This guide demonstrates how to configure Kyverno to enforce network security policies that

control container network access and prevent network-based attacks.

What is Network Security?

Quick Start

1. Disallow Host Network Access

2. Test the Policy

Core Network Security Policies

Policy 1: Disallow Host Ports

Policy 2: Restrict Host Port Range

Policy 3: Require Network Policies

Policy 4: Restrict Service Types

Policy 5: Control Ingress Configurations

Policy 6: Restrict DNS Configuration

Advanced Scenarios

Scenario 1: Environment-Specific Network Policies

Scenario 2: Application-Specific Network Policies

Scenario 3: Network Segmentation Enforcement

Testing and Validation

Test Host Network Access (Should Fail)

Test Host Port Binding (Should Fail)

Test NodePort Service (Should Fail)

Test Valid Network Configuration (Should Pass)

Network Security Policy

TOC

Menu ON THIS PAGE

Network Security Policy - Alauda Container Platform

Network security involves controlling how containers access and interact with network

resources. Proper network security prevents:

Host network access: Containers accessing host network interfaces

Privilege escalation via networking: Using network access to gain elevated permissions

Port scanning and reconnaissance: Unauthorized network discovery activities

Lateral movement: Containers accessing unintended network resources

Data exfiltration: Unauthorized network communications

What is Network Security?

Quick Start

1. Disallow Host Network Access

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-host-network

 annotations:

 policies.kyverno.io/title: Disallow Host Network

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Access to the host network allows potential snooping of network traffic and should

not be allowed.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-network

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Use of host network is disallowed. The field spec.hostNetwork must be unset or

set to false.

 pattern:

 spec:

 =(hostNetwork): "false"

2. Test the Policy

Apply the policy

kubectl apply -f disallow-host-network.yaml

Try to create a pod with host network (should fail)

kubectl run test-hostnet --image=nginx --overrides='{"spec":{"hostNetwork":true}}'

Try to create a normal pod (should work)

kubectl run test-normal --image=nginx

Network Security Policy - Alauda Container Platform

Prevent containers from binding to host network ports:

Core Network Security Policies

Policy 1: Disallow Host Ports

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-host-ports

 annotations:

 policies.kyverno.io/title: Disallow Host Ports

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Access to host ports allows potential snooping of network traffic and should not be

 allowed, or at minimum restricted to a known list.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-ports-none

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Use of host ports is disallowed. The fields

spec.containers[*].ports[*].hostPort,

 spec.initContainers[*].ports[*].hostPort, and

spec.ephemeralContainers[*].ports[*].hostPort

 must either be unset or set to 0.

 pattern:

 spec:

 =(ephemeralContainers):

 - =(ports):

 - =(hostPort): 0

 =(initContainers):

 - =(ports):

 - =(hostPort): 0

 containers:

 - =(ports):

 - =(hostPort): 0

Network Security Policy - Alauda Container Platform

Allow specific host port ranges for controlled access:

Policy 2: Restrict Host Port Range

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: restrict-host-port-range

 annotations:

 policies.kyverno.io/title: Restrict Host Port Range

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Host ports, if used, must be within an allowed range to prevent conflicts and

security issues.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-port-range

 match:

 any:

 - resources:

 kinds:

 - Pod

 preconditions:

 all:

 - key: "{{ request.object.spec.containers[].ports[?hostPort] | length(@) }}"

 operator: GreaterThan

 value: 0

 validate:

 message: >-

 Host ports must be within the allowed range 30000-32767.

 foreach:

 - list: request.object.spec.[ephemeralContainers, initContainers, containers]

[].ports[]

 preconditions:

 any:

 - key: "{{ element.hostPort }}"

 operator: GreaterThan

 value: 0

 deny:

 conditions:

 any:

 - key: "{{ element.hostPort }}"

 operator: LessThan

Network Security Policy - Alauda Container Platform

Ensure pods have associated NetworkPolicies for traffic control:

 value: 30000

 - key: "{{ element.hostPort }}"

 operator: GreaterThan

 value: 32767

Policy 3: Require Network Policies

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-network-policies

 annotations:

 policies.kyverno.io/title: Require Network Policies

 policies.kyverno.io/category: Network Security

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod,NetworkPolicy

 policies.kyverno.io/description: >-

 Pods should have associated NetworkPolicies to control network traffic.

spec:

 validationFailureAction: Enforce

 background: false

 rules:

 - name: require-netpol

 match:

 any:

 - resources:

 kinds:

 - Pod

 exclude:

 any:

 - resources:

 namespaces:

 - kube-system

 - kyverno

 context:

 - name: netpols

 apiCall:

 urlPath: "/apis/networking.k8s.io/v1/namespaces/{{ request.namespace

}}/networkpolicies"

 jmesPath: "items[?spec.podSelector.matchLabels.app == '{{

request.object.metadata.labels.app }}'] | length(@)"

 validate:

 message: >-

 Pods must have an associated NetworkPolicy. Create a NetworkPolicy that selects

this pod.

 deny:

 conditions:

 all:

 - key: "{{ netpols }}"

 operator: Equals

Network Security Policy - Alauda Container Platform

Control which service types can be created:

 value: 0

Policy 4: Restrict Service Types

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: restrict-service-types

 annotations:

 policies.kyverno.io/title: Restrict Service Types

 policies.kyverno.io/category: Network Security

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Service

 policies.kyverno.io/description: >-

 Restrict Service types to prevent exposure of services to external networks.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: restrict-nodeport

 match:

 any:

 - resources:

 kinds:

 - Service

 validate:

 message: >-

 NodePort services are not allowed. Use ClusterIP or LoadBalancer instead.

 pattern:

 spec:

 type: "!NodePort"

 - name: restrict-loadbalancer

 match:

 any:

 - resources:

 kinds:

 - Service

 namespaces:

 - development

 - dev-*

 - staging

 validate:

 message: >-

 LoadBalancer services are not allowed in development environments.

 pattern:

 spec:

 type: "!LoadBalancer"

Network Security Policy - Alauda Container Platform

Enforce secure Ingress configurations:

Policy 5: Control Ingress Configurations

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: secure-ingress-configuration

 annotations:

 policies.kyverno.io/title: Secure Ingress Configuration

 policies.kyverno.io/category: Network Security

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Ingress

 policies.kyverno.io/description: >-

 Ingress resources must be configured securely with TLS and proper annotations.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: require-tls

 match:

 any:

 - resources:

 kinds:

 - Ingress

 validate:

 message: >-

 Ingress must use TLS. The field spec.tls must be specified.

 pattern:

 spec:

 tls:

 - hosts:

 - "*"

 - name: require-security-annotations

 match:

 any:

 - resources:

 kinds:

 - Ingress

 validate:

 message: >-

 Ingress must have security annotations for SSL redirect and HSTS.

 pattern:

 metadata:

 annotations:

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 nginx.ingress.kubernetes.io/force-ssl-redirect: "true"

Network Security Policy - Alauda Container Platform

Control DNS settings to prevent DNS-based attacks:

Policy 6: Restrict DNS Configuration

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: restrict-dns-configuration

 annotations:

 policies.kyverno.io/title: Restrict DNS Configuration

 policies.kyverno.io/category: Network Security

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 Restrict DNS configuration to prevent DNS hijacking and data exfiltration.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: restrict-dns-policy

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Custom DNS policy is not allowed. Use Default or ClusterFirst only.

 pattern:

 spec:

 =(dnsPolicy): "Default | ClusterFirst"

 - name: restrict-custom-dns

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Custom DNS configuration is not allowed in production environments.

 pattern:

 spec:

 X(dnsConfig): "null"

Network Security Policy - Alauda Container Platform

Different network restrictions for different environments:

Advanced Scenarios

Scenario 1: Environment-Specific Network Policies

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: environment-network-security

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Production: Strict network controls

 - name: production-network-restrictions

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - production

 - prod-*

 validate:

 message: "Production environments require strict network security"

 pattern:

 spec:

 hostNetwork: "false"

 dnsPolicy: "ClusterFirst"

 containers:

 - ports:

 - =(hostPort): 0

 # Development: Basic network security

 - name: development-network-restrictions

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - development

 - dev-*

 - staging

 validate:

 message: "Development environments require basic network security"

 pattern:

 spec:

" "

Network Security Policy - Alauda Container Platform

Different network policies for different application types:

 hostNetwork: "false"

Scenario 2: Application-Specific Network Policies

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: application-network-policies

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Database applications: No external network access

 - name: database-network-policy

 match:

 any:

 - resources:

 kinds:

 - Pod

 selector:

 matchLabels:

 app.type: database

 validate:

 message: "Database applications cannot use host network or host ports"

 pattern:

 spec:

 hostNetwork: "false"

 containers:

 - ports:

 - =(hostPort): 0

 # Web applications: Controlled port access

 - name: web-app-network-policy

 match:

 any:

 - resources:

 kinds:

 - Pod

 selector:

 matchLabels:

 app.type: web

 validate:

 message: "Web applications can only use standard HTTP/HTTPS ports"

 foreach:

 - list: request.object.spec.containers[].ports[]

 deny:

 conditions:

Network Security Policy - Alauda Container Platform

Enforce network segmentation between different tiers:

 any:

 - key: "{{ element.containerPort }}"

 operator: AnyNotIn

 value:

 - 80

 - 443

 - 8080

 - 8443

Scenario 3: Network Segmentation Enforcement

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: network-segmentation-enforcement

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: frontend-backend-separation

 match:

 any:

 - resources:

 kinds:

 - Pod

 selector:

 matchLabels:

 tier: frontend

 validate:

 message: "Frontend pods cannot access backend network directly"

 deny:

 conditions:

 any:

 - key: "{{ request.object.metadata.labels.tier }}"

 operator: Equals

 value: backend

 - name: require-network-labels

 match:

 any:

 - resources:

 kinds:

 - Pod

 exclude:

 any:

 - resources:

 namespaces:

 - kube-system

 - kyverno

 validate:

 message: "Pods must have network tier labels for segmentation"

 pattern:

 metadata:

 labels:

 tier: "frontend | backend | database"

Network Security Policy - Alauda Container Platform

Testing and Validation

Test Host Network Access (Should Fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-host-network

spec:

 hostNetwork: true

 containers:

 - name: test

 image: nginx

EOF

Test Host Port Binding (Should Fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-host-port

spec:

 containers:

 - name: test

 image: nginx

 ports:

 - containerPort: 80

 hostPort: 8080

EOF

Test NodePort Service (Should Fail)

Network Security Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Service

metadata:

 name: test-nodeport

spec:

 type: NodePort

 ports:

 - port: 80

 targetPort: 80

 nodePort: 30080

 selector:

 app: test

EOF

Test Valid Network Configuration (Should Pass)

Network Security Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-secure-network

 labels:

 app: web-app

 tier: frontend

spec:

 dnsPolicy: ClusterFirst

 containers:

 - name: test

 image: nginx

 ports:

 - containerPort: 80

 protocol: TCP

apiVersion: v1

kind: Service

metadata:

 name: test-service

spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 80

 selector:

 app: web-app

EOF

Network Security Policy - Alauda Container Platform

This guide demonstrates how to configure Kyverno to enforce volume security policies that

restrict dangerous volume types and configurations that could compromise container security.

What is Volume Security?

Quick Start

1. Restrict Volume Types

2. Test the Policy

Core Volume Security Policies

Policy 1: Disallow HostPath Volumes

Policy 2: Restrict HostPath Volumes (Controlled Access)

Policy 3: Disallow Privileged Volume Types

Policy 4: Require Read-Only Root Filesystem

Policy 5: Control Volume Mount Permissions

Advanced Scenarios

Scenario 1: Environment-Specific Volume Policies

Scenario 2: Application-Specific Volume Policies

Scenario 3: Volume Size and Resource Limits

Testing and Validation

Test HostPath Volume (Should Fail)

Volume Security Policy

TOC

What is Volume Security?

Menu ON THIS PAGE

Volume Security Policy - Alauda Container Platform

Volume security involves controlling which types of volumes containers can mount and how

they can access them. Proper volume security prevents:

Host filesystem access: Unauthorized access to host directories

Privilege escalation: Using volumes to gain elevated permissions

Data exfiltration: Accessing sensitive host data through volume mounts

Container escape: Breaking out of container isolation via volume access

Insecure volume types: Using volume types that bypass security controls

Quick Start

1. Restrict Volume Types

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: restrict-volume-types

 annotations:

 policies.kyverno.io/title: Restrict Volume Types

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod,Volume

 policies.kyverno.io/description: >-

 Only allow safe volume types. This policy restricts volumes to configMap, csi,

 downwardAPI, emptyDir, ephemeral, persistentVolumeClaim, projected, and secret.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: restrict-volume-types

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Only the following types of volumes may be used: configMap, csi, downwardAPI,

 emptyDir, ephemeral, persistentVolumeClaim, projected, and secret.

 foreach:

 - list: "request.object.spec.volumes || []"

 deny:

 conditions:

 all:

 - key: "{{ element.keys(@) }}"

 operator: AnyNotIn

 value:

 - name

 - configMap

 - csi

 - downwardAPI

 - emptyDir

 - ephemeral

 - persistentVolumeClaim

 - projected

 - secret

Volume Security Policy - Alauda Container Platform

2. Test the Policy

Volume Security Policy - Alauda Container Platform

Apply the policy

kubectl apply -f restrict-volume-types.yaml

Try to create a pod with hostPath volume (should fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-hostpath

spec:

 containers:

 - name: nginx

 image: nginx

 volumeMounts:

 - name: host-vol

 mountPath: /host

 volumes:

 - name: host-vol

 hostPath:

 path: /

EOF

Create a test ConfigMap first

kubectl create configmap test-config --from-literal=key=value

Try to create a pod with allowed volume (should work)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-configmap

spec:

 containers:

 - name: nginx

 image: nginx

 volumeMounts:

 - name: config-vol

 mountPath: /config

 volumes:

 - name: config-vol

 configMap:

 name: test-config

EOF

Volume Security Policy - Alauda Container Platform

Prevent containers from mounting host filesystem paths:

Clean up

kubectl delete pod test-hostpath test-configmap --ignore-not-found

kubectl delete configmap test-config --ignore-not-found

Core Volume Security Policies

Policy 1: Disallow HostPath Volumes

Volume Security Policy - Alauda Container Platform

Allow specific hostPath volumes with read-only access:

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-host-path

 annotations:

 policies.kyverno.io/title: Disallow Host Path

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod,Volume

 policies.kyverno.io/description: >-

 HostPath volumes let Pods use host directories and volumes in containers.

 Using host resources can be used to access shared data or escalate privileges

 and should not be allowed.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-path

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 HostPath volumes are forbidden. The field spec.volumes[*].hostPath must be

unset.

 pattern:

 spec:

 =(volumes):

 - X(hostPath): "null"

Policy 2: Restrict HostPath Volumes (Controlled Access)

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: restrict-host-path-readonly

 annotations:

 policies.kyverno.io/title: Restrict Host Path (Read-Only)

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod,Volume

 policies.kyverno.io/description: >-

 HostPath volumes which are allowed must be read-only and restricted to specific

paths.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: host-path-readonly

 match:

 any:

 - resources:

 kinds:

 - Pod

 preconditions:

 all:

 - key: "{{ request.object.spec.volumes[?hostPath] | length(@) }}"

 operator: GreaterThan

 value: 0

 validate:

 message: >-

 HostPath volumes must be read-only and limited to allowed paths.

 foreach:

 - list: "request.object.spec.volumes[?hostPath]"

 deny:

 conditions:

 any:

 # Deny if path is not in allowed list

 - key: "{{ element.hostPath.path }}"

 operator: AnyNotIn

 value:

 - "/var/log"

 - "/var/lib/docker/containers"

 - "/proc"

 - "/sys"

Volume Security Policy - Alauda Container Platform

Block volume types that can bypass security controls:

 foreach:

 - list: "request.object.spec.containers[].volumeMounts[?name]"

 deny:

 conditions:

 any:

 # Deny if volume mount is not read-only

 - key: "{{ element.readOnly || false }}"

 operator: Equals

 value: false

Policy 3: Disallow Privileged Volume Types

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: disallow-privileged-volumes

 annotations:

 policies.kyverno.io/title: Disallow Privileged Volume Types

 policies.kyverno.io/category: Pod Security Standards (Baseline)

 policies.kyverno.io/severity: high

 policies.kyverno.io/subject: Pod,Volume

 policies.kyverno.io/description: >-

 Certain volume types are considered privileged and should not be allowed.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: disallow-privileged-volumes

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Privileged volume types are not allowed: hostPath, gcePersistentDisk,

 awsElasticBlockStore, gitRepo, nfs, iscsi, glusterfs, rbd, flexVolume,

 cinder, cephFS, flocker, fc, azureFile, azureDisk, vsphereVolume, quobyte,

 portworxVolume, scaleIO, storageos.

 foreach:

 - list: "request.object.spec.volumes || []"

 deny:

 conditions:

 any:

 - key: "{{ element.keys(@) }}"

 operator: AnyIn

 value:

 - hostPath

 - gcePersistentDisk

 - awsElasticBlockStore

 - gitRepo

 - nfs

 - iscsi

 - glusterfs

 - rbd

Volume Security Policy - Alauda Container Platform

Ensure containers use read-only root filesystems:

 - flexVolume

 - cinder

 - cephFS

 - flocker

 - fc

 - azureFile

 - azureDisk

 - vsphereVolume

 - quobyte

 - portworxVolume

 - scaleIO

 - storageos

Policy 4: Require Read-Only Root Filesystem

Volume Security Policy - Alauda Container Platform

Restrict volume mount permissions and paths:

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: require-readonly-rootfs

 annotations:

 policies.kyverno.io/title: Require Read-Only Root Filesystem

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod

 policies.kyverno.io/description: >-

 A read-only root file system helps to enforce an immutable infrastructure strategy;

 the container only needs to write on the mounted volume that persists the state.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: readonly-rootfs

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Root filesystem must be read-only. Set readOnlyRootFilesystem to true.

 foreach:

 - list: request.object.spec.[ephemeralContainers, initContainers, containers][]

 deny:

 conditions:

 any:

 - key: "{{ element.securityContext.readOnlyRootFilesystem || false }}"

 operator: Equals

 value: false

Policy 5: Control Volume Mount Permissions

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: control-volume-mounts

 annotations:

 policies.kyverno.io/title: Control Volume Mount Permissions

 policies.kyverno.io/category: Pod Security Standards (Restricted)

 policies.kyverno.io/severity: medium

 policies.kyverno.io/subject: Pod,Volume

 policies.kyverno.io/description: >-

 Control where volumes can be mounted and with what permissions.

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: restrict-mount-paths

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Volume mounts to sensitive paths are not allowed.

 foreach:

 - list: request.object.spec.[ephemeralContainers, initContainers, containers]

[].volumeMounts[]

 deny:

 conditions:

 any:

 # Block mounts to sensitive system paths

 - key: "{{ element.mountPath }}"

 operator: AnyIn

 value:

 - "/etc"

 - "/root"

 - "/var/run/docker.sock"

 - "/var/lib/kubelet"

 - "/var/lib/docker"

 - "/usr/bin"

 - "/usr/sbin"

 - "/sbin"

 - "/bin"

Volume Security Policy - Alauda Container Platform

Different volume restrictions for different environments:

 - name: require-readonly-sensitive-mounts

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: >-

 Mounts to /proc and /sys must be read-only.

 foreach:

 - list: request.object.spec.[ephemeralContainers, initContainers, containers]

[].volumeMounts[]

 preconditions:

 any:

 - key: "{{ element.mountPath }}"

 operator: AnyIn

 value:

 - "/proc"

 - "/sys"

 deny:

 conditions:

 any:

 - key: "{{ element.readOnly || false }}"

 operator: Equals

 value: false

Advanced Scenarios

Scenario 1: Environment-Specific Volume Policies

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: environment-volume-security

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Production: Strict volume controls

 - name: production-volume-restrictions

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - production

 - prod-*

 validate:

 message: "Production environments allow only secure volume types"

 foreach:

 - list: "request.object.spec.volumes || []"

 deny:

 conditions:

 all:

 - key: "{{ element.keys(@) }}"

 operator: AnyNotIn

 value:

 - name

 - configMap

 - secret

 - persistentVolumeClaim

 - emptyDir

 # Development: More permissive but still secure

 - name: development-volume-restrictions

 match:

 any:

 - resources:

 kinds:

 - Pod

 namespaces:

 - development

Volume Security Policy - Alauda Container Platform

Different volume policies for different application types:

 - dev-*

 - staging

 validate:

 message: "Development environments allow additional volume types"

 foreach:

 - list: "request.object.spec.volumes || []"

 deny:

 conditions:

 any:

 - key: "{{ element.keys(@) }}"

 operator: AnyIn

 value:

 - hostPath # Still block hostPath in dev

 - nfs # Block network filesystems

Scenario 2: Application-Specific Volume Policies

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: application-volume-policies

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 # Database applications: Allow persistent storage

 - name: database-volume-policy

 match:

 any:

 - resources:

 kinds:

 - Pod

 selector:

 matchLabels:

 app.type: database

 validate:

 message: "Database applications must use persistent volumes"

 pattern:

 spec:

 volumes:

 - persistentVolumeClaim: {}

 # Web applications: Restrict to safe volumes

 - name: web-app-volume-policy

 match:

 any:

 - resources:

 kinds:

 - Pod

 selector:

 matchLabels:

 app.type: web

 validate:

 message: "Web applications can only use safe volume types"

 foreach:

 - list: "request.object.spec.volumes || []"

 deny:

 conditions:

 all:

 - key: "{{ element.keys(@) }}"

Volume Security Policy - Alauda Container Platform

Control volume sizes and resource usage:

 operator: AnyNotIn

 value:

 - name

 - configMap

 - secret

 - emptyDir

 - projected

Scenario 3: Volume Size and Resource Limits

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1

kind: ClusterPolicy

metadata:

 name: volume-resource-limits

spec:

 validationFailureAction: Enforce

 background: true

 rules:

 - name: limit-emptydir-size

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: "EmptyDir volumes must have size limits"

 foreach:

 - list: "request.object.spec.volumes[?emptyDir]"

 deny:

 conditions:

 any:

 - key: "{{ element.emptyDir.sizeLimit || '' }}"

 operator: Equals

 value: ""

 - name: limit-emptydir-memory

 match:

 any:

 - resources:

 kinds:

 - Pod

 validate:

 message: "EmptyDir memory volumes are not allowed"

 foreach:

 - list: "request.object.spec.volumes[?emptyDir]"

 deny:

 conditions:

 any:

 - key: "{{ element.emptyDir.medium || '' }}"

 operator: Equals

 value: "Memory"

Volume Security Policy - Alauda Container Platform

Testing and Validation

Test HostPath Volume (Should Fail)

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Pod

metadata:

 name: test-hostpath

spec:

 containers:

 - name: nginx

 image: nginx

 volumeMounts:

 - name: host-vol

 mountPath: /host

 volumes:

 - name: host-vol

 hostPath:

 path: /

EOF

Volume Security Policy - Alauda Container Platform

Introduction

Install Alauda Container Platform API Refiner

API Refiner

Product Introduction

Limitations

Install via console

Install via YAML

Uninstallation Procedures

Default Configuration

Menu

API Refiner - Alauda Container Platform

Product Introduction

Limitations

ACP API Refiner is a data filtering service provided by the Alauda Container Platform that

enhances multi-tenant security and data isolation in Kubernetes environments. It filters

Kubernetes API response data based on user permissions, projects, clusters, and

namespaces, while also supporting field-level filtering, inclusion, and data desensitization.

The following limitations apply to ACP API Refiner:

Resources must contain specific tenant-related labels for data isolation:

cpaas.io/project

cpaas.io/cluster

cpaas.io/namespace

kubernetes.io/metadata.name

Optional: cpaas.io/creator

Introduction

TOC

Product Introduction

Limitations

Menu ON THIS PAGE

Introduction - Alauda Container Platform

LabelSelector queries do not support logical OR operations

Platform-level userbindings are not filtered

Filtering is only applied to GET and LIST API operations

Introduction - Alauda Container Platform

Alauda Container Platform API Refiner is a platform service that filters Kubernetes API

response data. It provides filtering capabilities by project, cluster, and namespace, and

supports field exclusion, inclusion, and desensitization in API responses.

Install via console

Install via YAML

1. Check available versions

2. Create a ModuleInfo

Uninstallation Procedures

Default Configuration

Filtered Resources

Field Desensitization

1. Navigate to Administrator

2. In the left navigation bar, click Marketplace > Cluster Plugins

3. Select the global cluster in the top navigation bar

4. Search for Alauda Container Platform API Refiner and click to view its details

5. Click Install to deploy the plugin

Install Alauda Container Platform API Refiner

TOC

Install via console

Menu ON THIS PAGE

Install Alauda Container Platform API Refiner - Alauda Container Platform

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in global cluster :

This indicates that the ModulePlugin apirefiner exists in the cluster and version v4.0.4 is

published.

Create a ModuleInfo resource to install the plugin without any configuration parameters:

Install via YAML

1. Check available versions

kubectl get moduleplugins apirefiner

NAME AGE

apirefiner 4d20h

kubectl get moduleconfigs -l cpaas.io/module-name=apirefiner

NAME AGE

apirefiner-v4.0.4 4d21h

2. Create a ModuleInfo

Install Alauda Container Platform API Refiner - Alauda Container Platform

Field explanations:

name : Temporary name for the cluster plugin. The platform will rename it after creation

based on the content, in the format <cluster-name>-<hash of content> , e.g., global-

ee98c9991ea1464aaa8054bdacbab313 .

label cpaas.io/cluster-name : API Refiner only can be installed in the global cluster, keep

this filed as global.

label cpaas.io/module-name : Plugin name, must match the ModulePlugin resource.

label cpaas.io/module-type : Fixed field, must be plugin ; missing this field causes

installation failure.

.spec.config : If the corresponding ModuleConfig is empty, this field can be left empty.

.spec.version : Specifies the plugin version to install, must match .spec.version in

ModuleConfig.

1. Follow steps 1-4 from the installation process to locate the plugin

2. Click Uninstall to remove the plugin

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 annotations:

 cpaas.io/display-name: apirefiner

 cpaas.io/module-name: '{"en": "Alauda Container Platform API Refiner", "zh": "Alauda

 Container Platform API Refiner"}'

 labels:

 cpaas.io/cluster-name: global

 cpaas.io/module-name: apirefiner

 cpaas.io/module-type: plugin

 cpaas.io/product: Platform-Center

 name: apirefiner-global

spec:

 version: v4.2.0-default.1.g8f0543e4

Uninstallation Procedures

Install Alauda Container Platform API Refiner - Alauda Container Platform

The following resources are filtered by default:

Resource API Version

namespaces v1

projects auth.alauda.io/v1

clustermodules cluster.alauda.io/v1alpha2

clusters clusterregistry.k8s.io/v1alpha1

By default, the following field is desensitized:

metadata.annotations.cpaas.io/creator

Default Configuration

Filtered Resources

Field Desensitization

Install Alauda Container Platform API Refiner - Alauda Container Platform

Compliance Service is a platform module designed to support STIG compliance scanning and

MicroOS operating system scanning. It provides out-of-the-box compliance scanning

capabilities with support for scheduled scanning and comprehensive reporting.

Note

Because Compliance Service releases on a different cadence from Alauda Container Platform, the

Compliance Service documentation is now available as a separate documentation set at

Compliance Service .

About Alauda Container Platform Compliance
Service

↗

Menu

About Alauda Container Platform Compliance Service - Alauda Container Platform

https://docs.alauda.io/compliance-service/
https://docs.alauda.io/compliance-service/
https://docs.alauda.io/compliance-service/

User

Introduction

Guides

Group

Introduction

Guides

Role

Users and Roles

User Sources

User Management Rules

User Lifecycle

Group Introduction

Group Types

Menu

Users and Roles - Alauda Container Platform

Introduction

Guides

IDP

Introduction

Guides

Troubleshooting

User Policy

Role Introduction

System Roles

Custom Roles

Overview

Supported Integration Methods

Users and Roles - Alauda Container Platform

Introduction
Overview

Configure Security Policy

Available Policies

Users and Roles - Alauda Container Platform

Introduction

Introduction

Guides

Manage User Roles

Create User

User

User Sources

User Management Rules

User Lifecycle

Add Roles

Remove Roles

Steps

Menu

User - Alauda Container Platform

User Management
Reset Local User Password

Update User Expiry Date

Activate User

Disable User

Add User to Local User Group

Delete User

Batch Operations

User - Alauda Container Platform

The platform supports user authentication and login verification for all users.

User Sources

Local Users

Third-Party Users

LDAP Users

OIDC Users

Other Third-Party Users

User Management Rules

User Lifecycle

Administrator account created during platform deployment

Accounts created through the platform interface

Users added through local dex configuration file

Introduction

TOC

User Sources

Local Users

Third-Party Users

LDAP Users

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Enterprise users synchronized from LDAP servers

Accounts are imported through IDP (Identity Provider) integration

Source is displayed as the IDP configuration name

Integration is configured through IDP settings

Third-party platform users authenticated via OIDC protocol

Source is displayed as the IDP configuration name

Integration is configured through IDP settings

WARNING

For OIDC users added to a project before their first login:

Source is displayed as "-" until successful platform login

After successful login, source changes to the IDP configuration name

Users authenticated through supported dex connectors (e.g., GitHub, Microsoft)

For more information, refer to the dex official documentation

WARNING

Please note the following important rules:

Local usernames must be unique across all user types

Third-party users (OIDC/LDAP) with matching usernames are automatically associated

Associated users inherit permissions from existing accounts

OIDC Users

Other Third-Party Users

↗

User Management Rules

Introduction - Alauda Container Platform

https://github.com/dexidp/dex
https://github.com/dexidp/dex
https://github.com/dexidp/dex

Users can log in through their respective sources

Only one user record is displayed per username in the platform

User source is determined by the most recent login method

The following table describes different user statuses on the platform:

Status Description

Normal User account is active and can log in to the platform

Disabled

User account is inactive and cannot log in. Contact platform administrator

for activation.

Possible reasons:

- No login for 90+ consecutive days

- Account expiration

- Manual disable by administrator

Locked

Account is temporarily locked due to 5 failed login attempts within 24

hours.

Details:

- Lock duration: 20 minutes

- Can be manually unlocked by administrator

- Account becomes available after lock period

Invalid

LDAP-synchronized account that has been deleted from the LDAP server.

Note: Invalid accounts cannot log in to the platform

User Lifecycle

Introduction - Alauda Container Platform

Manage User Roles

Create User

User Management

Guides

Add Roles

Remove Roles

Steps

Reset Local User Password

Update User Expiry Date

Activate User

Disable User

Add User to Local User Group

Delete User

Batch Operations

Menu

Guides - Alauda Container Platform

Platform administrators can manage roles for other users (not their own account) to grant or

revoke permissions.

Add Roles

Steps

Remove Roles

Steps

1. In the left navigation bar, click Users > User Management

2. Click the username of the target user

3. Scroll to the Role List section

4. Click Add Role

5. In the role assignment dialog:

Select a role from the Role Name dropdown

Choose the role's permission scope (cluster, project, or namespace)

Click Add

Manage User Roles

TOC

Add Roles

Steps

Menu ON THIS PAGE

Manage User Roles - Alauda Container Platform

NOTE

Important Notes:

You can add multiple roles to a user

Each role can only be added once per user

Already assigned roles appear in the dropdown but cannot be selected

The Cluster Administrator role cannot be assigned for the global cluster

1. In the left navigation bar, click Users > User Management

2. Click the username of the target user

3. Scroll to the Role List section

4. Click Remove next to the role you want to remove

5. Confirm the removal

WARNING

Role Management Permissions:

Only platform administrators can manage roles for other users

Users cannot modify roles for their own account

Remove Roles

Steps

Manage User Roles - Alauda Container Platform

Users with platform administrator roles can create local users and assign roles to them

through the platform interface.

Steps

1. In the left navigation bar, click Users > User Management

2. Click Create User

3. Configure the following parameters:

Parameter Description

Password Type

Select a password generation method:

Random: System generates a secure random password

Custom: User manually enters a password

Password Enter or generate a password based on the selected type.

Password Requirements:

- Length: 8-32 characters

- Must contain letters and numbers

- Must contain special characters (~!@#$%^&*() -_=+?)

Create User

TOC

Steps

Menu ON THIS PAGE

Create User - Alauda Container Platform

Parameter Description

Password Field Features:

- Click the eye icon to show/hide password

- Click the copy icon to copy password

Mailbox

User's email address:

- Must be unique

- Can be used as login username

- Associated with user's name

Validity Period

Set the user's account validity period:

Options:

- Permanent: No time limit

- Custom: Set start and end times using the Time Range

dropdown

Roles Assign one or more roles to the user

Continue

Creating

Toggle switch to control post-creation behavior:

- On: Redirects to new user creation page

- Off: Shows user details page

1. Click Create

NOTE

After successful user creation:

If "Continue Creating" is enabled, you'll be redirected to create another user

If disabled, you'll see the created user's details page

Create User - Alauda Container Platform

The platform provides flexible user management capabilities, supporting both individual user

management and batch operations for improved efficiency in specific scenarios (e.g., on-site

or off-site teams).

WARNING

Important Restrictions:

System-generated accounts cannot be managed (platform administrator role, local source)

Currently logged-in users cannot manage their own accounts

For personal account modifications (display name, password), please use the personal

information page

Reset Local User Password

Steps

Update User Expiry Date

Steps

Activate User

Steps

Disable User

Steps

Add User to Local User Group

Steps

Delete User

User Management

TOC

Menu ON THIS PAGE

User Management - Alauda Container Platform

Steps

Batch Operations

Steps

Users with platform management permissions can reset passwords for other local users.

1. In the left navigation bar, click Users > User Management

2. Click the icon next to the target user's record

3. Click Reset Password

4. In the dialog box, select a password type:

Random: System generates a secure random password

Custom: Enter a new password manually

NOTE

Password Requirements:

Length: 8-32 characters

Must contain letters and numbers

Must contain special characters (~!@#$%^&*() -_=+?)

Password Field Features:

Click eye icon to show/hide password

Click copy icon to copy password

1. Click Reset

Reset Local User Password

Steps

User Management - Alauda Container Platform

You can update expiry dates for users in normal, disabled, or locked status. Users

exceeding their expiry date will be automatically disabled.

1. In the left navigation bar, click Users > User Management

2. Click Update Expiry Date next to the target user

3. In the dialog box, select an expiry date option:

Permanent: No time limit

Custom: Set start and end times using the Time Range dropdown

4. Click Update

You can activate users in disabled or locked status.

NOTE

Activation Behavior:

If user is within expiry date: expiry date remains unchanged

If user has expired: expiry date becomes Permanent

1. In the left navigation bar, click Users > User Management

2. Click Activate next to the target user

3. Click Activate in the confirmation dialog

Update User Expiry Date

Steps

Activate User

Steps

User Management - Alauda Container Platform

4. User status will change to normal

You can disable users in normal or locked status within their expiry date. Disabled users

cannot log in but can be reactivated.

1. In the left navigation bar, click Users > User Management

2. Click the icon next to the target user

3. Click Disable and confirm

You can add users with Source as Local or LDAP to one or more local user groups.

WARNING

Group Role Behavior:

Users automatically inherit roles from their groups

Group roles are only visible on the group's details page (Configure Roles tab)

Individual user role lists only show directly assigned roles

1. In the left navigation bar, click Users > User Management

2. Click the icon next to the target user

3. Click Add to User Group

Disable User

Steps

Add User to Local User Group

Steps

User Management - Alauda Container Platform

4. Select one or more local user groups

5. Click Add

Platform administrators can delete any user except the currently logged-in account, including:

IDP-configured users

Users with source -

Local users

1. In the left navigation bar, click Users > User Management

2. Click the icon next to the target user

3. Click Delete

4. Click Confirm

You can perform batch operations for:

Updating validity periods

Activating users

Disabling users

Deleting users

1. In the left navigation bar, click Users > User Management

Delete User

Steps

Batch Operations

Steps

User Management - Alauda Container Platform

2. Select one or more users using checkboxes

3. Click Batch Operations and select an action:

Update Validity

Activate

Deactivate

Delete

NOTE

Batch Operation Details:

Update Validity: Set permanent or custom time range

Activate: Confirm activation in dialog

Deactivate: Confirm deactivation in dialog

Delete: Enter current account password and confirm

User Management - Alauda Container Platform

Introduction

Introduction

Guides

Manage User Group Roles

Create Local User Group

Manage Local User Group Membership

Group

Group Introduction

Group Types

Add Role to Group

Remove Role from Group

Create User Group

Manage User Groups

Prerequisites

Import Members

Remove Members

Menu

Group - Alauda Container Platform

Group - Alauda Container Platform

Group Introduction

Group Types

Local User Group

IDP-Synchronized User Group

The platform supports user management through user groups. By managing group roles, you

can efficiently:

Grant platform operation permissions to multiple users simultaneously

Revoke permissions from multiple users at once

Implement batch role-based access control

For example, when personnel changes occur within an enterprise and you need to grant new

project or namespace operation permissions to multiple users, you can:

1. Create a user group

2. Import relevant users as group members

3. Configure project and namespace roles for the group

4. Apply unified permissions to all group members

Introduction

TOC

Group Introduction

Menu ON THIS PAGE

Introduction - Alauda Container Platform

The platform supports two types of groups:

Created directly on the platform

Source is displayed as Local

Can be updated or deleted

Supports:

Adding or removing users from any source

Adding or removing roles

Synchronized from connected IDP (LDAP, Azure AD)

Source is displayed as the connected IDP name

Cannot be updated or deleted

Supports:

Adding or removing roles

Cannot manage group members (add or remove)

Group Types

Local User Group

IDP-Synchronized User Group

Introduction - Alauda Container Platform

Manage User Group Roles

Create Local User Group

Manage Local User Group Membership

Guides

Add Role to Group

Remove Role from Group

Create User Group

Manage User Groups

Prerequisites

Import Members

Remove Members

Menu

Guides - Alauda Container Platform

Users with platform management permissions can manage roles for both local user groups

and IDP-synchronized user groups.

Add Role to Group

Steps

Remove Role from Group

Steps

1. In the left navigation bar, click Users > User Group Management

2. Click the name of the target user group

3. On the Configure Role tab, click Add Role

4. Click to add a role

NOTE

Role Assignment Rules:

You can add multiple roles to a group

Manage User Group Roles

TOC

Add Role to Group

Steps

Menu ON THIS PAGE

Manage User Group Roles - Alauda Container Platform

Each role can only be added once to the same group

1. Select the role name from the dropdown

2. Choose the role's permission scope (cluster, project, or namespace)

3. Click Add

WARNING

When you remove a role from a group:

All permissions granted by that role to group members will be revoked

This action cannot be undone

1. In the left navigation bar, click Users > User Group Management

2. Click the name of the target user group

3. On the Configure Role tab, click Remove next to the role

4. Click Confirm to remove the role

Remove Role from Group

Steps

Manage User Group Roles - Alauda Container Platform

Local user groups allow you to implement role-based access control for multiple users from

any source.

Create User Group

Steps

Manage User Groups

1. In the left sidebar, click Users > User Group Management

2. Click Create User Group

3. Enter the following information:

Name: The name of the user group

Description: A description of the group's purpose

4. Click Create

Create Local User Group

TOC

Create User Group

Steps

Manage User Groups

Menu ON THIS PAGE

Create Local User Group - Alauda Container Platform

You can manage user groups by clicking the icon on the list page or clicking Operations in

the upper right corner on the details page.

Operation Description

Update User Group

Update group information based on the group source:

- For groups with Source as Local : Can update both name

and description

- For groups with Source as IDP name : Can only update

description

Delete Local User

Group
Delete user groups with Source as Local

WARNING

When you delete a group:

All group members will be removed

All roles assigned to the group will be removed

This action cannot be undone

Create Local User Group - Alauda Container Platform

Only users with Platform Management permissions can manage local user group

memberships.

Prerequisites

Import Members

Steps

Remove Members

Steps

WARNING

Before managing group memberships, please note the following limitations:

Only users with Platform Management permissions can manage groups and their members

System accounts and currently logged-in accounts cannot be managed (imported to or removed

from groups)

Each local user group can have a maximum of 5000 members

When a group reaches the 5000-member limit, no further imports are allowed

Manage Local User Group Membership

TOC

Prerequisites

Menu ON THIS PAGE

Manage Local User Group Membership - Alauda Container Platform

You can import users from the platform into local user groups for unified permission

management.

TIP

Users imported into a group will automatically inherit all operational permissions assigned to that

group.

1. In the left navigation bar, click Users > User Group Management

2. Click the name of the local user group where you want to add members

3. On the Group Member Management tab, click Import Member

4. Select one or more users from the platform by checking the boxes next to their

usernames/display names

5. Click Import

NOTE

You can only select users who are not currently members of the group

Use the Import All button to import all users in the list at once

When you remove a user from a group, all operational permissions granted to that user

through the group will be automatically revoked.

Import Members

Steps

Remove Members

Manage Local User Group Membership - Alauda Container Platform

1. In the left navigation bar, click Users > User Group Management

2. Click the name of the local user group where you want to remove members

3. On the Group Member Management tab, you can remove members in two ways:

Click Remove next to the member's name and confirm

Select one or more members using checkboxes, then click Batch Remove and confirm

Steps

Manage Local User Group Membership - Alauda Container Platform

Introduction

Introduction

Guides

Create Role

Manage Custom Roles

Role

Role Introduction

System Roles

Custom Roles

Basic Information Configuration

View Configuration

Permission Configuration

Update Basic Information

Update Role Permissions

Copy Existing Role

Delete Custom Role

Menu

Role - Alauda Container Platform

Role Introduction

System Roles

Custom Roles

The platform's user role management is implemented using Kubernetes RBAC (Role-Based

Access Control). This system enables flexible permission configuration by associating roles

with users.

A role represents a collection of permissions for operating Kubernetes resources on the

platform. These permissions include:

Creating resources

Viewing resources

Updating resources

Deleting resources

Roles classify and combine permissions for different resources. By assigning roles to users

and setting permission scopes, you can quickly grant resource operation permissions.

Permissions can be revoked just as easily by removing roles from users.

A role can have:

One or more resource types

Introduction

TOC

Role Introduction

Menu ON THIS PAGE

Introduction - Alauda Container Platform

One or more operation permissions

Multiple users assigned to it

For example:

Role A: Can only view and create projects

Role B: Can create, view, update, and delete users, projects, and namespaces

To meet common permission configuration scenarios, the platform provides the following

default system roles. These roles enable flexible access control for platform resources and

efficient permission management for users.

Role Name Description Role Level

Platform

Administrator

Has full access to all business and resources

on the platform
Platform

Platform Auditors

Can view all platform resources and

operation records, but has no other

permissions

Platform

Cluster

Administrator

(Alpha)

Manages and maintains cluster resources

with full access to all cluster-level resources
Cluster

Project

Administrator

Manages namespace administrators and

namespace quotas
Project

namespace-admin-

system

Manages namespace members and role

assignments
Namespace

Developers
Develops, deploys, and maintains custom

applications within namespaces
Namespace

System Roles

Introduction - Alauda Container Platform

The platform supports custom roles to enhance resource access control scenarios. Custom

roles offer several advantages over system roles:

Flexible permission configuration

Ability to update role permissions

Option to delete roles when no longer needed

WARNING

Exercise caution when updating or deleting custom roles. Deleting a custom role will automatically

revoke all permissions granted by that role to bound users.

Custom Roles

Introduction - Alauda Container Platform

Create Role

Manage Custom Roles

Guides

Basic Information Configuration

View Configuration

Permission Configuration

Update Basic Information

Update Role Permissions

Copy Existing Role

Delete Custom Role

Menu

Guides - Alauda Container Platform

Users with platform role permissions can create custom roles with permissions that are less

than or equal to their own role permissions based on actual usage scenarios. When creating a

role, you can configure:

Platform functional module operation permissions

Access permissions for user-defined resources (Kubernetes CRD)

Basic Information Configuration

Role Type

View Configuration

Permission Configuration

1. In the left navigation bar, click Users > Roles.

2. Click Create Role.

3. Configure the role's basic information:

When assigning roles to users, the permission scope will be limited based on the role type:

Platform Role: Displays all platform permissions

Create Role

TOC

Basic Information Configuration

Role Type

Menu ON THIS PAGE

Create Role - Alauda Container Platform

Project Role: Displays permissions under:

Project Management

Container Platform

Service Mesh

DevOps

Middleware

Namespace Role: Displays permissions under:

Project Management

Container Platform

Service Mesh

DevOps

Middleware

1. Click Next.

In the view configuration section, you control the role's permission to access specified views.

Views that are not selected will not be displayed in the top navigation for users with this role.

NOTE

1. Your account's role permissions limit which view cards you can configure. For example:

If your account doesn't have the Project Management view permission

The Project Management view card will be grayed out when creating a role

You can only create roles with permissions equal to or lower than your own role

2. View Entry Status:

If a view's Show Entry is turned off in the Products function

View Configuration

Create Role - Alauda Container Platform

The view's permissions in Permission Configuration will still take effect

The view will be temporarily inaccessible until the entry is enabled

Once enabled, the previously selected permissions will work normally

1. Click Add Custom Permission in the upper left corner of the page.

2. Configure permissions for the role to operate custom resources (Kubernetes CRD):

Parameter Description

Group Name
The name of the permission group. Groups are displayed below

the permission module in the order they were added.

Resource Name
The name of the resource. Press Enter to add multiple custom

resource names.

Operation

Permission
The permission to operate the resource.

1. Click Create.

Permission Configuration

Create Role - Alauda Container Platform

This guide describes how to manage custom roles on the platform, including:

Updating basic information and permissions

Copying existing roles to create new ones

Deleting custom roles

Update Basic Information

Steps

Update Role Permissions

Steps

Copy Existing Role

Steps

Delete Custom Role

Steps

You can update the display name and description of custom roles on the platform.

1. In the left navigation bar, click Users > Roles

2. Click the name of the role to be updated

Manage Custom Roles

TOC

Update Basic Information

Steps

Menu ON THIS PAGE

Manage Custom Roles - Alauda Container Platform

3. Click Actions > Update in the upper right corner

4. Update the role's:

Display name

Description

5. Click Update

You can update the permission information of custom roles, including:

Adding new operation permissions for platform resources

Removing existing permissions

Modifying permissions for custom resources

1. In the left navigation bar, click Users > Roles

2. Click the name of the role to be updated

3. Click Actions > Update Role Permissions in the upper right corner of the permission

area

4. Make your changes on the Update Role Permissions page

5. Click Confirm

You can create a new role by copying an existing role (system or custom). The new role will

inherit all permission information from the source role, which you can then modify based on

your needs.

Update Role Permissions

Steps

Copy Existing Role

Manage Custom Roles - Alauda Container Platform

WARNING

The permissions of the new role cannot exceed the permissions of the role to which the creator

belongs.

1. In the left navigation bar, click Users > Roles

2. Click the name of the role to be copied

3. Click Actions > Copy as new role in the upper right corner

4. On the Copy as new role page, configure:

Name

Display name

Description

Type

5. Click Create

You can delete custom roles that are no longer in use.

WARNING

When you delete a custom role:

The role's binding relationships with users will be removed

Users assigned to this role will lose all permissions granted by the role

The role will be removed from users' role lists

Steps

Delete Custom Role

Manage Custom Roles - Alauda Container Platform

1. In the left navigation bar, click Users > Roles

2. Click the name of the role to be deleted

3. Click Actions > Delete in the upper right corner

4. Enter the role name to confirm deletion

5. Click Delete

Steps

Manage Custom Roles - Alauda Container Platform

Introduction

Introduction

Guides

LDAP Management

OIDC Management

IDP

Overview

Supported Integration Methods

LDAP Overview

Supported LDAP Types

LDAP Terminology

Add LDAP

LDAP Configuration Examples

Synchronize LDAP Users

Relevant Operations

Overview of OIDC

Adding OIDC

Adding OIDC via YAML

Relevant Operations

Menu

IDP - Alauda Container Platform

Troubleshooting

Delete User
Problem Description

Solution

IDP - Alauda Container Platform

Overview

Supported Integration Methods

LDAP Integration

OIDC Integration

The platform integrates with Dex identity authentication service, enabling you to use Dex's

pre-implemented connectors for platform account authentication through IDP configuration.

For more information, refer to the Dex official documentation .

If your enterprise uses LDAP (Lightweight Directory Access Protocol) for user management,

you can configure LDAP on the platform to connect with your enterprise's LDAP server.

LDAP Integration Benefits:

Enables communication between platform and LDAP server

Allows enterprise users to log in with LDAP credentials

Introduction

TOC

Overview

↗

Supported Integration Methods

LDAP Integration

Menu ON THIS PAGE

Introduction - Alauda Container Platform

https://github.com/dexidp/dex
https://github.com/dexidp/dex
https://github.com/dexidp/dex

Automatically synchronizes enterprise user accounts to the platform

The platform supports integration with IDP services using the OpenID Connect (OIDC)

protocol for third-party user authentication.

OIDC Integration Benefits:

Enables users to log in with third-party accounts

Supports enterprise IDP services

Provides secure authentication through OIDC protocol

NOTE

For authentication using other connectors not mentioned above, please contact technical support.

OIDC Integration

Introduction - Alauda Container Platform

LDAP Management

OIDC Management

Guides

LDAP Overview

Supported LDAP Types

LDAP Terminology

Add LDAP

LDAP Configuration Examples

Synchronize LDAP Users

Relevant Operations

Overview of OIDC

Adding OIDC

Adding OIDC via YAML

Relevant Operations

Menu

Guides - Alauda Container Platform

Platform administrators can add, update, and delete LDAP services on the platform.

LDAP Overview

Supported LDAP Types

OpenLDAP

Active Directory

LDAP Terminology

OpenLDAP Common Terms

Active Directory Common Terms

Add LDAP

Prerequisites

Steps

Basic Information

Search Settings

LDAP Configuration Examples

LDAP Connector Configuration

User Filter Examples

Group Search Configuration Examples

Examples of AND(&) and OR(|) Operators in LDAP Filters

Synchronize LDAP Users

Procedure of Operation

Relevant Operations

LDAP Management

TOC

Menu ON THIS PAGE

LDAP Management - Alauda Container Platform

LDAP (Lightweight Directory Access Protocol) is a mature, flexible, and well-supported

standard mechanism for interacting with directory servers. It organizes data in a hierarchical

tree structure to store enterprise user and organization information, primarily used for

implementing single sign-on (SSO).

NOTE

LDAP Key Features:

Enables communication between clients and LDAP servers

Supports data storage, retrieval, and search operations

Provides client authentication capabilities

Facilitates integration with other systems

For more information, refer to the LDAP official documentation .

OpenLDAP is an open-source implementation of LDAP. If your organization uses open-source

LDAP for user authentication, you can configure the platform to communicate with the LDAP

service by adding LDAP and configuring relevant parameters.

NOTE

OpenLDAP Integration:

Enables platform authentication for LDAP users

Supports standard LDAP protocols

LDAP Overview

↗

Supported LDAP Types

OpenLDAP

LDAP Management - Alauda Container Platform

https://ldap.com/?spm=a2c4g.11186623.2.12.38e87d4cjSb0uh
https://ldap.com/?spm=a2c4g.11186623.2.12.38e87d4cjSb0uh
https://ldap.com/?spm=a2c4g.11186623.2.12.38e87d4cjSb0uh

Provides flexible user management

For more information about OpenLDAP, refer to the OpenLDAP official documentation .

Active Directory is Microsoft's LDAP-based software for providing directory storage services in

Windows systems. If your organization uses Microsoft Active Directory for user management,

you can configure the platform to communicate with the Active Directory service.

NOTE

Active Directory Integration:

Enables platform authentication for AD users

Supports Windows domain integration

Provides enterprise-level user management

Term Description Example

dc (Domain

Component)
Domain component dc=example,dc=com

ou (Organizational

Unit)
Organizational unit ou=People,dc=example,dc=com

cn (Common Name) Common name cn=admin,dc=example,dc=com

uid (User ID) User ID uid=example

↗

Active Directory

LDAP Terminology

OpenLDAP Common Terms

LDAP Management - Alauda Container Platform

https://www.openldap.org/doc
https://www.openldap.org/doc
https://www.openldap.org/doc

Term Description Example

objectClass (Object

Class)
Object class objectClass=inetOrgPerson

mail (Mail) Mail mail=example@126.com

givenName (Given

Name)
Given name givenName=xq

sn (Surname) Surname sn=ren

objectClass:

groupOfNames
User group objectClass: groupOfNames

member (Member)
Group member

attribute
member=cn=admin,dc=example,dc=com

memberOf
User group

membership attribute
memberOf=cn=users,dc=example,dc=com

Term Description Example

dc (Domain Component)
Domain

component
dc=example,dc=com

ou (Organizational Unit)
Organizational

unit
ou=People,dc=example,dc=com

cn (Common Name)
Common

name
cn=admin,dc=example,dc=com

sAMAccountName/userPrincipalName User identifier
userPrincipalName=example

sAMAccountName=example

objectClass: user
AD user

object class
objectClass=user

mail (Mail) Mail mail=example@126.com

Active Directory Common Terms

LDAP Management - Alauda Container Platform

Term Description Example

displayName Display name displayName=example

givenName (Given Name) Given name givenName=xq

sn (Surname) Surname sn=ren

objectClass: group User group objectClass: group

member (Member)

Group

member

attribute

member=CN=Admin,DC=example

memberOf

User group

membership

attribute

memberOf=CN=Users,DC=exampl

TIP

After successful LDAP integration:

Users can log in to the platform using their enterprise accounts

Multiple additions of the same LDAP will overwrite previously synchronized users

Before adding LDAP, prepare the following information:

LDAP server address

Administrator username

Administrator password

Other required configuration details

Add LDAP

Prerequisites

LDAP Management - Alauda Container Platform

1. In the left navigation bar, click Users > IDPs

2. Click Add LDAP

3. Configure the following parameters:

Parameter Description

Server Address LDAP server access address (e.g., 192.168.156.141:31758)

Username LDAP administrator DN (e.g., cn=admin,dc=example,dc=com)

Password LDAP administrator account password

Login Box Username

Prompt

Prompt message for username input (e.g., "Please enter

your username")

NOTE

Search Settings Purpose:

Matches LDAP user entries based on specified conditions

Extracts key user and group attributes

Maps LDAP attributes to platform user attributes

Parameter Description

Object Type

ObjectClass for users:

- OpenLDAP: inetOrgPerson

- Active Directory: organizationalPerson

- Groups: posixGroup

Steps

Basic Information

Search Settings

LDAP Management - Alauda Container Platform

Parameter Description

Login Field

Attribute used as login username:

- OpenLDAP: mail (email address)

- Active Directory: userPrincipalName

Filter Conditions
LDAP filter conditions for user/group filtering

Example: (&(cn=John*)(givenName=*xq*))

Search Starting Point Base DN for user/group search (e.g., dc=example,dc=org)

Search Scope

Search scope:

- sub : entire directory subtree

- one : one level below starting point

Login Attribute

Unique user identifier:

- OpenLDAP: uid

- Active Directory: distinguishedName

Name Attribute Object name attribute (default: cn)

Email Attribute

Email attribute:

- OpenLDAP: mail

- Active Directory: userPrincipalName

Group Member Attribute Group member identifier (default: uid)

Group Attribute User group relationship attribute (default: memberuid)

4. In the IDP Service Configuration Validation section:

Enter a valid LDAP account username and password

The username must match the Login Field setting

Click to verify the configuration

5. (Optional) Configure LDAP Auto-Sync Policy:

Enable Auto-Sync Users switch

Set synchronization rules

Use online tool to verify CRON expressions↗

LDAP Management - Alauda Container Platform

https://tool.lu/crontab/
https://tool.lu/crontab/
https://tool.lu/crontab/

6. Click Add

NOTE

After adding LDAP:

Users can log in before synchronization

User information syncs automatically on first login

Auto-sync occurs based on configured rules

The following example shows how to configure an LDAP connector:

LDAP Configuration Examples

LDAP Connector Configuration

LDAP Management - Alauda Container Platform

apiVersion: dex.coreos.com/v1

kind: Connector

id: ldap # Connector ID

name: ldap # Connector display name

type: ldap # Connector type is LDAP

metadata:

 name: ldap

 namespace: cpaas-system

spec:

 config:

 # LDAP server address and port

 host: ldap.example.com:636

 # DN and password for the service account used by the connector.

 # This DN is used to search for users and groups.

 bindDN: uid=serviceaccount,cn=users,dc=example,dc=com

 # Service account password, required when creating a connector.

 bindPW: password

 # Login account prompt. For example, username

 usernamePrompt: SSO Username

 # User search configuration

 userSearch:

 # Start searching from the base DN

 baseDN: cn=users,dc=example,dc=com

 # LDAP query statement, used to search for users.

 # For example: "(&(objectClass=person)(uid=<username>))"

 filter: (&(objectClass=organizationalPerson))

 # The following fields are direct mappings of user entry attributes.

 # User ID attribute

 idAttr: uid

 # Required. Attribute to map to email

 emailAttr: mail

 # Required. Attribute to map to username

 nameAttr: cn

 # Login username attribute

 # Filter condition will be converted to "(<attr>=<username>)", such as

(uid=example).

 username: uid

 # Extended attributes

 # phoneAttr: phone

LDAP Management - Alauda Container Platform

 # Group search configuration

 groupSearch:

 # Start searching from the base DN

 baseDN: cn=groups,dc=freeipa,dc=example,dc=com

 # Group filter condition

 # "(&(objectClass=group)(member=<user uid>))".

 filter: "(objectClass=group)"

 # User group matching field

 # Group attribute

 groupAttr: member

 # User group member attribute

 userAttr: uid

 # 组显示名称

 nameAttr: cn

User Filter Examples

LDAP Management - Alauda Container Platform

1. Basic filter: Find all users

(&(objectClass=person))

2. Multiple conditions combination: Find users in a specific department

(&(objectClass=person)(departmentNumber=1000))

3. Find enabled users (Active Directory)

(&(objectClass=user)(!(userAccountControl:1.2.840.113556.1.4.803:=2)))

4. Find users with a specific email domain

(&(objectClass=person)(mail=*@example.com))

5. Find members of specific group

(&(objectClass=person)(memberOf=cn=developers,ou=groups,dc=example,dc=com))

6. Find recently logged in users (Active Directory)

(&(objectClass=user)(lastLogon>=20240101000000.0Z))

7. Exclude system accounts

(&(objectClass=person)(!(uid=admin))(!(uid=system)))

8. Find users with a specific attribute

(&(objectClass=person)(mobile=*))

9. Find users in multiple departments

(&(objectClass=person)(|(ou=IT)(ou=HR)(ou=Finance)))

10. Complex condition combination example

(&

 (objectClass=person)

 (|(department=IT)(department=Engineering))

 (!(title=Intern))

 (manager=cn=John Doe,ou=People,dc=example,dc=com)

)

Group Search Configuration Examples

LDAP Management - Alauda Container Platform

1. Basic filter: Find all groups

(objectClass=groupOfNames)

2. Find groups with a specific prefix

(&(objectClass=groupOfNames)(cn=dev-*))

3. Find non-empty groups

(&(objectClass=groupOfNames)(member=*))

4. Find groups with a specific member

(&(objectClass=groupOfNames)(member=uid=john,ou=People,dc=example,dc=com))

5. Find nested groups (Active Directory)

(&(objectClass=group)(|(groupType=-2147483646)(groupType=-2147483644)))

6. Find groups with a specific description

(&(objectClass=groupOfNames)(description=*admin*))

7. Exclude system groups

(&(objectClass=groupOfNames)(!(cn=system*)))

8. Find groups with specific members

(&(objectClass=groupOfNames)(|(cn=admins)(cn=developers)(cn=operators)))

9. Find groups in a specific OU

(&(objectClass=groupOfNames)(ou=IT))

10. Complex condition combination example

(&

 (objectClass=groupOfNames)

 (|(cn=prod-*)(cn=dev-*))

 (!(cn=deprecated-*))

 (owner=cn=admin,dc=example,dc=com)

)

Examples of AND(&) and OR(|) Operators in LDAP Filters

LDAP Management - Alauda Container Platform

AND operator (&) - All conditions must be met

Syntax: (&(condition1)(condition2)(condition3)...)

Multiple attribute AND example

(&

 (objectClass=person)

 (mail=*@example.com)

 (title=Engineer)

 (manager=*)

)

OR operator (|) - At least one condition must be met

Syntax: (|(condition1)(condition2)(condition3)...)

Multiple attribute OR example

(|

 (department=IT)

 (department=HR)

 (department=Finance)

)

Combining AND and OR

(&

 (objectClass=person)

 (|

 (department=IT)

 (department=R&D)

)

 (employeeType=FullTime)

)

Complex condition combination

(&

 (objectClass=person)

 (|

 (&

 (department=IT)

 (title=*Engineer*)

)

 (&

 (department=R&D)

 (title=*Developer*)

)

)

LDAP Management - Alauda Container Platform

After successfully synchronizing LDAP users to the platform, you can view the synchronized

users in the user list.

You can configure an automatic synchronization policy when adding LDAP (which can be

updated later) or manually trigger synchronization after adding LDAP successfully. Here's how

to manually trigger a synchronization operation.

Notes:

Newly added users in the LDAP integrated with the platform can log in to the platform

before performing the user synchronization operation. Once they successfully log in to the

platform, their information will be automatically synchronized to the platform.

Users deleted from LDAP will have an Invalid status after synchronization.

The default validity period for newly synchronized users is Permanent.

Synchronized users with the same name as existing users (local users, IDP users) are

automatically associated. Their permissions and validity period will be consistent with

existing users. They can log in to the platform using the login method corresponding to their

respective sources.

1. In the left navigation bar, click Users > IDPs.

2. Click the LDAP name that you want to manually synchronize.

3. Click Actions > Sync user in the upper-right corner.

4. Click Sync.

Notes: If you manually close the synchronization prompt dialog, a confirmation dialog will

appear to confirm the closure. After closing the synchronization prompt dialog, the system

)

 (!(status=Inactive))

 (|(manager=*)(isManager=TRUE))

)

Synchronize LDAP Users

Procedure of Operation

LDAP Management - Alauda Container Platform

will continue to synchronize users. If you remain on the user list page, you will receive

synchronization result feedback. If you leave the user list page, you will not receive

synchronization results.

You can click the

on the right in the list page or click Actions in the upper-right corner on the details page to

update or delete LDAP as needed.

Operation Description

Update

LDAP

Update the configuration information of the added LDAP or the LDAP

Auto-Sync Policy.

Note: After updating LDAP, users currently synchronized to the platform

through this LDAP will also be updated. Users removed from LDAP will

become invalid in the platform user list. You can clean up junk data by

executing the operation to clean up invalid users.

Delete

LDAP

After deleting LDAP, all users synchronized to the platform through this

LDAP will have an Invalid status (the binding relationship between users

and roles remains unchanged), and they cannot log in to the platform.

After re-integrating, synchronization needs to be re-executed to activate

users.

Tips: After deleting IDP, if you need to delete users and user groups

synchronized to the platform through LDAP, check the checkbox Clean

IDP Users and User Groups below the prompt box.

Relevant Operations

LDAP Management - Alauda Container Platform

The platform supports the OIDC (OpenID Connect) protocol, enabling platform administrators

to log in using third-party accounts after adding OIDC configuration. Platform administrators

can also update and delete configured OIDC services.

Overview of OIDC

Adding OIDC

Procedure of Operation

Adding OIDC via YAML

Example: Configuring OIDC Connector

Relevant Operations

OIDC (OpenID Connect) is an identity authentication standard protocol based on the OAuth

2.0 protocol. It uses an OAuth 2.0 authorization server to provide user identity authentication

for third-party clients and passes the corresponding identity authentication information to the

client.

OIDC allows all types of clients (including server-side, mobile, and JavaScript clients) to

request and receive authenticated sessions and end-user information. This specification suite

is extensible, allowing participants to use optional features such as identity data encryption,

OpenID Provider discovery, and session management when meaningful. For more

information, refer to the OIDC official documentation .

OIDC Management

TOC

Overview of OIDC

↗

Menu ON THIS PAGE

OIDC Management - Alauda Container Platform

https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/

By adding OIDC, you can use third-party platform accounts to log in to the platform.

Note: After OIDC users successfully log in to the platform, the platform will use the user's

email attribute as the unique identifier. OIDC-supported third-party platform users must have

an email attribute; otherwise, they will not be able to log in to the platform.

1. In the left navigation bar, click Users > IDPs.

2. Click Add OIDC.

3. Configure the Basic Information parameters.

4. Configure the OIDC Server Configuration parameters:

Identity Provider URL: The issuer URL, which is the access address of the OIDC

identity provider.

Client ID: The client identifier for the OIDC client.

Client Secret: The secret key for the OIDC client.

Redirect URI: The callback address after logging in to the third-party platform, which is

the URL of the dex issuer + /callback .

Logout URL: The address visited by the user after performing the Logout operation. If

empty, the logout address will be the platform's initial login page.

5. In the IDP Service Configuration Validation area, enter the Username and Password of

a valid OIDC account to verify the configuration.

Tip: If the username and password are incorrect, an error will be reported during addition,

indicating invalid credentials, and OIDC cannot be added.

6. Click Create.

Adding OIDC

Procedure of Operation

OIDC Management - Alauda Container Platform

In addition to form configuration, the platform also supports adding OIDC through YAML,

which allows for more flexible configuration of authentication parameters, claim mappings,

user group synchronization, and other advanced features.

The following example demonstrates how to configure an OIDC connector for integrating with

OIDC identity authentication services. This configuration example is suitable for the following

scenarios:

1. Need to integrate OIDC as an identity authentication server.

2. Need to support user group information synchronization.

3. Need to customize logout redirect address.

4. Need to configure specific OIDC scopes.

5. Need to customize claim mappings.

Adding OIDC via YAML

Example: Configuring OIDC Connector

OIDC Management - Alauda Container Platform

apiVersion: dex.coreos.com/v1

kind: Connector

Connector basic information

id: oidc # Connector unique identifier

name: oidc # Connector display name

type: oidc # Connector type is OIDC

metadata:

 annotations:

 cpaas.io/description: "11" # Connector description

 name: oidc

 namespace: cpaas-system

spec:

 config:

 # OIDC server configuration

 # Configure server connection information, including server address, client

credentials, and callback address

 issuer: http://auth.com/auth/realms/master # OIDC server address

 clientID: dex # Client ID

 # Service account secret key, valid when creating Connector resources for the first

time

 clientSecret: xxxxxxx

 redirectURI: https://example.com/dex/callback # Callback address, must

match the address registered by the OIDC client

 # Security configuration

 # Configure SSL verification and user information acquisition method

 insecureSkipVerify: true # Whether to skip SSL

verification, it is recommended to set to false in a production environment

 getUserInfo: false # Whether to obtain

additional user information through the UserInfo endpoint

 # Logout configuration

 # Configure the redirect address after user logout

 logoutURL: https://test.com # Logout redirect address, can

be customized to the page jumped after user logout

 # Scope configuration

 # Configure the required authorization scope, ensure that the OIDC server supports

these scopes

 scopes:

 - openid # Required, used for OIDC

basic authentication

 - profile # Optional, used to obtain

OIDC Management - Alauda Container Platform

You can click the

on the right in the list page or click Actions in the upper-right corner on the details page to

update or delete OIDC as needed.

user basic information

 - email # Optional, used to obtain

user email

 # Claim mapping configuration

 # Configure the mapping relationship between OIDC returned claims and platform user

attributes

 claimMapping:

 email: email # Email mapping, used for user

unique identification

 groups: groups # User group mapping, used for

organization structure

 phone: "" # Phone mapping, optional

 preferred_username: preferred_username # Username mapping, used for

display name

 # Custom claimextra configuration

 # External custom fields will be dynamically added to the user object spec.extra

field

 claimExtra:

 - field: xxx # Custom field name

 type: string # Field type value is consistent with the definition of

golang language type. For example: string, int, bool, map[string]string, []string, []int

 # User group configuration

 # Configure user group synchronization related parameters, ensure that the token

contains group information

 groupsKey: groups # Specify the key name of

group information

 insecureEnableGroups: false # Whether to enable group

synchronization function

Relevant Operations

OIDC Management - Alauda Container Platform

Operation Description

Update

OIDC

Update the added OIDC configuration. After updating the OIDC

configuration information, the original users and authentication methods

will be reset and synchronized according to the current configuration.

Delete

OIDC

Delete OIDC that is no longer used by the platform. After deleting OIDC,

all users synchronized to the platform through this OIDC will have an

Invalid status (the binding relationship between users and roles remains

unchanged), and they cannot log in to the platform. After re-integrating,

users can be activated by successfully logging in to the platform.

Tip: After deleting IDP, if you need to delete users and user groups

synchronized to the platform through OIDC, check the checkbox Clean

IDP Users and User Groups below the prompt box.

OIDC Management - Alauda Container Platform

Delete User

Troubleshooting

Problem Description

Solution

Menu

Troubleshooting - Alauda Container Platform

Problem Description

Solution

Clean up deleted IDP users

Clean up deleted local users

Issue: When creating or synchronizing a new user, the system indicates that the user already

exists. How should you handle this?

For security reasons, the platform prevents creating new users (both local and IDP users) with

names that match previously deleted users. This limitation applies to:

Creating new local users with names matching deleted users

Synchronizing IDP users with names matching deleted users

After upgrading to the current version, you may encounter this issue when:

Creating new users with names that match users deleted before the upgrade

Synchronizing new users with names that match users deleted before the upgrade

Delete User

TOC

Problem Description

Solution

Menu ON THIS PAGE

Delete User - Alauda Container Platform

To resolve this issue, you need to clean up the deleted user information by executing specific

scripts on your global cluster control nodes.

Execute the following command on any control node of your global cluster:

Example:

Execute these two scripts in sequence on any control node of your global cluster:

1. Clean up user passwords:

2. Clean up users:

Clean up deleted IDP users

kubectl delete users -l 'auth.cpaas.io/user.connector_id=<IDP

Name>,auth.cpaas.io/user.state=deleted'

kubectl delete users -l

'auth.cpaas.io/user.connector_id=github,auth.cpaas.io/user.state=deleted'

Clean up deleted local users

kubectl get users -l

'auth.cpaas.io/user.connector_id=local,auth.cpaas.io/user.state=deleted' | awk '{print

$1}' | xargs kubectl delete password -n cpaas-system

kubectl delete users -l

'auth.cpaas.io/user.connector_id=local,auth.cpaas.io/user.state=deleted'

Delete User - Alauda Container Platform

Introduction

User Policy

Overview

Configure Security Policy

Available Policies

Menu

User Policy - Alauda Container Platform

The platform provides comprehensive user security policies to enhance login security and

protect against malicious attacks.

Overview

Configure Security Policy

Steps

Available Policies

The platform supports the following security policies:

Password security management

User account disablement

User account locking

User notifications

Access control

Introduction

TOC

Overview

Configure Security Policy

Menu ON THIS PAGE

Introduction - Alauda Container Platform

1. In the left navigation bar, click User Role Management > User Security Policy

2. Click Update in the top right corner

3. Configure the security policies as needed

4. Click Update to save changes

WARNING

Policy Configuration Notes:

Check the box before a policy to enable it

Uncheck the box to disable a policy

Disabled policies retain their configuration data

Previous settings are restored when re-enabling a policy

Policy Description

User Authentication

Policy

Enables dual authentication for password-based login:

- Users receive verification codes via specified notification

methods

- Supports various notification servers (e.g., Enterprise

Communication Tool Server)

Password Security

Policy

Manages password requirements:

First Login:

- Forces password change on first platform login

Regular Updates:

- Requires password change after specified period (e.g., 90

Steps

Available Policies

Introduction - Alauda Container Platform

Policy Description

days)

- Prevents login until password is updated

User Disablement

Policy

Automatically disables inactive accounts:

- Triggers after specified period of no login

User Locking Policy

Protects against brute force attacks:

Lock Conditions:

- Triggers after specified number of failed login attempts

within 24 hours

Lock Duration:

- Account remains locked for specified minutes

- Automatically unlocks after lock period expires

Notification Policy
Manages user notifications:

- Sends initial password via email after user creation

Access Control

Manages user sessions and access:

Session Management:

- Auto-logs out inactive sessions after specified time

- Limits maximum concurrent online users

Browser Control:

- Ends session when all product tabs are closed

- Prevents multiple logins from same client

:::note

Important Notes:

- Access Control only affects new logins after policy update

- Browser tab restoration may not trigger session end

- Only last login is allowed per client when preventing

repeated login

:::

Introduction - Alauda Container Platform

Introduction

Introduction

Guides

Create Project

Manage Project Quotas

Multitenancy(Project)

Project

Namespaces

Relationship Between Clusters, Projects, and Namespaces

Procedure

What is ProjectQuota?

How it works

When to use ProjectQuota

Quota keys and units

Allocation strategy tips

Best practices and FAQs

Menu

Multitenancy(Project) - Alauda Container Platform

Manage Project

Manage Project Cluster

Manage Project Members

Update Basic Project Information

Delete Project

Introduction

Add a Cluster

Remove a Cluster

Import Members

Remove Members

Multitenancy(Project) - Alauda Container Platform

Project

Namespaces

Relationship Between Clusters, Projects, and Namespaces

A project is a resource isolation unit that enables multi-tenant usage scenarios in enterprises.

It divides resources from one or more clusters into isolated environments, ensuring both

resource and personnel isolation. Projects can represent different subsidiaries, departments,

or project teams within an enterprise. Through project management, you can achieve:

Resource isolation between project teams

Quota management within tenants

Efficient resource allocation and control

Namespaces are smaller, mutually isolated resource spaces within a project. They serve as

workspaces for users to implement their production workloads. Key characteristics of

namespaces include:

Multiple namespaces can be created under a project

Introduction

TOC

Project

Namespaces

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Total resource quota of all namespaces cannot exceed the project quota

Resource quotas are allocated more granularly at the namespace level

Container sizes (CPU, memory) are limited at the namespace level

Improved resource utilization through fine-grained control

The platform's resource hierarchy follows these rules:

A project can utilize resources (CPU, memory, storage) from multiple clusters, and a cluster

can allocate resources to multiple projects.

Multiple namespaces can be created under a project, with their combined resource quotas

not exceeding the total project resources.

A namespace's resource quota must come from a single cluster, and a namespace can

only belong to one project.

Relationship Between Clusters, Projects, and
Namespaces

Introduction - Alauda Container Platform

Create Project

Manage Project Quotas

Manage Project

Manage Project Cluster

Guides

Procedure

What is ProjectQuota?

How it works

When to use ProjectQuota

Quota keys and units

Allocation strategy tips

Best practices and FAQs

Update Basic Project Information

Delete Project

Introduction

Add a Cluster

Remove a Cluster

Menu

Guides - Alauda Container Platform

Manage Project Members
Import Members

Remove Members

Guides - Alauda Container Platform

Before your project team starts working, you can create a project based on the existing cluster

resources on the platform. The project will be isolated from other projects (tenants) in terms of

both resources and personnel. When creating a project, you can allocate resources according

to your project scale and actual business needs. The project can utilize resources from

multiple clusters on the platform.

WARNING

When creating a project, the platform will automatically create a namespace with the same name

as the project in the associated clusters to isolate platform-level resources. Please do not modify

this namespace or its resources.

Procedure

1. In the Project Management view, click Create Project.

2. On the Basic information page, configure the following parameters:

Parameter Description

Name The name of the project, which cannot be the same as an existing

project name or any name in the project name blacklist. Otherwise, the

project cannot be created.

Create Project

TOC

Procedure

Menu ON THIS PAGE

Create Project - Alauda Container Platform

Parameter Description

Note: The project name blacklist includes special namespace names

under platform clusters: cpaas-system , cert-manager , default ,

global-credentials , kube-ovn , kube-public , kube-system , nsx-

system , alauda-system , kube-federation-system , ALL-ALL , and true .

Cluster

The cluster(s) associated with the project, where the administrator can

allocate resource quotas. Click the drop-down selection box to select

one or more clusters.

Note: Clusters in abnormal state cannot be selected.

3. Click Next and in the project quota setting step, read Manage Resource Quotas to set the

resource quotas to be allocated to the current project for the selected clusters.

4. Click Create Project.

Create Project - Alauda Container Platform

This guide explains how ACP extends Kubernetes ResourceQuota with a project-level

aggregate quota (ProjectQuota). ProjectQuota lets you cap the sum of ResourceQuotas

across all namespaces in a project, so you can plan and govern capacity at the project level

while still delegating limits to individual namespaces.

What is ProjectQuota?

How it works

When to use ProjectQuota

Quota keys and units

Allocation strategy tips

Best practices and FAQs

ResourceQuota (Kubernetes native) limits resources per namespace (CPU, memory,

object counts, etc.). For concepts, keys, and usage, please refer to:

Resource Quotas

ProjectQuota defines a project-wide upper bound: the total of all namespace

ResourceQuotas within the project must not exceed the project's hard limits for the same

keys.

In short: ResourceQuota caps a single namespace; ProjectQuota caps the sum across all

namespaces in a project.

Manage Project Quotas

TOC

What is ProjectQuota?

Menu ON THIS PAGE

Manage Project Quotas - Alauda Container Platform

http://localhost:4173/container_platform/developer/building_application/namespace/resource_quota.html

Workflow order: define or adjust the ProjectQuota first, then allocate per-namespace

ResourceQuotas within that project budget.

Scope: ProjectQuota applies to a platform project and governs all namespaces that belong

to it.

Aggregate enforcement at admission time:

When creating or updating a namespace's ResourceQuota, the platform computes the

aggregate for the same keys (for example, limits.cpu , requests.memory , pods) across

all namespaces in the project, including the incoming change.

The request is allowed only if the new aggregate remains less than or equal to the

corresponding ProjectQuota hard limits. Otherwise, the change is rejected with an

explanatory error.

Execution model:

ProjectQuota constrains what can be allocated via namespace ResourceQuotas (pre-

allocation), not the instantaneous runtime usage. Actual consumption remains governed

by each namespace's ResourceQuota and the scheduler.

Budget/capacity governance per project: allocate a fixed CPU/memory/object budget, then

subdivide across namespaces.

Multi-team or multi-environment projects (for example, dev / staging / prod) that share a

common upper bound.

Preventing quota drift: keep a single "big bucket" at the project layer so namespace quotas

do not silently inflate over time.

How it works

When to use ProjectQuota

Manage Project Quotas - Alauda Container Platform

ProjectQuota supports the same common keys as ResourceQuota (non-exhaustive):

Compute and memory: limits.cpu , limits.memory , requests.cpu , requests.memory

Workload/object counts: pods , services , configmaps , secrets , pvc , and more

Units and counting rules:

CPU uses cores (for example, 2 , 500m)

Memory uses bytes (for example, 8Gi)

Object-style keys use integer counts

If the sum of the corresponding keys across all namespaces approaches or exceeds the

ProjectQuota hard limit, ACP blocks further ResourceQuota creation or expansion for that key.

Define the project "big bucket" first (ProjectQuota), then split it into per-namespace

ResourceQuotas for teams/environments.

Keep 10% - 30% headroom for spikes and elastic scaling.

Review regularly: reclaim underused quota and reassign; raise consistently constrained

namespaces, and adjust the project cap accordingly.

Q: Increasing a namespace's limits.memory fails with an error about exceeding project

quota. Why?

A: The project's ProjectQuota hard limit for that key would be exceeded by the

requested change. Reduce other namespaces' quotas, or raise the project cap first and

Quota keys and units

Allocation strategy tips

Best practices and FAQs

Manage Project Quotas - Alauda Container Platform

then retry the namespace change.

Q: I raised the ProjectQuota, but workloads still won't schedule.

A: Ensure each namespace's ResourceQuota is also increased appropriately and verify

underlying cluster/node capacity.

Recommendation: Manage ProjectQuota as part of your normal change control, aligned

with capacity planning (nodes/storage) and budget management.

Manage Project Quotas - Alauda Container Platform

This guide explains how to update basic information and project quotas for a specified project,

or delete the project.

Update Basic Project Information

Procedure

Delete Project

Procedure

Update basic information for a specified project, such as display name and description.

1. In the Project Management view, click on the project name to be updated.

2. In the left navigation pane, click Details.

3. Click Actions > Update Basics in the upper right corner.

4. Modify or enter the Display name and Description.

5. Click Update.

Manage Project

TOC

Update Basic Project Information

Procedure

Menu ON THIS PAGE

Manage Project - Alauda Container Platform

Delete projects that are no longer in use.

WARNING

After the project is deleted, the resources occupied by the project in the cluster will be released.

1. In the Project Management view, click on the project name to be deleted.

2. In the left navigation bar, click Details.

3. Click Actions > Delete Project in the upper right corner.

4. Enter the name of the project and click Delete.

Delete Project

Procedure

Manage Project - Alauda Container Platform

This guide explains how to manage cluster associations for a project. You can add clusters to

allocate their resources to the project, or remove clusters to reclaim the allocated resources.

Introduction

Add a Cluster

Procedure

Remove a Cluster

Procedure

You can add clusters to a project to allocate their resources, or remove clusters to reclaim the

allocated resources. This functionality is useful in the following scenarios:

When project resources are insufficient for business operations

When a newly created or added cluster needs to be allocated to an existing project

When cluster resources need to be reclaimed from a project

When a specific project needs exclusive access to a cluster

Manage Project Cluster

TOC

Introduction

Add a Cluster

Menu ON THIS PAGE

Manage Project Cluster - Alauda Container Platform

Add a cluster to a project and set its resource quota.

1. In the Project Management view, click on the project name where you want to add the

cluster.

2. In the left navigation bar, click Details.

3. Click Actions > Add Cluster in the upper right corner.

4. Select the cluster and set the resource quota to be allocated to the current project. The

following resources can be configured:

CPU (cores)

Memory (Gi)

Storage (Gi)

PVC count (number)

Pods (number)

vGPU (virtual GPU)/MPS/pGPU (physical GPU, cores)

Video memory quota

NOTE

GPU resource quota can only be configured when GPU plugins are deployed in the cluster.

When GPU resources are GPU-Manager or MPS GPU, vMemory quota can also be

configured.

GPU Units: 100 units of virtual cores are equivalent to 1 physical core (1 pGPU = 1 core = 100

GPU-Manager core = 100 MPS core), and pGPU units can only be allocated in whole numbers.

GPU-Manager 1 unit of memory is equal to 256 Mi, MPS GPU 1 unit of memory is equal to 1 Gi,

and 1024 Mi = 1 Gi.

If no quota is set for a certain type of resource, it defaults to Unlimited. This means that the

project can use the available resources of the corresponding type in the cluster as needed,

without a maximum limit.

Procedure

Manage Project Cluster - Alauda Container Platform

The value of the project quota set should be within the quota range displayed on the page.

Under each resource quota input box, the allocated quota and total amount of that resource will

be displayed for reference.

1. Click Add.

Remove a cluster associated with a project.

WARNING

After removing a cluster, the project cannot use the business resources under the removed

cluster.

When the cluster to be removed is abnormal, the resources under the abnormal cluster cannot

be cleaned up. It is recommended to fix the cluster before removing it.

1. In the Project Management view, click on the project name where you want to remove the

cluster.

2. In the left navigation bar, click Details.

3. Click Actions > Remove Cluster in the upper right corner.

4. In the pop-up Remove Cluster dialog box, enter the name of the cluster to be removed,

and then click the Remove button to successfully remove the cluster.

Remove a Cluster

Procedure

Manage Project Cluster - Alauda Container Platform

This guide explains how to manage project members, including importing members and

assigning project-related roles.

Import Members

Constraints and Limitations

Procedure

Import from Member List

Import OIDC Users

Remove Members

Procedure

You can grant users operation permissions for the project and its namespaces by importing

existing platform users or adding OIDC users. You can assign roles such as project

administrators, namespace administrators, developers, or custom roles with project and

namespace management permissions.

When no OIDC IDP is configured on the platform:

Only existing platform users can be imported as project members, including:

Manage Project Members

TOC

Import Members

Constraints and Limitations

Menu ON THIS PAGE

Manage Project Members - Alauda Container Platform

OIDC users who have successfully logged in

Users synchronized through LDAP

Local users

Users added to other projects as OIDC users (with source marked as -)

When an OIDC IDP is configured:

You can add valid OIDC accounts that meet the input requirements

Account validity cannot be verified during addition

Ensure the account is valid, or it won't be able to log in normally

System default administrator users and the currently logged-in user cannot be imported

1. In the Project Management view, click on the project name to be managed.

2. In the left navigation bar, click Members.

3. Click Import Member.

4. Choose either Member List or OIDC Users.

You can import either all users or selected users from the member list.

TIP

Use the user group dropdown menu in the upper right corner and the search box to filter users by

username.

To import all users:

1. Select Member List.

2. Click the Bind dropdown menu and select the role to assign to all users.

If the role requires a namespace, select it from the Namespaces dropdown menu.

Procedure

Import from Member List

Manage Project Members - Alauda Container Platform

3. Click Import All.

To import specific users:

1. Select Member List.

2. Select one or more users using the checkboxes.

3. Click the Bind dropdown menu and select the role to assign to the selected users.

If the role requires a namespace, select it from the Namespaces dropdown menu.

4. Click Import.

1. Select OIDC Users.

2. Click Add to create a member record (repeat for multiple members).

3. Enter the OIDC-authenticated username in the Name field.

WARNING

Ensure the username corresponds to an account that can be authenticated by the configured OIDC

system, or login will fail.

4. Select the role from the Roles dropdown menu.

If the role requires a namespace, select it from the Namespaces dropdown menu.

5. Click Import.

After successful import, you can view:

The member in the project member list

The user in Platform Management > Users

Source shows as "-" until first login/sync

Source updates after successful login/sync

Import OIDC Users

Manage Project Members - Alauda Container Platform

Remove a project member to revoke their permissions.

1. In the Project Management view, click on the project name.

2. In the left navigation bar, click Members.

TIP

Use the dropdown list next to the search box to filter members by Name, Display name, or User

Group.

3. Click Remove next to the member you want to remove.

4. Confirm removal in the prompt dialog.

Remove Members

Procedure

Manage Project Members - Alauda Container Platform

Introduction

Audit

Prerequisites

Procedure

Search Results

Menu

Audit - Alauda Container Platform

The platform's auditing function provides time-ordered operation records related to users and

system security. This helps you analyze specific issues and quickly resolve problems that

occur in clusters, custom applications, and other areas.

Through auditing, you can track various changes in the Kubernetes cluster, including:

What changes occurred in the cluster during a specific time period

Who performed these changes (system components or users)

Details of important change events (e.g., POD parameter updates)

Event outcomes (success or failure)

Operator location (internal or external to the cluster)

User operation records (updates, deletions, management operations) and their results

Prerequisites

Procedure

Search Results

Your account must have platform management or platform auditing permissions.

Introduction

TOC

Prerequisites

Menu ON THIS PAGE

Introduction - Alauda Container Platform

1. In the left navigation bar, click Auditing.

2. Select the auditing scope from the tabs:

User Operations: View operation records of users who have logged in to the platform

System Operations: View system operation records (operators start with system:)

3. Configure query conditions to filter auditing events:

Query
Condition

Description

Operator Username or system account name of the operator (default: All)

Actions
Type of operation (create, update, delete, manage, rollback, stop,

etc., default: All)

Clusters Cluster containing the operated resource (default: All)

Resource

Type
Type of the operated resource (default: All)

Resource

Name
Name of the operated resource (supports fuzzy search)

4. Click Search.

TIP

Use the Time Range dropdown to set the audit time range (default: Last 30 Minutes). You can

select a preset range or customize one.

Click the refresh icon to update search results.

Click the export icon to download results as a .csv file.

Procedure

Introduction - Alauda Container Platform

The search results display the following information:

Parameter Description

Operator Username or system account name of the operator

Actions
Type of operation (create, update, delete, manage, rollback, stop,

etc.)

Resource

Name/Type
Name and type of the operated resource

Clusters Cluster containing the operated resource

Namespaces Namespace containing the operated resource

Client IP IP address of the client used to execute the operation

Operation Result
Operation outcome based on API return code (2xx = success,

other = failure)

Operation Time Timestamp of the operation

Details
Click the Details button to view the complete audit record in

JSON format in the Audit Details dialog box

Search Results

Introduction - Alauda Container Platform

Install

Telemetry

Prerequisites

Installation Steps

Enable Online Operations

Uninstallation Steps

Menu

Telemetry - Alauda Container Platform

ACP Telemetry is a platform service that collects telemetry data from clusters for online

operations and maintenance. It collects system metrics and uploads them to Alauda Cloud for

monitoring and analysis.

Prerequisites

Installation Steps

Enable Online Operations

Uninstallation Steps

Before installation, ensure that:

The Alauda Container Platform has a valid license

The global cluster has internet access

1. Navigate to Administrator

2. In the left navigation bar, click Marketplace > Cluster Plugins

3. Select the global cluster in the top navigation bar

Install

TOC

Prerequisites

Installation Steps

Menu ON THIS PAGE

Install - Alauda Container Platform

4. Search for ACP Telemetry and click to view its details

5. Click Install to deploy the plugin

1. In the left navigation bar, click System Settings > Platform Maintenance

2. Click the On button for Online Operations

1. Follow steps 1-4 from the installation process to locate the plugin

2. Click Uninstall to remove the plugin

Enable Online Operations

Uninstallation Steps

Install - Alauda Container Platform

Automated Kubernetes Certificate Rotation

cert-manager

OLM Certificates

Certificate Monitoring

Certificates

Menu

Certificates - Alauda Container Platform

This guide helps you install, understand, and operate the Kubernetes Certificate Rotator in

ACP to automate the rotation of Kubernetes certificates within your clusters.

Installation

How it works

Rotation Process

Operation Considerations

See Cluster Plugin for installation instructions.

Note:

Currently supported:

On-Premises clusters

DCS clusters

This plugin handles automatic rotation for the following certificates.

Automated Kubernetes Certificate Rotation

TOC

Installation

How it works

Menu ON THIS PAGE

Automated Kubernetes Certificate Rotation - Alauda Container Platform

http://localhost:4173/container_platform/extend/cluster_plugin.html

Certificate file Function Node Type

apiserver.crt Server certificate for kube-apiserver
Control

Plane Node

apiserver-etcd-client.crt
Client certificate for kube-apiserver

to access etcd

Control

Plane Node

apiserver-kubelet-client.crt
Client certificate for kube-apiserver

to access kubelet

Control

Plane Node

front-proxy-client.crt
Client certificate for kube-apiserver

to access aggregated API servers

Control

Plane Node

etcd/server.crt Server certificate for etcd
Control

Plane Node

etcd/peer.crt
Peer communication certificate

between etcd members

Control

Plane Node

/root/.kube/config, admin.conf,

super-admin.conf

Client certificate in kubeconfig for

cluster administration

Control

Plane Node

controller-manager.conf
Client certificate in kubeconfig for

kube-controller-manager

Control

Plane Node

scheduler.conf
Client certificate in kubeconfig for

kube-scheduler

Control

Plane Node

kubelet.crt Server certificate for kubelet All Nodes

kubelet-client-current.pem
Client certificate for kubelet

(referenced by kubelet.conf)
All Nodes

1. Load certificate information

The initial step involves gathering metadata for all target certificates. Since these

certificates are stored in different paths on the host, their contents must be read from the

respective files. To achieve this, a temporary Pod is created on the target node with the

Rotation Process

Automated Kubernetes Certificate Rotation - Alauda Container Platform

certificate directories mounted, allowing the Pod to read the information. The certificate's

information is collected once per day. Certificate details (paths, expiration) are maintained

in the ConfigMap cpaas-system/node-local-certs-<node-name> . The encrypted CA certificate

is stored in Secret cpaas-system/kubernetes-ca .

2. Rotation Trigger Condition

The notBefore and notAfter fields of the certificate indicate the validity period. Rotation is

triggered if the remaining validity period is less than 20% or 30 days.

3. Rotation queue

Certificates requiring rotation are placed in a queue for processing. The rotation program

evaluates recent rotation activities and the urgency of pending tasks to decide whether to

process them immediately. This prevents potential cluster health issues caused by the

simultaneous rotation of multiple certificates.

4. Generate new certificates

The rotation program generates new certificates based on internally stored CA information.

The rotation process creates a temporary Pod on the target node with the necessary

certificate directories mounted, allowing for controlled file modifications.

5. Restart the components

Requiring restart:

kube-apiserver : It needs to be restarted to load the new certificates. During restart, it

regenerates its internal loopback certificate (valid for one year, used only internally and

can not be externally rotated).

kube-controller-manager : It needs to be restarted to reload the kubeconfig file.

kube-scheduler : It needs to be restarted to reload the kubeconfig file.

kubelet : It needs to be restarted to reload the server certificate.

Restart method: Add annotations to the respective static Pods' YAML files to trigger the

kubelet to recreate the Pods. To restart kubelet, mount the host filesystem with hostPID is

true and run "systemctl restart kubelet" in the container.

Auto-reloading:

Etcd can auto-reload the certificates.

Automated Kubernetes Certificate Rotation - Alauda Container Platform

6. Rotation Timelines

kubelet certificates: Rotate at 61 days (91-day validity)

Control plane certificates: Rotate at 292 days (365-day validity)

If kubelet is in an abnormal state during the rotation window and cannot rotate certificates

automatically, manual rotation is required:

Operators must manually renew the certificates.

Run the following commands to renew the certificates manually:

For example to renew the kubelet.crt :

To download and prepare the cert-renew tool, run:

Optionally, download renew-all.sh to renew all certificates on the node:

Operation Considerations

cert-renew --ca-cert <ca-cert-path> --ca-key <ca-key-path> --days <days> <certificate or

kubeconfig 1> <certificate or kubeconfig 2> ...

cert-renew --ca-cert /etc/kubernetes/pki/ca.crt --ca-key /etc/kubernetes/pki/ca.key --

days 91 /etc/kubernetes/pki/kubelet.crt

curl "$(kubectl get services -n cpaas-system frontend -o

jsonpath='{.spec.clusterIP}'):8080/cluster-cert-rotator/download/cert-renew" -o ./cert-

renew && chmod +x ./cert-renew

curl "$(kubectl get services -n cpaas-system frontend -o

jsonpath='{.spec.clusterIP}'):8080/cluster-cert-rotator/download/renew-all.sh" -o

./renew-all.sh

Automated Kubernetes Certificate Rotation - Alauda Container Platform

Each cluster will automatically deploy Certificate for cert-manager

cert-manager is a native Kubernetes certificate management controller that automatically

generates and manages TLS certificates based on Certificate resources. Many components

in Kubernetes clusters use cert-manager to manage their TLS certificates, ensuring secure

communication.

Overview

How it works

Identifying cert-manager Managed Certificates

Common Labels and Annotations

Related Resources

Cert-manager manages the lifecycle of certificates through Kubernetes Custom Resource

Definitions (CRDs):

Certificate: Defines the certificates that need to be managed

Issuer/ClusterIssuer: Defines certificate issuers

CertificateRequest: Internal resource for processing certificate requests

cert-manager

TOC

Overview

Menu ON THIS PAGE

cert-manager - Alauda Container Platform

When a Certificate resource is created, cert-manager automatically:

1. Generates private keys and certificate signing requests

2. Obtains signed certificates from the specified Issuer

3. Stores certificates and private keys in Kubernetes Secrets

Additionally, cert-manager monitors the validity period of certificates and renews them before

they expire to ensure continuous service availability.

Certificates managed by cert-manager have corresponding Secret resources with type

kubernetes.io/tls and specific labels and annotations.

Secret resources managed by cert-manager typically contain the following labels and

annotations:

Labels:

controller.cert-manager.io/fao: "true" : Identifies that this Secret is managed by cert-

manager and enables filtered Secret caching by the controller.

Annotations:

cert-manager.io/certificate-name : Certificate name

cert-manager.io/common-name : Common name of the certificate

cert-manager.io/alt-names : Alternative names of the certificate

cert-manager.io/ip-sans : IP addresses of the certificate

cert-manager.io/issuer-kind : Type of certificate issuer

How it works

Identifying cert-manager Managed Certificates

Common Labels and Annotations

cert-manager - Alauda Container Platform

cert-manager.io/issuer-name : Name of certificate issuer

cert-manager.io/issuer-group : API group of the issuer

cert-manager.io/uri-sans : URI Subject Alternative Names

cert-manager Official Documentation

Related Resources

↗

cert-manager - Alauda Container Platform

https://cert-manager.io/docs/
https://cert-manager.io/docs/
https://cert-manager.io/docs/

All certificates for Operator Lifecycle Manager (OLM) components — including olm-

operator , catalog-operator , packageserver , and marketplace-operator — are automatically

managed by the system.

When installing Operators that define webhooks or API services in their

ClusterServiceVersion (CSV) object, OLM automatically generates and rotates the required

certificates.

OLM Certificates

Menu

OLM Certificates - Alauda Container Platform

Cluster Enhancer provides monitoring capabilities for certificates used in Kubernetes

clusters. The monitoring scope includes:

1. Kubernetes component certificates, including control plane and kubelet server/client

certificates (including kubeconfig client certificates)

2. Certificates of components running in the cluster, implemented by inspecting all

Secrets with type kubernetes.io/tls

3. Server certificates actually used by kube-apiserver (including internal loopback

certificates for self-access) by accessing the kubernetes Endpoints

Users can find and install Cluster Enhancer in the Administrator view by navigating to

Marketplace > Cluster Plugins in the left navigation.

Certificate Status Monitoring

Built-in Alert Rules

Kubernetes Certificate Alerts

Platform Components Certificate Alerts

The expiration status of certificates can be viewed through the metric

certificate_expires_status . The expiration time of certificates can be viewed through the

metric certificate_expires_time .

Certificate Monitoring

TOC

Certificate Status Monitoring

Menu ON THIS PAGE

Certificate Monitoring - Alauda Container Platform

The current certificate status and expiration time can be viewed in the Certificate Status sub-

tab. To access this sub-tab, go to the Administrator view, navigate to Clusters > Clusters,

select a specific cluster, then go to the Monitoring tab.

Cluster Enhancer provides built-in alert rules cpaas-certificates-rule with the following

alerts:

Rule Level

The expiration time of the kubernetes certificate is about to expire (less than

30 days) <= 30d and last 1 minutes
Medium

The expiration time of the kubernetes certificate is about to expire (less than

10 days) <= 10d and last 1 minutes
High

Kubernetes certificate has expired <= 0d and last 1 minutes Critical

Rule Level

The expiration time of the platform components certificate is about to expire

(less than 30 days) <= 30d and last 1 minutes
Medium

The expiration time of the platform components certificate is about to expire

(less than 10 days) <= 10d and last 1 minutes
High

Platform components certificate has expired <= 0d and last 1 minutes Critical

Built-in Alert Rules

Kubernetes Certificate Alerts

Platform Components Certificate Alerts

Certificate Monitoring - Alauda Container Platform

	Security
	Alauda Container Security
	Security and Compliance
	Compliance
	Introduction
	Install Alauda Container Platform Compliance with Kyverno
	TOC
	Install via console
	Install via YAML
	1. Check available versions
	2. Create a ModuleInfo

	Uninstallation Procedures

	HowTo
	Private Registry Access Configuration
	TOC
	Why Does Kyverno Need Registry Access?
	Quick Start
	1. Create Registry Secret
	2. Configure Kyverno to Use the Secret (Recommended)
	3. Kyverno Deployment Configuration

	Image Signature Verification Policy
	TOC
	What is Image Signature Verification?
	Quick Start
	1. Generate Keys
	2. Sign Images
	3. Create Basic Verification Policy
	4. Test It

	Common Use Cases
	Scenario 1: Multiple Teams Need to Sign Critical Images
	Scenario 2: Different Rules for Different Environments
	Scenario 3: Using Certificates Instead of Keys

	Image Signature Verification Policy with Secrets
	TOC
	Why Use Secrets for Public Keys?
	Quick Start
	1. Generate and Store Keys in Secret
	2. RBAC Configuration for Keyverno
	3. Create Policy Using Secret Reference
	4. Test the Configuration

	Secret Creation Methods
	Method 1: From File
	Method 2: From Literal String
	Method 3: From YAML Manifest

	Common Use Cases
	Scenario 1: Single Team with One Secret
	Scenario 2: Multi-Team with Different Secrets
	Scenario 3: Critical Images Requiring Multiple Signatures
	Scenario 4: Offline Environment with Secrets

	Image Registry Validation Policy
	TOC
	What is Image Registry Validation?
	Quick Start
	1. Block All Except Company Registry
	2. Test It

	Common Scenarios
	Scenario 1: Allow Multiple Trusted Registries
	Scenario 2: Different Rules for Different Environments
	Scenario 3: Block Specific Risky Registries
	Scenario 4: Team-Specific Registry Access

	Advanced Patterns
	Using Wildcards Effectively

	Best Practices
	Start with Warnings
	Exclude System Namespaces
	Common Issues

	Container Escape Prevention Policy
	TOC
	What is Container Escape Prevention?
	Quick Start
	1. Block Privileged Containers
	2. Test the Policy

	Core Container Escape Prevention Policies
	Policy 1: Disallow Host Namespace Access
	Policy 2: Disallow Host Path Mounts
	Policy 3: Disallow Host Ports
	Policy 4: Disallow Dangerous Capabilities
	Policy 5: Require Non-Root Containers

	Advanced Scenarios
	Scenario 1: Environment-Specific Policies
	Scenario 2: Workload-Specific Exceptions

	Testing and Validation
	Test Privileged Container
	Test Host Namespace Access
	Test Host Path Mount
	Test Valid Secure Container

	Best Practices
	1. Start with Audit Mode
	2. Exclude System Namespaces

	Security Context Enforcement Policy
	TOC
	What is Security Context Enforcement?
	Quick Start
	1. Require Non-Root Containers Policy
	2. Test the Policy

	Core Security Context Policies
	Policy 1: Disallow Privilege Escalation
	Policy 2: Require Specific User ID Range
	Policy 3: Require Non-Root Groups
	Policy 4: Restrict Seccomp Profiles
	Policy 5: Require Dropping ALL Capabilities
	Policy 6: Restrict AppArmor Profiles

	Advanced Scenarios
	Scenario 1: Environment-Specific Security Contexts
	Scenario 2: Application-Specific Security Contexts
	Scenario 3: Graduated Security Context Enforcement

	Testing and Validation
	Test Root Container (Should Fail)
	Test Privilege Escalation (Should Fail)
	Test Missing Capabilities Drop (Should Fail)
	Test Valid Secure Container (Should Pass)

	Network Security Policy
	TOC
	What is Network Security?
	Quick Start
	1. Disallow Host Network Access
	2. Test the Policy

	Core Network Security Policies
	Policy 1: Disallow Host Ports
	Policy 2: Restrict Host Port Range
	Policy 3: Require Network Policies
	Policy 4: Restrict Service Types
	Policy 5: Control Ingress Configurations
	Policy 6: Restrict DNS Configuration

	Advanced Scenarios
	Scenario 1: Environment-Specific Network Policies
	Scenario 2: Application-Specific Network Policies
	Scenario 3: Network Segmentation Enforcement

	Testing and Validation
	Test Host Network Access (Should Fail)
	Test Host Port Binding (Should Fail)
	Test NodePort Service (Should Fail)
	Test Valid Network Configuration (Should Pass)

	Volume Security Policy
	TOC
	What is Volume Security?
	Quick Start
	1. Restrict Volume Types
	2. Test the Policy

	Core Volume Security Policies
	Policy 1: Disallow HostPath Volumes
	Policy 2: Restrict HostPath Volumes (Controlled Access)
	Policy 3: Disallow Privileged Volume Types
	Policy 4: Require Read-Only Root Filesystem
	Policy 5: Control Volume Mount Permissions

	Advanced Scenarios
	Scenario 1: Environment-Specific Volume Policies
	Scenario 2: Application-Specific Volume Policies
	Scenario 3: Volume Size and Resource Limits

	Testing and Validation
	Test HostPath Volume (Should Fail)

	API Refiner
	Introduction
	TOC
	Product Introduction
	Limitations

	Install Alauda Container Platform API Refiner
	TOC
	Install via console
	Install via YAML
	1. Check available versions
	2. Create a ModuleInfo

	Uninstallation Procedures
	Default Configuration
	Filtered Resources
	Field Desensitization

	About Alauda Container Platform Compliance Service
	Users and Roles
	User
	Introduction
	TOC
	User Sources
	Local Users
	Third-Party Users
	LDAP Users
	OIDC Users
	Other Third-Party Users

	User Management Rules
	User Lifecycle

	Guides
	Manage User Roles
	TOC
	Add Roles
	Steps

	Remove Roles
	Steps

	Create User
	TOC
	Steps

	User Management
	TOC
	Reset Local User Password
	Steps

	Update User Expiry Date
	Steps

	Activate User
	Steps

	Disable User
	Steps

	Add User to Local User Group
	Steps

	Delete User
	Steps

	Batch Operations
	Steps

	Group
	Introduction
	TOC
	Group Introduction
	Group Types
	Local User Group
	IDP-Synchronized User Group

	Guides
	Manage User Group Roles
	TOC
	Add Role to Group
	Steps

	Remove Role from Group
	Steps

	Create Local User Group
	TOC
	Create User Group
	Steps

	Manage User Groups

	Manage Local User Group Membership
	TOC
	Prerequisites
	Import Members
	Steps

	Remove Members
	Steps

	Role
	Introduction
	TOC
	Role Introduction
	System Roles
	Custom Roles

	Guides
	Create Role
	TOC
	Basic Information Configuration
	Role Type

	View Configuration
	Permission Configuration

	Manage Custom Roles
	TOC
	Update Basic Information
	Steps

	Update Role Permissions
	Steps

	Copy Existing Role
	Steps

	Delete Custom Role
	Steps

	IDP
	Introduction
	TOC
	Overview
	Supported Integration Methods
	LDAP Integration
	OIDC Integration

	Guides
	LDAP Management
	TOC
	LDAP Overview
	Supported LDAP Types
	OpenLDAP
	Active Directory

	LDAP Terminology
	OpenLDAP Common Terms
	Active Directory Common Terms

	Add LDAP
	Prerequisites
	Steps
	Basic Information
	Search Settings

	LDAP Configuration Examples
	LDAP Connector Configuration
	User Filter Examples
	Group Search Configuration Examples
	Examples of AND(&) and OR(|) Operators in LDAP Filters

	Synchronize LDAP Users
	Procedure of Operation

	Relevant Operations

	OIDC Management
	TOC
	Overview of OIDC
	Adding OIDC
	Procedure of Operation

	Adding OIDC via YAML
	Example: Configuring OIDC Connector

	Relevant Operations

	Troubleshooting
	Delete User
	TOC
	Problem Description
	Solution
	Clean up deleted IDP users
	Clean up deleted local users

	User Policy
	Introduction
	TOC
	Overview
	Configure Security Policy
	Steps

	Available Policies

	Multitenancy(Project)
	Introduction
	TOC
	Project
	Namespaces
	Relationship Between Clusters, Projects, and Namespaces

	Guides
	Create Project
	TOC
	Procedure

	Manage Project Quotas
	TOC
	What is ProjectQuota?
	How it works
	When to use ProjectQuota
	Quota keys and units
	Allocation strategy tips
	Best practices and FAQs

	Manage Project
	TOC
	Update Basic Project Information
	Procedure

	Delete Project
	Procedure

	Manage Project Cluster
	TOC
	Introduction
	Add a Cluster
	Procedure

	Remove a Cluster
	Procedure

	Manage Project Members
	TOC
	Import Members
	Constraints and Limitations
	Procedure
	Import from Member List
	Import OIDC Users

	Remove Members
	Procedure

	Audit
	Introduction
	TOC
	Prerequisites
	Procedure
	Search Results

	Telemetry
	Install
	TOC
	Prerequisites
	Installation Steps
	Enable Online Operations
	Uninstallation Steps

	Certificates
	Automated Kubernetes Certificate Rotation
	TOC
	Installation
	How it works
	Rotation Process

	Operation Considerations

	cert-manager
	TOC
	Overview
	How it works
	Identifying cert-manager Managed Certificates
	Common Labels and Annotations

	Related Resources

	OLM Certificates
	Certificate Monitoring
	TOC
	Certificate Status Monitoring
	Built-in Alert Rules
	Kubernetes Certificate Alerts
	Platform Components Certificate Alerts

