
Overview

Managing Node Configuration with MachineConfig

Node Disruption Policies

Machine Configuration

Menu

Machine Configuration - Alauda Container Platform

How Machine Configuration Works

Key Concepts

Configuration Types

Node Update Process

Checking MachineConfigPool Status

Machine Configuration handles file updates, systemd unit management, and SSH public key

deployment across cluster nodes. The system provides a MachineConfig Custom Resource

Definition (CRD) for writing configuration files to hosts, and a MachineConfigPool CRD for

organizing nodes into configuration groups.

Each MachineConfigPool governs a set of nodes and their associated MachineConfigs. Node

roles determine MachineConfigPool membership—pools manage nodes based on their role

labels.

During cluster installation, the system automatically creates two MachineConfigPools (master

and worker) along with two empty MachineConfigs (00-master and 00-worker). The master

pool manages the 00-master configuration, while the worker pool manages the 00-worker

configuration.

You can create custom MachineConfigPools for worker nodes that require specialized

configurations. Master nodes cannot use custom pools.

Overview

TOC

How Machine Configuration Works

Menu ON THIS PAGE

Overview - Alauda Container Platform

Custom MachineConfigPools inherit all configurations from the worker pool and add their own

specific settings. Any changes to the worker pool automatically propagate to custom pools.

Machine Configuration does not support custom pools that don't inherit from the worker pool.

The cluster includes a default MachineConfiguration CR named "cluster" for setting global

node update policies. See the Node Disruption Policy documentation for details.

Sometimes node configurations drift from their intended state. The machine-config-daemon

continuously monitors for configuration drift and marks affected nodes as Degraded until an

administrator resolves the issue. Degraded nodes remain operational but cannot receive

updates.

Configuration Processing MachineConfigs are processed alphabetically. The first

configuration serves as the base, with subsequent configs layered on top. Each

MachineConfigPool renders its managed configs into a single MachineConfig named: render-

<pool-name>-<content-hash> , which gets applied to all nodes in that pool.

Update Strategy Machine Configuration updates nodes by age, starting with the oldest. The

maxUnavailable field in each MachineConfigPool controls how many nodes update

simultaneously.

Scope of Management Machine Configuration only manages explicitly configured items.

Manual system changes remain untouched by the Machine Configuration Operator.

Configuration Format All MachineConfigs use the Ignition v3.4.0 specification format.

Drift Detection When Machine Configuration-managed files change outside the system,

machine-config-daemon marks the node as Degraded but doesn't overwrite the modified files.

Pool Benefits MachineConfigPools ensure that new nodes automatically receive the correct

configuration when they join the cluster.

Supported Modifications

Regular files (in writable, non-root directories)

systemd units and their configurations

Key Concepts

Overview - Alauda Container Platform

SSH public keys for the boot user only

Machine Configuration doesn't create users or groups. You must create the boot user and

group before configuring SSH keys.

Important: Avoid manual node modifications—they can cause configuration conflicts.

Files Create or modify file content and permissions. Files can only be managed if their

containing partition is writable.

Systemd Units Define new systemd services or extend existing ones with additional

configuration.

SSH Public Keys Configure SSH access for the boot user. Keys for other users are rejected

as invalid.

When you apply a MachineConfig, Machine Configuration ensures all affected nodes reach

the desired state. The Machine Configuration Operator generates a new rendered

configuration and machine-config-daemon executes these steps on each node:

1. Cordon - Mark node unschedulable for new workloads

2. Drain - Terminate existing workloads and reschedule them elsewhere

3. Apply - Write the new configuration to disk

4. Reboot - Restart the node to activate changes

5. Uncordon - Mark node schedulable again

Configuration Types

Node Update Process

Checking MachineConfigPool Status

Overview - Alauda Container Platform

Check pool status with:

Example output:

Field Reference:

NAME: Pool identifier

CONFIG: Most recently applied configuration across all pool nodes

UPDATED: True when all nodes have the current config; False during updates

UPDATING: True when at least one node is updating; False when all are current

DEGRADED: True when config cannot be applied to at least one node

MACHINECOUNT: Total nodes in the pool

READYMACHINECOUNT: Nodes with current config in healthy, schedulable state

UPDATEDMACHINECOUNT: Nodes that have applied the current config

DEGRADEDMACHINECOUNT: Nodes marked as degraded or unreconcilable

In this example, all three master nodes are current, while the worker pool is updating—two

nodes are complete and one is in progress.

Get detailed pool information:

View all MachineConfigs:

kubectl get machineconfigpool

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT

READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE

master rendered-master-06c9c4 True False False 3 3

3 0 4h42m

worker rendered-worker-f4b64 False True False 3 2

2 0 4h42m

kubectl describe machineconfigpool worker

Overview - Alauda Container Platform

Example output:

Examine specific configurations:

Check individual node status:

Example output:

Node State Reference:

NODE: Node identifier

DESIRED: Target configuration for the node

CURRENT: Currently applied configuration

kubectl get machineconfig

NAME IGNITIONVERSION AGE

00-master 3.4.0 3h2m

00-worker 3.4.0 3h2m

rendered-master-ccb 3.4.0 1h12m

rendered-worker-bad 3.4.0 1h20m

kubectl describe machineconfig 00-master

kubectl get node -o custom-

columns=NODE:.metadata.name,DESIRED:.metadata.annotations."machineconfiguration\.alauda\.io/d

NODE DESIRED CURRENT

STATE

192.168.132.216 rendered-master-98db9ca4f4b4cd rendered-master-

98db9ca4f4b4cd Degraded

192.168.135.83 rendered-worker-05f27341ba49cf86dc4b rendered-master-

e08d9cab50e383 Working

192.168.134.99 rendered-worker-05f27341ba49cf86dc4b rendered-worker-

05f27341ba49cf86dc4b Done

Overview - Alauda Container Platform

STATE: Configuration status

Done : Node healthy with matching desired and current configs

Working : Node updating (current ≠ desired)

Degraded : Configuration drift detected or application failed—check logs for root cause

Overview - Alauda Container Platform

You can use the tasks described in this section to create MachineConfig objects that modify

files, systemd units, and SSH public keys on nodes, as well as to recover nodes that have

experienced configuration drift.

MachineConfig supports Ignition specification version 3.4. All MachineConfig objects must be

created in compliance with this version.

In certain situations, the configuration on a node may not fully match the configuration

currently applied through the MachineConfig . This condition is referred to as configuration drift.

The machine configuration daemon periodically verifies whether a node's configuration has

drifted. If drift is detected, the node is marked as Degraded and remains in that state until an

administrator restores the expected configuration.

The following examples demonstrate how to use MachineConfig objects to manage node

configurations.

Configuring the Chrony Time Service

Disabling the Chrony Time Service

Configuring the SSH Public Key for the boot User

Recovering from Configuration Drift

Managing Node Configuration with
MachineConfig

TOC

Configuring the Chrony Time Service

Menu ON THIS PAGE

Managing Node Configuration with MachineConfig - Alauda Container Platform

To configure the Chrony time synchronization service (chronyd) and specify the NTP servers

and related settings, you can update the chrony.conf file on the target nodes via a

MachineConfig object.

1. First, create a temporary file that contains the desired Chrony configuration:

2. Then, base64-encode the contents of the file:

3. Create a MachineConfig object named 99-worker-chrony . In the

.spec.config.storage.files[0].contents.source field, insert the base64-encoded string in the

format data:text/plain;base64,<encoded-content> :

chrony.conf

server 0.centos.pool.ntp.org iburst

server 1.centos.pool.ntp.org iburst

makestep 1.0 3

rtcsync

logdir /var/log/chrony

base64 -w0 chrony.conf

apiVersion: machineconfiguration.alauda.io/v1alpha1

kind: MachineConfig

metadata:

 name: 99-worker-chrony

 labels:

 machineconfiguration.alauda.io/role: worker

spec:

 config:

 ignition:

 version: 3.4.0

 storage:

 files:

 - path: /etc/chrony.conf

 mode: 0644

 contents:

 source:

'data:text/plain;base64,c2VydmVyIDAuY2VudG9zLnBvb2wubnRwLm9yZyBpYnVyc3QKc2VydmVyIDEuY2VudG

Managing Node Configuration with MachineConfig - Alauda Container Platform

This configuration creates a MachineConfig object that applies a customized chrony.conf

file to nodes associated with the worker machine configuration pool. The file will be written

to /etc/chrony.conf on each node, with file permissions set to 0644 .

To disable the Chrony time synchronization service on nodes with a specific role, you can

create a MachineConfig object that overrides the systemd unit definition and disables the

service.

Example configuration:

Disabling the Chrony Time Service

Managing Node Configuration with MachineConfig - Alauda Container Platform

This configuration pushes a custom version of the chronyd.service unit file to the nodes in the

worker machine configuration pool. The service is explicitly disabled. Once the configuration

is applied and the nodes are rebooted, the Chrony service will no longer start automatically.

apiVersion: machineconfiguration.alauda.io/v1alpha1

kind: MachineConfig

metadata:

 name: 99-worker-disable-chrony

 labels:

 machineconfiguration.alauda.io/role: worker

spec:

 config:

 ignition:

 version: 3.4.0

 systemd:

 units:

 - name: chronyd.service

 enabled: false

 contents: |

 [Unit]

 Description=NTP client/server

 Documentation=man:chronyd(8) man:chrony.conf(5)

 After=ntpdate.service sntp.service ntpd.service

 Conflicts=ntpd.service systemd-timesyncd.service

 ConditionCapability=CAP_SYS_TIME

 [Service]

 Type=forking

 PIDFile=/run/chrony/chronyd.pid

 EnvironmentFile=-/etc/sysconfig/chronyd

 ExecStart=/usr/sbin/chronyd $OPTIONS

 ExecStartPost=/usr/libexec/chrony-helper update-daemon

 PrivateTmp=yes

 ProtectHome=yes

 ProtectSystem=full

 [Install]

 WantedBy=multi-user.target

Managing Node Configuration with MachineConfig - Alauda Container Platform

The machine configuration system allows you to configure an SSH public key for the boot

user on managed nodes. Configuration for other user accounts is not supported. Note that

machine configuration will not create users or groups automatically—you must ensure that the

boot user and group exist on the node before applying the configuration.

Example configuration:

This MachineConfig will install the specified SSH key in the /home/boot/.ssh/authorized_keys

file on nodes in the worker machine configuration pool.

If a node's configuration diverges from its assigned MachineConfig , it will be marked as

Degraded . In this state, the node continues to operate but cannot receive further configuration

updates until the issue is resolved.

There are two ways to restore a node from this degraded state:

Configuring the SSH Public Key for the boot User

apiVersion: machineconfiguration.alauda.io/v1alpha1

kind: MachineConfig

metadata:

 name: 99-worker-ssh

 labels:

 machineconfiguration.alauda.io/role: worker

spec:

 config:

 ignition:

 version: 3.4.0

 passwd:

 users:

 - user: boot

 sshAuthorizedKeys:

 - ssh-rsa <ssh-public-key>

Recovering from Configuration Drift

Managing Node Configuration with MachineConfig - Alauda Container Platform

1. Manually revert the configuration You can manually adjust the files and permissions on

the node to exactly match those specified in the assigned MachineConfig . The system will

detect the correction and clear the degraded status.

2. Force the configuration to be reapplied Create an empty file at /run/machine-config-

daemon-force on the affected node. The machine configuration daemon will detect this

trigger, reapply the current MachineConfig , delete the trigger file, and reboot the node. After

rebooting, the node will transition from Degraded back to Done .

Managing Node Configuration with MachineConfig - Alauda Container Platform

Understanding Node Disruption in Machine Configuration

What You Can Control with Node Disruption Policies

Example: Default Node Disruption Policy

Example: Customizing File Behavior

Example: Applying Policy to a Specific File

By default, when you make certain changes to the systemd units section of a MachineConfig

object, the Machine Configuration Operator will drain and reboot the nodes associated with

that MachineConfig . However, changes to regular file entries typically do not cause a reboot,

which may result in the configuration not taking effect as expected. To address this, you can

define node disruption policies to specify which types of changes should trigger node reboots

or other disruption actions. These policies are configured in the MachineConfiguration object

located in the cpaas-system namespace. See the example below for configuring a node

disruption policy.

Once defined, the Machine Configuration Operator validates the policy to detect issues such

as invalid formatting. Then, it populates the policy into the status.nodeDisruptionPolicyStatus

field of the MachineConfiguration object. These user-defined policies override the cluster's

default disruption settings.

Node Disruption Policies

TOC

Understanding Node Disruption in Machine
Configuration

Menu ON THIS PAGE

Node Disruption Policies - Alauda Container Platform

A default MachineConfiguration custom resource named cluster is installed with the cluster.

You can configure node disruption behavior on this resource.

Node disruption policies allow you to define what happens when changes are made to the

following configuration areas:

Files: You can define behavior for file changes (excluding changes to the root directory). By

default, file changes do not trigger any disruption. You can modify this behavior using the

spec.defaultNodeDisruptionPolicySpecAction.files field.

Systemd Units: You can create or modify systemd services, including enabling, disabling,

or changing their state. By default, changes to systemd units trigger a node drain and

reboot.

SSH Public Keys: You can add or update SSH keys for the boot user. These changes are

applied immediately by default and do not trigger a reboot or drain.

Each change is evaluated against the node disruption policy, which can trigger one or more of

the following actions:

Reboot : Drain and reboot the node.

None : No disruption is triggered; the change is applied silently.

Drain : Drain the node without rebooting.

Restart : Restart the specified systemd service.

DaemonReload : Reload all systemd unit configurations.

What You Can Control with Node Disruption Policies

Example: Default Node Disruption Policy

Node Disruption Policies - Alauda Container Platform

The following is the default configuration for the cluster MachineConfiguration resource after

installation:

This configuration means:

File changes trigger no action.

Systemd unit changes cause a node drain and reboot.

SSH key changes are applied without disruption.

You can change the default action for file changes to trigger a reboot:

apiVersion: machineconfiguration.alauda.io/v1alpha1

kind: MachineConfiguration

metadata:

 name: cluster

spec:

 defaultNodeDisruptionPolicySpecAction:

 files:

 - type: None

 units:

 - type: Reboot

 nodeDisruptionPolicy:

 sshkey:

 actions:

 - type: None

Example: Customizing File Behavior

Node Disruption Policies - Alauda Container Platform

With this configuration, any change to a managed file will cause the Machine Configuration

Operator to drain and reboot the affected node.

You can also define disruption actions for a specific file path. In the following example,

changes to /usr/local/bin/myapp.sh will not trigger a node reboot, but instead reload the

systemd configuration and restart the related service:

apiVersion: machineconfiguration.alauda.io/v1alpha1

kind: MachineConfiguration

metadata:

 name: cluster

spec:

 defaultNodeDisruptionPolicySpecAction:

 files:

 - type: Reboot

 units:

 - type: Reboot

 nodeDisruptionPolicy:

 sshkey:

 actions:

 - type: None

Example: Applying Policy to a Specific File

Node Disruption Policies - Alauda Container Platform

In this case, when /usr/local/bin/myapp.sh is updated, the Machine Configuration Operator

will reload all systemd units and restart the myapp.service —without draining or rebooting the

node.

apiVersion: machineconfiguration.alauda.io/v1alpha1

kind: MachineConfiguration

metadata:

 name: cluster

spec:

 defaultNodeDisruptionPolicySpecAction:

 files:

 - type: Reboot

 units:

 - type: Reboot

 nodeDisruptionPolicy:

 files:

 - path: /usr/local/bin/myapp.sh

 actions:

 - type: DaemonReload

 - type: Restart

 restart:

 serviceName: myapp.service

 sshkey:

 actions:

 - type: None

Node Disruption Policies - Alauda Container Platform

	Machine Configuration
	Overview
	TOC
	How Machine Configuration Works
	Key Concepts
	Configuration Types
	Node Update Process
	Checking MachineConfigPool Status

	Managing Node Configuration with MachineConfig
	TOC
	Configuring the Chrony Time Service
	Disabling the Chrony Time Service
	Configuring the SSH Public Key for the boot User
	Recovering from Configuration Drift

	Node Disruption Policies
	TOC
	Understanding Node Disruption in Machine Configuration
	What You Can Control with Node Disruption Policies
	Example: Default Node Disruption Policy
	Example: Customizing File Behavior
	Example: Applying Policy to a Specific File

