
Overview

Operator

Cluster Plugin

Upload Packages

Extend

Menu

Extend - Alauda Container Platform

The platform provides a comprehensive extension system that allows users to enhance the

functionality of their Kubernetes clusters. This system is designed to be flexible and user-

friendly, enabling users to easily add new features and capabilities to their clusters.

This system consists of two main extension types:

Operators: Operators are built on the Operator Lifecycle Manager (OLM) v0 framework,

providing specialized operational capabilities for the platform. These extensions enable

automated management of complex applications and services within your cluster.

Cluster Plugins: The platform features a proprietary cluster plugin system specifically

designed for Chart-type plugins. This system delivers an improved installation and

management experience compared to standard methods, with a user-friendly interface for

handling Chart-based extensions.

With support for numerous Operators and cluster plugins, users can significantly expand the

platform's capabilities to meet specific operational requirements and use cases.

Overview

Menu

Overview - Alauda Container Platform

Overview

Operator Sources

Pre-installation Preparation

Installation Mode

Update Channel

Approval Strategy

Installation Location

Installing via Web Console

Installing via YAML

Manual

1. Check available versions

2. Confirm catalogSource

3. Create a namespace

4. Create a Subscription

5. Check Subscription status

6. Approve InstallPlan

Automatic

1. Check available versions

2. Confirm catalogSource

3. Create a namespace

4. Create a Subscription

5. Check Subscription status

6. Verify CSV

Upgrade Process

Operator

TOC

Menu ON THIS PAGE

Operator - Alauda Container Platform

Based on the OLM (Operator Lifecycle Manager) framework, OperatorHub provides a

unified interface for managing the installation, upgrade, and lifecycle of Operators.

Administrators can use OperatorHub to install and manage Operators, enabling full lifecycle

automation for Kubernetes applications, including creation, updates, and deletion.

OLM mainly consists of the following components and CRDs:

OLM (olm-operator): Manages the complete lifecycle of Operators, including installation,

upgrades, and version conflict detection.

Catalog Operator: Manages Operator catalogs and generates corresponding InstallPlans.

CatalogSource: A namespace-scoped CRD that manages the Operator catalog source

and provides Operator metadata (e.g., version info, managed CRDs). The platform

provides 3 default CatalogSources: system, platform, and custom. Operators in system

are not displayed in OperatorHub.

ClusterServiceVersion (CSV): A namespace-scoped CRD that describes a specific

version of an Operator, including the resources, CRDs, and permissions it requires.

Subscription: A namespace-scoped CRD that describes the subscribed Operator, its

source, acquisition channel, and upgrade strategy.

InstallPlan: A namespace-scoped CRD that describes the actual installation operations to

be performed (e.g., creating Deployments, CRDs, RBAC). An Operator will only be installed

or upgraded once the InstallPlan is approved.

To clarify the lifecycle strategy of different Operators in OperatorHub, the platform provides 5

source types:

1. Alauda Provided and maintained by Alauda , including full lifecycle management, security

updates, technical support, and SLA commitments.

Overview

Operator Sources

Operator - Alauda Container Platform

2. Curated Selected from the open-source community, consistent with community versions,

without code modifications or recompilation. Alauda provides guidance and security

updates but does not guarantee SLA or lifecycle management.

3. Community Provided by the open-source community, updated periodically to ensure

installability, but functional completeness is not guaranteed; no SLA or Alauda support is

provided.

4. Marketplace Provided and maintained by third-party vendors certified by Alauda . Alauda

provides platform integration support, while the vendor is responsible for core maintenance.

5. Custom Developed and uploaded by the user to meet custom use-case requirements.

Before installing an Operator, you need to understand the following key parameters:

OLM provides three installation modes:

Single Namespace

Multi Namespace

Cluster

Cluster mode (AllNamespaces) is recommended. The platform will eventually be upgraded

to OLM v1, which only supports the AllNamespaces install mode. Therefore,

SingleNamespace and MultiNamespace should be strongly avoided.

If an Operator provides multiple update channels, you can choose which channel to subscribe

to, e.g., stable.

Pre-installation Preparation

Installation Mode

Update Channel

Approval Strategy

Operator - Alauda Container Platform

Options: Automatic or Manual.

Automatic: OLM will automatically upgrade the Operator when a new version is released

in the selected channel.

Manual: When a new version is available, OLM creates an upgrade request that must be

manually approved by the cluster administrator before the upgrade occurs.

Note: Operators from Alauda only support Manual mode; otherwise, installation will fail.

It is recommended to create a separate namespace for each Operator.

If multiple Operators share the same namespace, their Subscriptions may be resolved into a

single InstallPlan:

If an InstallPlan in that namespace requires Manual approval and remains pending, it can

block automatic upgrades for other Subscriptions included in the same InstallPlan.

1. Log in to the web console and switch to the Administrator view.

2. Navigate to Marketplace > OperatorHub.

3. If the status is Absent:

Download the Operator package from the Custom Portal or contact support.

Upload the package to the target cluster using violet (see CLI).

On the Marketplace > Upload Packages page, switch to the Operator tab and confirm

the upload.

4. If the status is Ready, click Install and follow the Operator's user guide.

Installation Location

Installing via Web Console

Installing via YAML

Operator - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

The following examples demonstrate installation methods for Operators from Alauda (Manual

only) and non- Alauda sources (Manual or Automatic).

The harbor-ce-operator is from Alauda and supports Manual approval only. In Manual mode,

even if a new version is released, the Operator will not upgrade automatically. You must

Approve manually before OLM executes the upgrade.

Example output:

Fields:

CHANNEL: Operator channel name

NAME: CSV resource name

VERSION: Operator version

Manual

1. Check available versions

(

 echo -e "CHANNEL\tNAME\tVERSION"

 kubectl get packagemanifest harbor-ce-operator -o json | jq -r '

 .status.channels[] |

 .name as $channel |

 .entries[] |

 [$channel, .name, .version] | @tsv

 '

) | column -t -s $'\t'

CHANNEL NAME VERSION

harbor-2 harbor-ce-operator.v2.12.11 2.12.11

harbor-2 harbor-ce-operator.v2.12.10 2.12.10

stable harbor-ce-operator.v2.12.11 2.12.11

stable harbor-ce-operator.v2.12.10 2.12.10

2. Confirm catalogSource

Operator - Alauda Container Platform

Example output:

This indicates the harbor-ce-operator comes from the platform catalogSource.

Field explanations:

annotation cpaas.io/target-namespaces : It is recommended to set this to empty; empty

indicates cluster-wide installation.

.metadata.name: Subscription name (DNS-compliant, max 253 characters).

.metadata.namespace: Namespace where the Operator will be installed.

kubectl get packagemanifests harbor-ce-operator -ojsonpath='{.status.catalogSource}'

platform

3. Create a namespace

kubectl create namespace harbor-ce-operator

4. Create a Subscription

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

 annotations:

 cpaas.io/target-namespaces: ""

 name: harbor-ce-operator-subs

 namespace: harbor-ce-operator

spec:

 channel: stable

 installPlanApproval: Manual

 name: harbor-ce-operator

 source: platform

 sourceNamespace: cpaas-system

 startingCSV: harbor-ce-operator.v2.12.11

Operator - Alauda Container Platform

.spec.channel: Subscribed Operator channel.

.spec.installPlanApproval: Approval strategy (Manual or Automatic). Here, Manual

requires manual approval for install/upgrade.

.spec.source: Operator catalogSource.

.spec.sourceNamespace: Must be set to cpaas-system because all catalogSources

provided by the platform are located in this namespace.

.spec.startingCSV: Specifies the version to install for Manual approval; defaults to the

latest in the channel if empty. Not required for Automatic.

Key output:

.status.state: UpgradePending indicates the Operator is awaiting installation or upgrade.

Condition InstallPlanPending = True: Waiting for manual approval.

.status.currentCSV: Latest subscribed CSV.

.status.installPlanRef: Associated InstallPlan; must be approved before installation

proceeds.

Example output:

Approve manually:

5. Check Subscription status

kubectl -n harbor-ce-operator get subscriptions harbor-ce-operator-subs -o yaml

6. Approve InstallPlan

kubectl -n harbor-ce-operator get installplan \

 "$(kubectl -n harbor-ce-operator get subscriptions harbor-ce-operator-subs -o

jsonpath='{.status.installPlanRef.name}')"

NAME CSV APPROVAL APPROVED

install-27t29 harbor-ce-operator.v2.12.11 Manual false

Operator - Alauda Container Platform

Wait for CSV creation; Phase changes to Succeeded :

Example output:

Fields:

NAME: Installed CSV name

DISPLAY: Operator display name

VERSION: Operator version

REPLACES: CSV replaced during upgrade

PHASE: Installation status (Succeeded indicates success)

The clickhouse-operator comes from a non- Alauda source, and its Approval Strategy can be

set to Automatic. In Automatic mode, the Operator upgrades automatically when a new

version is released, without manual approval.

PLAN="$(kubectl -n harbor-ce-operator get subscription harbor-ce-operator-subs -o

jsonpath='{.status.installPlanRef.name}')"

kubectl -n harbor-ce-operator patch installplan "$PLAN" --type=json -p='[{"op":

"replace", "path": "/spec/approved", "value": true}]'

kubectl -n harbor-ce-operator get csv

NAME DISPLAY VERSION REPLACES

PHASE

harbor-ce-operator.v2.12.11 Alauda Build of Harbor 2.12.11 harbor-ce-

operator.v2.12.10 Succeeded

Automatic

1. Check available versions

Operator - Alauda Container Platform

Example output:

Example output:

This indicates the clickhouse-operator comes from the community-operators catalogSource.

(

 echo -e "CHANNEL\tNAME\tVERSION"

 kubectl get packagemanifest clickhouse-operator -o json | jq -r '

 .status.channels[] |

 .name as $channel |

 .entries[] |

 [$channel, .name, .version] | @tsv

 '

) | column -t -s $'\t'

CHANNEL NAME VERSION

stable clickhouse-operator.v0.18.2 0.18.2

2. Confirm catalogSource

kubectl get packagemanifests clickhouse-operator -ojsonpath='{.status.catalogSource}'

community-operators

3. Create a namespace

kubectl create namespace clickhouse-operator

4. Create a Subscription

Operator - Alauda Container Platform

Field explanations are the same as in Manual.

Example output:

Installation is successful.

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

 annotations:

 cpaas.io/target-namespaces: ""

 name: clickhouse-operator-subs

 namespace: clickhouse-operator

spec:

 channel: stable

 installPlanApproval: Automatic

 name: clickhouse-operator

 source: community-operators

 sourceNamespace: openshift-marketplace

5. Check Subscription status

kubectl -n clickhouse-operator get subscriptions clickhouse-operator -oyaml

6. Verify CSV

kubectl -n clickhouse-operator get csv

NAME DISPLAY VERSION PHASE

clickhouse-operator.v0.18.2 ClickHouse Operator 0.18.2 Succeeded

Upgrade Process

Operator - Alauda Container Platform

1. Upload the new Operator version.

2. Upgrades follow the strategy configured in the Subscription:

Automatic Upgrade: Upgrades automatically upon upload.

Manual Upgrade:

Batch Upgrade: Execute on Platform Management > Cluster Management >

Cluster > Features page.

Individual Upgrade: Manually approve upgrade requests in OperatorHub.

Note: Only Operators from Alauda support batch upgrades.

Operator - Alauda Container Platform

Overview

Viewing Available Plugins

Installing via Web Console

Installing via YAML

non-config

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

with-config

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

Upgrade Process

A cluster plugin is a tool for extending the platform's functionality. Each plugin is managed

through three cluster-level CRDs: ModulePlugin, ModuleConfig, and ModuleInfo.

ModulePlugin: Defines the basic information of the cluster plugin.

ModuleConfig: Defines the version information of the plugin. Each ModulePlugin can

correspond to one or more ModuleConfigs.

ModuleInfo: Records the installed plugin's version and status information.

Cluster Plugin

TOC

Overview

Menu ON THIS PAGE

Cluster Plugin - Alauda Container Platform

Cluster plugins support dynamic form configuration. Dynamic forms are simple UI forms that

provide customizable configuration options or parameter combinations for plugins. For

example, when installing the Alauda Container Platform Log Collector, you can select the log

storage plugin as ElasticSearch or ClickHouse via the dynamic form. The dynamic form

definition is located in the .spec.config field of the ModuleConfig; if the plugin does not

require a dynamic form, this field is empty.

Plugins are published via the violet tool. Note:

Plugins can only be published to the global cluster, but can be installed on either the

global or workload cluster depending on the configuration.

In the same cluster, a plugin can only be installed once.

Once published successfully, the platform will automatically create the corresponding

ModulePlugin and ModuleConfig in the global cluster—no manual modifications are

required.

Creating a ModuleInfo resource installs the plugin and allows selecting the version, target

cluster, and dynamic form parameters. Refer to the ModuleConfig of the selected version

for the dynamic form definition. For more usage instructions, refer to the plugin-specific

documentation.

To view all plugins provided by the platform:

1. Navigate to the platform management view.

2. Click the left navigation menu: Administrator > Marketplace > Cluster Plugin

This page lists all available plugins along with their current status.

If a plugin shows an "absent" status, follow these steps to install it:

Viewing Available Plugins

Installing via Web Console

Cluster Plugin - Alauda Container Platform

1. Download the plugin package:

Visit the Custom Portal to download the corresponding plugin package.

If you don't have access to the Custom Portal, contact technical support.

2. Upload the package to the platform:

Use the violet tool to publish the package to the platform.

For detailed instructions on using this tool, refer to the CLI.

3. Verify the upload:

Navigate to Administrator > Marketplace > Upload Packages

Switch to the Cluster Plugin tab

Locate the uploaded plugin name

The plugin details will show the version(s) of the uploaded package

4. Install the plugin:

If the plugin shows a "ready" status, click Install

Some plugins require installation parameters; refer to the plugin-specific documentation

Plugins without installation parameters will start installation immediately after clicking

Install

The installation method differs by plugin type:

Non-config plugin: No additional parameters required; installation is straightforward.

Config plugin: Requires filling in configuration parameters; refer to the plugin

documentation for details.

The following examples demonstrate YAML-based installation.

Installing via YAML

non-config

Cluster Plugin - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

Example: Alauda Container Platform Web Terminal

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources:

This indicates that the ModulePlugin web-cli exists in the cluster and version v4.0.4 is

published.

Check the ModuleConfig for version v4.0.4:

The .spec.affinity defines cluster affinity, indicating that web-cli can only be installed on

the global cluster. .spec.config is empty, meaning the plugin requires no configuration and

can be installed directly.

1. Check available versions

kubectl get moduleplugins web-cli

NAME AGE

web-cli 4d20h

kubectl get moduleconfigs -l cpaas.io/module-name=web-cli

NAME AGE

web-cli-v4.0.4 4d21h

kubectl get moduleconfigs web-cli-v4.0.4 -oyaml

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleConfig

metadata:

 ...

 name: web-cli-v4.0.4

spec:

 affinity:

 clusterAffinity:

 matchLabels:

 is-global: "true"

 version: v4.0.4

 config: {}

 ...

Cluster Plugin - Alauda Container Platform

Create a ModuleInfo resource to install the plugin without any configuration parameters:

Field explanations:

name : Temporary name for the cluster plugin. The platform will rename it after creation

based on the content, in the format <cluster-name>-<hash of content> , e.g., global-

ee98c9991ea1464aaa8054bdacbab313 .

label cpaas.io/cluster-name : Specifies the cluster where the plugin should be installed. If it

conflicts with the ModuleInfo's affinity, installation will fail.

label cpaas.io/module-name : Plugin name, must match the ModulePlugin resource.

label cpaas.io/module-type : Fixed field, must be plugin ; missing this field causes

installation failure.

.spec.config : If the corresponding ModuleConfig is empty, this field can be left empty.

.spec.version : Specifies the plugin version to install, must match .spec.version in

ModuleConfig.

Since the ModuleInfo name changes upon creation, locate the resource via label to check the

plugin status and version:

2. Create a ModuleInfo

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 labels:

 cpaas.io/cluster-name: global

 cpaas.io/module-name: web-cli

 cpaas.io/module-type: plugin

 name: global-temporary-name

spec:

 config: {}

 version: v4.0.4

3. Verify installation

Cluster Plugin - Alauda Container Platform

Field explanations:

NAME : ModuleInfo resource name

CLUSTER : Cluster where the plugin is installed

MODULE : Plugin name

DISPLAY_NAME : Display name of the plugin

STATUS : Installation status; Running means successfully installed and running

TARGET_VERSION : Intended installation version

CURRENT_VERSION : Version before installation

NEW_VERSION : Latest available version for installation

Example: Alauda Container Platform GPU Device Plugin

Ensure the plugin has been published by checking ModulePlugin and ModuleConfig

resources:

This indicates that ModulePlugin gpu-device-plugin exists and version v4.0.15 is published.

kubectl get moduleinfo -l cpaas.io/module-name=web-cli

NAME CLUSTER MODULE DISPLAY_NAME STATUS

TARGET_VERSION CURRENT_VERSION NEW_VERSION

global-ee98c9991ea1464aaa8054bdacbab313 global web-cli web-cli Running

v4.0.4 v4.0.4 v4.0.4

with-config

1. Check available versions

kubectl get moduleplugins gpu-device-plugin

NAME AGE

gpu-device-plugin 4d23h

kubectl get moduleconfigs -l cpaas.io/module-name=gpu-device-plugin

NAME AGE

gpu-device-plugin-v4.0.15 4d23h

Cluster Plugin - Alauda Container Platform

Check the ModuleConfig for v4.0.15:

Notes:

This plugin can only be installed on clusters with Linux OS and amd64 architecture.

The dynamic form includes three device driver switches: custom.mps_enable ,

custom.pgpu_enable , and custom.vgpu_enable . Only when set to true will the

corresponding driver be installed.

Create a ModuleInfo resource to install the plugin, filling in dynamic form parameters as

needed (e.g., enabling pgpu and vgpu drivers):

kubectl get moduleconfigs gpu-device-plugin-v4.0.15 -oyaml

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleConfig

metadata:

 ...

 name: gpu-device-plugin-v4.0.15

spec:

 affinity:

 clusterAffinity:

 matchExpressions:

 - key: cpaas.io/os-linux

 operator: Exists

 matchLabels:

 cpaas.io/arch-amd64: "true"

 config:

 custom:

 mps_enable: false

 pgpu_enable: false

 vgpu_enable: false

 version: v4.0.15

 ...

2. Create a ModuleInfo

Cluster Plugin - Alauda Container Platform

Field explanations are the same as non-config. Refer to the plugin documentation for config

details.

Locate the ModuleInfo via label to check status and version:

Field explanations are the same as non-config.

To upgrade an existing plugin to a newer version:

1. Upload the new version:

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 labels:

 cpaas.io/cluster-name: business

 cpaas.io/module-name: gpu-device-plugin

 cpaas.io/module-type: plugin

 name: business-temporary-name

spec:

 config:

 custom:

 mps_enable: false

 pgpu_enable: true

 vgpu_enable: true

 version: v4.0.15

3. Verify installation

kubectl get moduleinfo -l cpaas.io/module-name=gpu-device-plugin

NAME CLUSTER MODULE DISPLAY_NAME

STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION

business-7ebb241b4f77471235e57dd1ec7fbd0d business gpu-device-plugin gpu-device-plugin

Running v4.0.15 v4.0.15 v4.0.15

Upgrade Process

Cluster Plugin - Alauda Container Platform

Follow the same process to upload the new version to the platform.

2. Verify the new version:

Navigate to Administrator > Marketplace > Upload Packages

Switch to the Cluster Plugin tab

The plugin details will show the newly uploaded version

3. Perform the upgrade:

Navigate to Administrator > Clusters > Clusters

Clusters with upgradable plugins will display an upgrade icon

Enter the cluster details and switch to the Features tab

The upgrade button will be enabled under the features component

Click Upgrade to complete the plugin upgrade

Cluster Plugin - Alauda Container Platform

The platform provides a command-line tool violet , which is used to upload packages

downloaded from the Marketplace in the Custom Portal to the platform.

violet supports uploading the following types of packages:

Operator

Cluster Plugin

Helm Chart

When the status of a package in Cluster Plugins or OperatorHub is shown as Absent , you

need to use this tool to upload the corresponding package.

The upload process of violet mainly includes the following steps:

1. Extract and retrieve information from the package

2. Push images to the image registry

3. Create Artifact and ArtifactVersion resources on the platform

Download the Tool

For Linux or macOS

For Windows

Prerequisites

Using the Tool

View Package Information

Upload an Operator to Multiple Clusters

Upload a Cluster Plugin

Upload Packages

TOC

Menu ON THIS PAGE

Upload Packages - Alauda Container Platform

Upload a Helm Chart

Push only images from all packages in a directory

Create only CRs from all packages in a directory

Supported operating systems and architectures

Linux, macOS, Windows

Both Linux and macOS support x86 and ARM architectures

Steps to download

1. Log into the Web Console of the global cluster and switch to Administrator view.

2. Navigate to Marketplace > Upload Packages.

3. Click Download Packaging and Listing Tool.

4. Select the binary that matches your operating system and architecture.

After downloading, install the tool on your server or PC.

For non-root users:

Download the Tool

For Linux or macOS

Upload Packages - Alauda Container Platform

For root users:

1. Download the file and rename it to violet.exe , or use PowerShell to rename it:

2. Run the tool in PowerShell.

Note: If the tool path is not added to your environment variables, you must specify the full

path when running commands.

Linux x86

sudo mv -f violet_linux_amd64 /usr/local/bin/violet && sudo chmod +x

/usr/local/bin/violet

Linux ARM

sudo mv -f violet_linux_arm64 /usr/local/bin/violet && sudo chmod +x

/usr/local/bin/violet

macOS x86

sudo mv -f violet_darwin_amd64 /usr/local/bin/violet && sudo chmod +x

/usr/local/bin/violet

macOS ARM

sudo mv -f violet_darwin_arm64 /usr/local/bin/violet && sudo chmod +x

/usr/local/bin/violet

Linux x86

mv -f violet_linux_amd64 /usr/bin/violet && chmod +x /usr/bin/violet

Linux ARM

mv -f violet_linux_arm64 /usr/bin/violet && chmod +x /usr/bin/violet

macOS x86

mv -f violet_darwin_amd64 /usr/bin/violet && chmod +x /usr/bin/violet

macOS ARM

mv -f violet_darwin_arm64 /usr/bin/violet && chmod +x /usr/bin/violet

For Windows

Windows x86

mv -Force violet_windows_amd64.exe violet.exe

Upload Packages - Alauda Container Platform

Permission requirements

You must provide a valid platform user account (username and password).

The account must have the role property set to System and the role name must be

platform-admin-system .

Note: If the role property of your account is set to Custom , you cannot use this tool.

The following examples illustrate common usage scenarios.

Before uploading a package, use the violet show command to preview its details.

Prerequisites

Using the Tool

View Package Information

violet show topolvm-operator.v2.3.0.tgz

Name: NativeStor

Type: bundle

Arch: [linux/amd64]

Version: 2.3.0

violet show topolvm-operator.v2.3.0.tgz --all

Name: NativeStor

Type: bundle

Arch: []

Version: 2.3.0

Artifact: harbor.demo.io/acp/topolvm-operator-bundle:v3.11.0

RelateImages: [harbor.demo.io/acp/topolvm-operator:v3.11.0

harbor.demo.io/acp/topolvm:v3.11.0 harbor.demo.io/3rdparty/k8scsi/csi-provisioner:v3.00

...]

Upload Packages - Alauda Container Platform

Use the --clusters parameter to specify the target clusters.

Note: If --clusters is not specified, the Operator is uploaded to the global cluster by

default.

Note: You do not need to specify the --clusters parameter when uploading a Cluster

Plugin, as the platform will automatically distribute it based on its affinity configuration. If

you specify --clusters , the parameter will be ignored.

Upload a Helm Chart to the chart repository:

Note: Helm Charts can only be uploaded to the default public-charts repository provided

by the platform.

Upload an Operator to Multiple Clusters

violet push opensearch-operator.v3.14.2.tgz \

 --platform-address https://192.168.0.1 \

 --platform-username <user> \

 --platform-password <password> \

 --clusters region1,region2

Upload a Cluster Plugin

violet push plugins-cloudedge-v0.3.16-hybrid.tgz \

 --platform-address https://192.168.0.1 \

 --platform-username <user> \

 --platform-password <password>

Upload a Helm Chart

violet push plugins-cloudedge-v0.3.16-hybrid.tgz \

 --platform-address https://192.168.0.1 \

 --platform-username <user> \

 --platform-password <password>

Upload Packages - Alauda Container Platform

For more details, run:

When multiple packages are downloaded from the Marketplace, you can place them in the

same directory and upload them all at once:

With the --skip-crs flag, only images are pushed, while the creation of Artifact and

ArtifactVersion resources is skipped. This prevents Operators or Cluster Plugins from being

updated prematurely during the ACP upgrade process.

When multiple packages are downloaded from the Marketplace, you can place them in the

same directory and upload them all at once:

With the --skip-push flag, only Artifact and ArtifactVersion resources are created,

while images are not pushed.

violet --help

Push only images from all packages in a directory

violet push <packages_dir_name> \

 --skip-crs \

 --platform-address https://192.168.0.1 \

 --platform-username <user> \

 --platform-password <password>

Create only CRs from all packages in a directory

violet push <packages_dir_name> \

 --skip-push \

 --platform-address https://192.168.0.1 \

 --platform-username <user> \

 --platform-password <password>

Upload Packages - Alauda Container Platform

	Extend
	Overview
	Operator
	TOC
	Overview
	Operator Sources
	Pre-installation Preparation
	Installation Mode
	Update Channel
	Approval Strategy
	Installation Location

	Installing via Web Console
	Installing via YAML
	Manual
	1. Check available versions
	2. Confirm catalogSource
	3. Create a namespace
	4. Create a Subscription
	5. Check Subscription status
	6. Approve InstallPlan

	Automatic
	1. Check available versions
	2. Confirm catalogSource
	3. Create a namespace
	4. Create a Subscription
	5. Check Subscription status
	6. Verify CSV

	Upgrade Process

	Cluster Plugin
	TOC
	Overview
	Viewing Available Plugins
	Installing via Web Console
	Installing via YAML
	non-config
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	with-config
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Upgrade Process

	Upload Packages
	TOC
	Download the Tool
	For Linux or macOS
	For Windows

	Prerequisites
	Using the Tool
	View Package Information
	Upload an Operator to Multiple Clusters
	Upload a Cluster Plugin
	Upload a Helm Chart
	Push only images from all packages in a directory
	Create only CRs from all packages in a directory

