
Overview

Introduction

Architecture

Installation

Alauda Container Security Plugin Installation

Roxctl CLI Installation

Using Alauda Container Security in Offline Mode

Dashboards

Navigation

Menu

Navigation - Alauda Container Security

Viewing Dashboard

Network

Introduction

Guides

HowTo

Violation

Introduction

Guides

Compliance

Navigation - Alauda Container Security

Introduction

Guides

How to

Vulnerablitiy

Introduction

Guides

How to

Risk

Introduction

Navigation - Alauda Container Security

Guides

Security Policy

Introduction

Guides

How To

Configuration

Managing Deployment Collections
Learn how to manage deployment collections in Alauda Container Security.

API Token Configuration

Integrating with a Generic Docker Registry

Navigation - Alauda Container Security

Integration with Email

Navigation - Alauda Container Security

Introduction

Architecture

Overview

What is Alauda Container Security?

What Problems Does Alauda Container Security Solve?

Limitations

System Architecture

Component Interactions

Menu

Overview - Alauda Container Security

What is Alauda Container Security?

What Problems Does Alauda Container Security Solve?

Limitations

Alauda Container Security is a comprehensive security solution designed for Kubernetes and

containerized environments. It provides centralized management, automated vulnerability

scanning, policy enforcement, and compliance checks to help organizations secure their

container infrastructure across multiple clusters.

Alauda Container Security adopts a distributed, container-based architecture, consisting of

Central Services (for management, API, and UI) and Secured Cluster Services (for monitoring,

policy enforcement, and data collection). It integrates with CI/CD pipelines, SIEM, logging

systems, and supports the built-in Scanner V4 vulnerability scanner.

Vulnerability Management: Alauda Container Security continuously scans container

images and running workloads for known vulnerabilities, helping prevent exploitation that

could lead to denial of service, remote code execution, or unauthorized data access.

Introduction

TOC

What is Alauda Container Security?

What Problems Does Alauda Container Security Solve?

Menu ON THIS PAGE

Introduction - Alauda Container Security

Policy Enforcement: By defining and enforcing security policies, Alauda Container

Security helps prevent high-risk deployments and enables timely response to runtime

security incidents.

Compliance Automation: Alauda Container Security automates compliance checks

against industry standards and regulatory frameworks CIS, providing clear visibility into

compliance status and helping organizations address gaps efficiently.

Centralized Visibility: It offers a unified portal for monitoring security events, compliance

status, and policy violations across all protected clusters.

Integration: Alauda Container Security integrates with CI/CD pipelines, image registries,

and third-party tools to streamline security throughout the container lifecycle.

Scanner Compatibility: Scanner V4 is the default and only supported vulnerability

scanner.

Deployment Constraints: Central Services must be deployed on a single cluster, and

certain scanner components may only be deployed in specific namespaces or

configurations.

Kubernetes Focus: Alauda Container Security is primarily designed for Kubernetes and

Alauda Container Platform environments; support for other orchestration platforms may be

limited.

External Dependencies: Vulnerability data relies on external feeds (e.g.,

definitions.stackrox.io), and some integrations require additional configuration.

Resource Requirements: Running multiple components (Central, Sensor, Collector,

Scanner) may require adequate cluster resources and network configuration.

Alauda Container Security empowers organizations to proactively manage risks, enforce best

practices, and maintain compliance in modern containerized environments.

Limitations

Introduction - Alauda Container Security

System Architecture

Abstract

Key Components

Scanner Overview

Vulnerability Sources

Deployment Notes

External Integrations

Component Interactions

Alauda Container Security with Scanner V4

Default Ports and Protocols

This document provides a concise overview of the Alauda Container Security architecture for

Kubernetes environments.

Alauda Container Security adopts a distributed, container-based architecture for scalable, low-

impact security on Alauda Container Platform or Kubernetes clusters.

Architecture

TOC

System Architecture

Abstract

Menu ON THIS PAGE

Architecture - Alauda Container Security

Central Services: Deployed on a single cluster, providing management, API, and UI

(Alauda Container Security Portal). Includes Central, Central DB (PostgreSQL 13), and the

Scanner V4 vulnerability scanner.

Secured Cluster Services: Deployed on each protected cluster. Includes Sensor (cluster

monitoring and policy enforcement), Admission Controller (policy admission), Collector

(runtime and network data collection), and optional scanner components.

Scanner V4: The default and only supported scanner since version 4.7. Supports language

and OS-specific image scanning. Consists of Indexer, Matcher, and DB.

Scanner V4: Red Hat VEX, Red Hat CVE Map, OSV, NVD, and additional OS sources.

Operator installs a lightweight Scanner V4 on each cluster for integrated registry scanning.

Helm installs require scannerV4.disable=false to enable the lightweight Scanner V4.

If Central and secured cluster services share a namespace, only Central deploys Scanner

V4 components.

Third-party systems (CI/CD, SIEM, logging, email)

roxctl CLI

Image registries (auto/manual integration)

definitions.stackrox.io (vulnerability feeds)

collector-modules.stackrox.io (kernel modules)

Key Components

Scanner Overview

Vulnerability Sources

Deployment Notes

External Integrations

Architecture - Alauda Container Security

Component Direction Component Description

Central ⮂
Scanner V4

Indexer

Image indexing and report

generation

Central ⮂
Scanner V4

Matcher

Vulnerability matching and

reporting

Sensor ⮂
Scanner V4

Indexer
Delegated image indexing

Scanner V4

Indexer
→ Image Registries

Pulls image metadata and

layers

Scanner V4

Matcher
→

Scanner V4

Indexer
Fetches index reports

Scanner V4

Indexer
→ Scanner V4 DB Stores indexing results

Scanner V4

Matcher
→ Scanner V4 DB

Stores and updates

vulnerability data

Sensor ⮂ Central Configuration and event sync

Collector ⮂ Sensor Sends runtime/network data

Admission

controller
⮂ Sensor

Policy enforcement and scan

requests

Admission

controller
→ Central

Direct communication if Sensor

unavailable

Component Interactions

Alauda Container Security with Scanner V4

Default Ports and Protocols

Architecture - Alauda Container Security

Connection Type Port Notes

Central ↔ Scanner V4

Indexer
gRPC 8443

Central ↔ Sensor TCP/gRPC 443
Bidirectional, Sensor

initiates

Central ↔ CLI gRPC/HTTPS 443 See roxctl for options

Central ↔ Vulnerability feeds HTTPS 443 definitions.stackrox.io

Collector → Sensor gRPC 443

Collector (Compliance) →

Sensor
gRPC 8444 If node scanning enabled

Scanner V4 Indexer →

Central
HTTPS 443

Scanner V4 Indexer/Matcher

→ DB
TCP 5432

Sensor ↔ Admission

Controller
gRPC 443 Bidirectional

Architecture - Alauda Container Security

Alauda Container Security Plugin Installation

Roxctl CLI Installation

Using Alauda Container Security in Offline Mode

Installation

Installation Requirements

Central Service Plugin Installation

Cluster Service Plugin Installation

Plugin Uninstallation

Overview

Installation

Verification

Configuration

Using the roxctl CLI

Enabling Offline Mode

Updating Vulnerability Definitions

Menu

Installation - Alauda Container Security

This guide provides step-by-step instructions for installing the Alauda Container Security

plugin.

Installation Requirements

Central Service Plugin Installation

Pre-installation Steps

Install via UI

Install via YAML

Access Central Console

Cluster Service Plugin Installation

Generate Cluster Access Certificate

Cluster Pre-installation Steps

Cluster Install via UI

Cluster Install via YAML

Plugin Uninstallation

Architecture: amd64

Kernel version: >=5.8

Resource requirements:

Alauda Container Security Plugin Installation

TOC

Installation Requirements

Menu ON THIS PAGE

Alauda Container Security Plugin Installation - Alauda Container Security

CPU: >=4

Memory: >=8GB

PostgreSQL: >=13

TLS Certificate

1. Create the stackrox namespace:

2. Create the central-db-password secret:

Store the password in the password data item.

3. Enable Ingress and configure domain certificate:

Create a TLS secret with your certificate and key.

4. Create additional CA secret :

Central Service Plugin Installation

Pre-installation Steps

kubectl create ns stackrox

kubectl create secret generic central-db-password \

 --from-literal=password=<central db password> \

 -n stackrox

kubectl create secret tls central-ingress-tls \

 --cert=<path/to/tls.crt> \

 --key=<path/to/tls.key> \

 -n stackrox

Alauda Container Security Plugin Installation - Alauda Container Security

1. In Platform Management, go to Marketplace → Cluster Plugins.

2. Click the Install button next to the Central Service for StackRox plugin.

3. Fill in the storage class and configuration parameters as prompted.

Parameters Description

Central Database

Connection String

The connection string for the central database.For example:

host=acid-business-1.proj01-postgres.svc port=5432

user=postgres sslmode=require

Host

Specify a custom hostname for the central ingress. Specify a

"central-ingress-tls" ts type secret in stackrox namespace that

contains tls.crt, tls.key.

Apply the following YAML to your target cluster:

kubectl create secret generic additional-ca \

 --from-file=00-ingress-ca.crt=<path-to-cert-file> \

 -n stackrox

Install via UI

Install via YAML

Alauda Container Security Plugin Installation - Alauda Container Security

Address: https://example.com (The address of the central ingress host)

Initial account: admin/07Apples@

YAML Deployment Method for StackRox Cluster Plugin

Create a StackRox Central Services plugin instance

apiVersion: cluster.alauda.io/v1alpha1

kind: ClusterPluginInstance

metadata:

 annotations:

 cpaas.io/display-name: stackrox-central-services

 labels:

 create-by: cluster-transformer

 manage-delete-by: cluster-transformer

 manage-update-by: cluster-transformer

 name: stackrox-central-services

spec:

 pluginName: stackrox-central-services

 config:

 env:

 offlineMode: true # Whether to run StackRox in offline mode.

 central:

 db:

 source:

 connectionString: "host=acid-business-1.proj01-postgres.svc port=54

 exposure:

 ingress:

 enabled: true

 host: "example.com"

 loadBalancer:

 enabled: false

Access Central Console

Alauda Container Security Plugin Installation - Alauda Container Security

1. In Platform Configuration, go to Platform Configuration → Integrations.

2. Click the button of Authentication Tokens --> Cluster Init Bundle

3. Click Create bundle.

4. Enter the name of the access cluster and download the generated file (e.g., business-1-

Operator-secrets-cluster-init-bundle.yaml).

Cluster Service Plugin Installation

Generate Cluster Access Certificate

Alauda Container Security Plugin Installation - Alauda Container Security

1. Create the stackrox namespace:

2. Apply the cluster init bundle secret:

3.If the central domain uses an untrusted certificate, you need to create the additional-ca-

sensor secret. Configure Ingress domain certificate :

Cluster Pre-installation Steps

kubectl create ns stackrox

kubectl apply -f business-1-Operator-secrets-cluster-init-bundle.yaml -n st

kubectl create secret generic additional-ca-sensor \

 --from-file=00-ingress-ca.crt=<path-to-cert-file> \

 -n stackrox

Alauda Container Security Plugin Installation - Alauda Container Security

1. In Platform Management, go to Marketplace → Cluster Plugins.

2. Click the Install button next to the Cluster Service for StackRox plugin.

3. Fill in the storage class and configuration parameters as prompted.

Note: The Central service address is the access address, e.g., wss://example.com:443 .

Apply the following YAML to your target cluster:

After uninstalling the plugin, manually clean up the following secret resources in the

stackrox namespace if they remain:

Cluster Install via UI

Cluster Install via YAML

apiVersion: cluster.alauda.io/v1alpha1

kind: ClusterPluginInstance

metadata:

 annotations:

 cpaas.io/display-name: stackrox-secured-cluster-services

 labels:

 create-by: cluster-transformer

 manage-delete-by: cluster-transformer

 manage-update-by: cluster-transformer

 name: stackrox-secured-cluster-services

spec:

 pluginName: stackrox-secured-cluster-services

 config:

 centralEndpoint: "wss://example.com:443" # Specify the address of StackRo

Plugin Uninstallation

Alauda Container Security Plugin Installation - Alauda Container Security

Secret Name Pattern Description

central-* Central related secrets

scanner-* Scanner related secrets

sensor-tls Sensor TLS secret

service-ca Service CA secret

admission-control-tls Admission control TLS

collector-tls Collector TLS secret

stackrox-generated-once One-time generated secret

Alauda Container Security Plugin Installation - Alauda Container Security

This guide provides instructions for installing, configuring, and using the roxctl command-

line interface (CLI) for Alauda Container Security. The CLI is available for Linux, macOS,

Windows, and as a container image.

Overview

Installation

Install on Linux

Install on macOS

Install on Windows

Verification

Configuration

Setting Environment Variables

Authentication Methods

API Token

Using the roxctl CLI

Check Authentication and User Info

roxctl is a CLI tool for managing and interacting with Alauda Container Security.

Supported platforms: Linux, macOS, Windows.

Roxctl CLI Installation

TOC

Overview

Menu ON THIS PAGE

Roxctl CLI Installation - Alauda Container Security

After installation, verify the CLI version to ensure correct setup.

Supported architectures: amd64 , arm64 , ppc64le , s390x

Steps:

1. Determine your architecture:

2. Download the binary form the Portal:

3. Make it executable:

Installation

Install on Linux

arch="$(uname -m | sed 's/x86_64//')"; arch="${arch:+-$arch}"

Roxctl CLI Installation - Alauda Container Security

4. (Optional) Move to a directory in your PATH :

Supported architectures: amd64 , arm64

Steps:

1. Determine your architecture:

2. Download the binary form the Portal:

chmod +x roxctl

echo $PATH

mv roxctl /usr/local/bin/ # if you want to move it to a directory in your

Install on macOS

arch="$(uname -m | sed 's/x86_64//')"; arch="${arch:+-$arch}"

Roxctl CLI Installation - Alauda Container Security

3. Remove extended attributes:

4. Make it executable:

5. (Optional) Move to a directory in your PATH :

Supported architecture: amd64

Steps:

2. Download the binary form the Portal:

xattr -c roxctl

chmod +x roxctl

echo $PATH

mv roxctl /usr/local/bin/

Install on Windows

Roxctl CLI Installation - Alauda Container Security

3. (Optional) Add the directory containing roxctl.exe to your system PATH .

4. Verify the installation:

After installation, verify your roxctl version:

roxctl.exe version

Verification

roxctl version

Configuration

Roxctl CLI Installation - Alauda Container Security

Before using roxctl , set the required environment variables:

If you use an API token for authentication:

Alternatively, you can use the --token-file option:

Note:

Do not use both --password and --token-file options at the same time.

If both ROX_API_TOKEN and --token-file are set, the CLI uses the token file.

If both ROX_API_TOKEN and --password are set, the CLI uses the password.

You can authenticate using an API token, administrator password (for testing only), or via the

roxctl central login command.

API tokens are recommended for production and automation scenarios. They provide specific

access permissions and are valid for up to one year.

To generate an API token:

1. In the Alauda Container Security portal, go to Platform Configuration > Integrations.

2. Under Authentication Tokens, click API Token.

Setting Environment Variables

export ROX_ENDPOINT=<central_host:port>

export ROX_API_TOKEN=<api_token>

roxctl central debug dump --token-file <token_file>

Authentication Methods

API Token

Roxctl CLI Installation - Alauda Container Security

3. Click Generate Token.

4. Enter a name and select a role with the required access.

5. Click Generate and securely store the token.

To use the token:

To view your current authentication status and user profile:

Example output:

Review the output to ensure your authentication and permissions are correct.

export ROX_API_TOKEN=<api_token>

Using the roxctl CLI

Check Authentication and User Info

roxctl central whoami

UserID: <redacted>

User name: <redacted>

Roles: Admin, Analyst, Continuous Integration, etc.

Access: rw Access, rw Administration, rw Alert, ...

Roxctl CLI Installation - Alauda Container Security

Alauda Container Security can be deployed in environments without internet access by

enabling offline mode. In offline mode, all components operate without connecting to external

addresses or hosts.

Enabling Offline Mode

Updating Vulnerability Definitions

Downloading the Definitions

Uploading the Definitions to Central

Using an API Token

When installing via YAML, set env.offlineMode to true .

Scanner maintains a local vulnerability database. In online mode, Central retrieves the latest

vulnerability data from the internet, and Scanner syncs with Central. In offline mode, you must

manually update the vulnerability data by uploading a definitions file to Central, which Scanner

then retrieves.

Using Alauda Container Security in Offline
Mode

TOC

Enabling Offline Mode

Updating Vulnerability Definitions

Menu ON THIS PAGE

Using Alauda Container Security in Offline Mode - Alauda Container Security

Scanner checks for new data from Central every 5 minutes by default.

The offline data source is updated approximately every 3 hours.

Use the following command to download the definitions:

Alternatively, download from:

https://install.stackrox.io/scanner/scanner-vuln-updates.zip

You can upload the vulnerability definitions database to Central using either an API token or

your administrator password.

Prerequisites:

API token with administrator role

roxctl CLI installed

Procedure:

Downloading the Definitions

roxctl scanner download-db --scanner-db-file scanner-vuln-updates.zip

↗

Uploading the Definitions to Central

Using an API Token

export ROX_API_TOKEN=<api_token>

export ROX_CENTRAL_ADDRESS=<address>:<port_number>

roxctl scanner upload-db \

 -e "$ROX_CENTRAL_ADDRESS" \

 --scanner-db-file=<compressed_scanner_definitions.zip>

Using Alauda Container Security in Offline Mode - Alauda Container Security

https://install.stackrox.io/scanner/scanner-vuln-updates.zip
https://install.stackrox.io/scanner/scanner-vuln-updates.zip
https://install.stackrox.io/scanner/scanner-vuln-updates.zip

Viewing Dashboard

Dashboards

Introduction

Status Bar

Dashboard Widgets

Menu

Dashboards - Alauda Container Security

Introduction

Status Bar

Dashboard Widgets

Violations by Severity

Top Vulnerable Images

Top Risky Deployments

Image Age Distribution

Policy Violations by Category

Compliance by Standard

The Alauda Container Security Dashboard provides a centralized view of your cluster's

security and compliance posture. This document introduces the Dashboard's main

components and explains how to use its features to monitor and manage your environment

effectively.

The Status Bar offers a quick overview of key resources in your environment and provides

direct navigation to detailed resource lists. The counters reflect your current access scope, as

Viewing Dashboard

TOC

Introduction

Status Bar

Menu ON THIS PAGE

Viewing Dashboard - Alauda Container Security

defined by your user roles.

Counter Destination

Clusters Platform Configuration Clusters

Nodes Configuration Management Application & Infrastructure Nodes

Violations Violations main menu

Deployments Configuration Management Application & Infrastructure Deployments

Images Vulnerability Management Dashboard Images

Secrets Configuration Management Application & Infrastructure Secrets

Use the Status Bar to quickly access detailed lists of clusters, nodes, violations, deployments,

images, and secrets.

A top-level filter applies to all widgets. You can select clusters and namespaces to narrow the

data shown. If no selection is made, the view defaults to All. Changes to the filter are instantly

reflected in all widgets, except the Status Bar.

Widgets are customizable, allowing you to sort, filter, and adjust their output. Customization

options include:

An Options menu for widget-specific settings.

A dynamic axis legend to filter data by hiding or showing axis categories. For example, in

the Policy Violations by Category widget, you can include or exclude violations by

severity.

Note:

Widget customization settings are temporary and reset to defaults when you leave the

Dashboard.

Dashboard Widgets

Viewing Dashboard - Alauda Container Security

The Dashboard provides several actionable widgets to help you monitor and manage security

risks and compliance. Each widget is described below with its main function and usage tips.

This widget helps you quickly identify the most critical policy violations in your environment. It

displays the distribution of violations by severity for the filtered scope. Click a severity level to

navigate to the Violations page, filtered accordingly. The widget also lists the three most

recent Critical policy violations within the selected scope. Click a violation to open its detail

page and take action.

This widget highlights images with the highest risk, allowing you to prioritize remediation. It

shows the top six vulnerable images in the filtered scope, sorted by risk priority, along with

their critical and important CVEs. Click an image name to view its findings in Vulnerability

Management. Use the Options menu to focus on fixable CVEs or active images.

Note:

When clusters or namespaces are selected in the Dashboard filter, only active images or

those used by deployments in the filtered scope are shown.

This widget identifies the deployments most at risk in your environment, helping you focus on

remediation. It shows the top deployments at risk, including their cluster, namespace, and risk

score. Click a deployment to view its risk details, including policy violations and vulnerabilities,

and take corrective action as needed.

This widget helps you assess the risk posed by older images, which may contain known

vulnerabilities. You can use default or custom age ranges, and view both active and inactive

images. Click an age group to see those images in the Vulnerability Management Images

page. Use this widget to prioritize updating or removing outdated images.

Violations by Severity

Top Vulnerable Images

Top Risky Deployments

Image Age Distribution

Policy Violations by Category

Viewing Dashboard - Alauda Container Security

This widget provides insights into policy compliance challenges by showing the five most

violated policy categories. Use the Options menu to filter by deploy or runtime violations, and

change sorting modes (by highest severity or total violations). Some categories, like "Docker

CIS," may have no critical policies, affecting the view depending on the sorting mode. Click a

severity level at the bottom of the graph to include or exclude it. This may change the top five

categories displayed. Data is filtered by the Dashboard filter.

This widget helps you track compliance with key security benchmarks. It lists the top or bottom

six compliance benchmarks, depending on sort order. Use Options to sort by coverage

percentage. Click a benchmark label or graph to go to the Compliance Controls page,

filtered by scope and benchmark. Use this widget to focus your compliance efforts where they

are needed most.

By leveraging the Status Bar and Dashboard Widgets, you can efficiently monitor, investigate,

and improve the security and compliance posture of your Kubernetes environment.

Compliance by Standard

Viewing Dashboard - Alauda Container Security

Introduction

Introduction

Guides

Network Graph

Network

Entities in the Network Graph

Network Components

Network Flows

Network Policies

Tips for Using the Network Graph

Viewing Deployment Details in a Namespace

Viewing Network Policies

Managing CIDR Blocks

Menu

Network - Alauda Container Security

Network Baseline Management in the Network Graph

HowTo

Generating Network Policies with Alauda Container Security

How Network Baselining Works

Viewing and Managing Network Baselines

Downloading Network Baselines

Configuring Baseline Observation Period

Enabling Alerts for Anomalous Network Flows

Overview

How to Generate Network Policies

Downloading and Applying Policies

Reverting and Deleting Policies

Additional Notes

Network - Alauda Container Security

A Kubernetes network policy is a specification of how groups of pods are allowed to

communicate with each other and other network endpoints. These network policies are

configured as YAML files. By looking at these files alone, it is often hard to identify whether the

applied network policies achieve the desired network topology.

Alauda Container Security gathers all defined network policies from your orchestrator and

provides tools to make these policies easier to use.

To support network policy enforcement, Alauda Container Security provides the following

tools:

Network graph

Network policy generator

Network policy simulator

Build-time network policy generator

Introduction

↗

Menu

Introduction - Alauda Container Security

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

Network Graph

Network Baseline Management in the Network Graph

Guides

Entities in the Network Graph

Network Components

Network Flows

Network Policies

Tips for Using the Network Graph

Viewing Deployment Details in a Namespace

Viewing Network Policies

Managing CIDR Blocks

How Network Baselining Works

Viewing and Managing Network Baselines

Downloading Network Baselines

Configuring Baseline Observation Period

Enabling Alerts for Anomalous Network Flows

Menu

Guides - Alauda Container Security

The network graph in Alauda Container Security offers both high-level and detailed insights

into deployments, network flows, and network policies within your environment. It helps you

visualize how workloads communicate, monitor real-time and potential network traffic, and

manage network security policies efficiently.

Alauda Container Security analyzes all network policies in each secured cluster, showing

which deployments can communicate with each other and which can access external

networks. It also tracks running deployments and their network traffic. The network graph

displays the following core elements:

Entities in the Network Graph

Internal Entities

External Entities

Network Components

Network Flows

Network Policies

Tips for Using the Network Graph

Scenarios for Internal Entities

Viewing Deployment Details in a Namespace

Viewing Network Policies

Managing CIDR Blocks

Network Graph

TOC

Entities in the Network Graph

Menu ON THIS PAGE

Network Graph - Alauda Container Security

Internal entities represent connections between a deployment and an IP address within the

private address space as defined in RFC 1918 . For more details, see "Connections

involving internal entities".

External entities represent connections between a deployment and an IP address outside the

private address space as defined in RFC 1918 . For more details, see "External entities and

connections in the network graph".

You can use the top menu to select namespaces (NS label) and deployments (D label) to

display on the graph for a chosen cluster (CL label). Deployments can be further filtered by

CVEs, labels, or images using the drop-down list.

The network graph supports two types of flow visualization:

Active traffic: Displays observed, real-time traffic for the selected namespace or

deployment. You can adjust the time period for the data shown.

Inactive flows: Shows potential flows allowed by your network policies, helping you

identify where additional policies may be needed for tighter isolation.

Internal Entities

↗

External Entities

↗

Network Components

Network Flows

Network Policies

Network Graph - Alauda Container Security

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918

You can view existing policies for a selected component or identify components without

policies. The network graph also allows you to simulate network policies. For more

information, see "Simulating network policies from the network graph".

You can interact with the network graph to view more details about items and perform actions

such as adding a network flow to your baseline.

Figure 1 Network graph example

Open the legend to learn about the symbols used for namespaces, deployments, and

connections.

Use the display options drop-down to show or hide icons such as the network policy status

badge, active external traffic badge, and port/protocol labels for edge connections.

Alauda Container Security detects changes in network traffic, such as nodes joining or

leaving. When changes are detected, a notification appears showing the number of

updates available. Click the notification to refresh the graph.

Tips for Using the Network Graph

Network Graph - Alauda Container Security

When you click an item in the graph, a side panel with collapsible sections presents detailed

information about that item. You can select:

Deployments

Namespaces

External entities

CIDR blocks

External groups

The side panel displays relevant information based on your selection. The D or NS label next

to the item name (e.g., "visa-processor") indicates whether it is a deployment or a namespace.

Below is an example of the side panel for a deployment:

Figure 2 Side panel for a deployment example

When viewing a namespace, the side panel includes a search bar and a list of deployments.

You can click a deployment to view its information. The side panel also includes a Network

policies tab, from which you can view, copy, or export any network policy defined in that

namespace.

Figure 3 Side panel for a namespace example

Network Graph - Alauda Container Security

Common scenarios for internal entity connections include:

A change of IP address or deletion of a deployment accepting connections (the server)

while the client still attempts to reach it

A deployment communicating with the orchestrator API

A deployment communicating using a networking CNI plugin (e.g., Calico)

A restart of the Sensor, resulting in a reset of the mapping of IP addresses to past

deployments (e.g., when the Sensor does not recognize the IP addresses of past entities or

past IP addresses of existing entities)

A connection involving an entity not managed by the orchestrator (sometimes seen as

outside the cluster) but using an IP address from the private address space as defined in

RFC 1918

Internal entities are indicated with an icon. Clicking on Internal entities shows the flows for

these entities.

To view details for deployments in a namespace:

Scenarios for Internal Entities

Viewing Deployment Details in a Namespace

Network Graph - Alauda Container Security

1. In the Alauda Container Security portal, go to Network Graph and select your cluster

from the drop-down list.

2. Click the Namespaces list and use the search field to locate a namespace, or select

individual namespaces.

3. Click the Deployments list and use the search field to locate a deployment, or select

individual deployments to display in the network graph.

4. In the network graph, click on a deployment to view the information panel.

5. Click the Details, Flows, Baseline, or Network policies tab to view the corresponding

information.

Kubernetes NetworkPolicy resources use labels to select pods and define rules specifying

what traffic is allowed to or from the selected pods. Alauda Container Security discovers and

displays network policy information for all your Kubernetes clusters, namespaces,

deployments, and pods in the network graph.

To view network policies:

1. In the Alauda Container Security portal, go to Network Graph and select your cluster

from the drop-down list.

2. Click the Namespaces list and select individual namespaces, or use the search field to

locate a namespace.

3. Click the Deployments list and select individual deployments, or use the search field to

locate a deployment.

4. In the network graph, click on a deployment to view the information panel.

5. In the Details tab, under Network security, you can view summary messages about

network policy rules, including:

Whether policies exist in the network that regulate ingress or egress traffic

Whether your network is missing policies and is therefore allowing all ingress or egress

traffic

Viewing Network Policies

Network Graph - Alauda Container Security

6. To view the YAML file for the network policies, click on the policy rule or the Network

policies tab.

You can specify custom CIDR blocks or configure the display of auto-discovered CIDR blocks

in the network graph.

To manage CIDR blocks:

1. In the Alauda Container Security portal, go to Network Graph, then select Manage CIDR

Blocks.

2. You can:

Toggle Auto-discovered CIDR blocks to hide auto-discovered CIDR blocks in the

network graph.

Note: Hiding auto-discovered CIDR blocks applies to all clusters, not just the selected

cluster in the network graph.

Add a custom CIDR block:

6.1. Enter the CIDR name and CIDR address in the fields. To add more, click Add

CIDR block and enter information for each block.

6.2. Click Update Configuration to save the changes.

Managing CIDR Blocks

Network Graph - Alauda Container Security

Alauda Container Security helps you minimize network risks by using network baselining. This

proactive approach secures your infrastructure by learning normal network flows and

identifying any deviations as anomalies.

How Network Baselining Works

Viewing and Managing Network Baselines

Steps to View Baselines

Marking Baseline Flows as Anomalous

Additional Options

Downloading Network Baselines

Configuring Baseline Observation Period

Setting Environment Variables

Enabling Alerts for Anomalous Network Flows

When you first install Alauda Container Security , there is no default network baseline. As

Alauda Container Security observes network activity, it automatically adds discovered network

flows to the baseline:

New network flows are added to the baseline during the observation phase.

These flows are considered normal and do not trigger any alerts or violations.

Network Baseline Management in the Network
Graph

TOC

How Network Baselining Works

Menu ON THIS PAGE

Network Baseline Management in the Network Graph - Alauda Container Security

After the observation phase:

Alauda Container Security stops adding new flows to the baseline.

Any new network flow not in the baseline is marked as anomalous, but does not trigger

violations by default.

You can view and manage network baselines in the network graph interface.

1. Click the Namespaces dropdown and search or select namespaces.

2. Click the Deployments dropdown and search or select deployments to display in the

network graph.

3. In the network graph, click a deployment to open its information panel.

4. Go to the Baseline tab. Use the filter by entity name field to narrow down displayed

flows.

To mark a single flow as anomalous, select the entity, click the overflow menu, and choose

Mark as anomalous.

To mark multiple flows, select them, click Bulk actions, and choose Mark as anomalous.

Exclude ports and protocols: Check the box to ignore port and protocol information in the

baseline.

Download as network policy: Click Download baseline as network policy to export the

baseline as a YAML file.

Viewing and Managing Network Baselines

Steps to View Baselines

Marking Baseline Flows as Anomalous

Additional Options

Network Baseline Management in the Network Graph - Alauda Container Security

You can export network baselines as YAML files for further use.

Steps:

1. In the Alauda Container Security portal, go to Network Graph.

2. Select the desired namespaces and deployments.

3. In the deployment's information panel, open the Baseline tab.

4. (Optional) Filter flows or exclude ports/protocols.

5. Click Download baseline as network policy.

You can adjust how long Alauda Container Security observes network flows before finalizing

the baseline using environment variables.

Set the following variables in your deployment:

<value> must be a valid time unit, e.g., 300ms , 2h45m , -1.5h .

Supported units: ns , us / µs , ms , s , m , h .

Downloading Network Baselines

Configuring Baseline Observation Period

Setting Environment Variables

kubectl -n stackrox set env deploy/central ROX_NETWORK_BASELINE_OBSERVATION_P

kubectl -n stackrox set env deploy/central ROX_BASELINE_GENERATION_DURATION=<

Enabling Alerts for Anomalous Network Flows

Network Baseline Management in the Network Graph - Alauda Container Security

Alauda Container Security can be configured to trigger violations for anomalous network flows

(flows not in the baseline).

Steps:

1. In the network graph, select the desired namespace and deployment.

2. Open the Baseline tab in the deployment's information panel.

3. Toggle the Alert on baseline violations option.

When enabled, anomalous flows will trigger violations.

Toggle off to stop receiving such alerts.

Network Baseline Management in the Network Graph - Alauda Container Security

Generating Network Policies with Alauda Container Security

HowTo

Overview

How to Generate Network Policies

Downloading and Applying Policies

Reverting and Deleting Policies

Additional Notes

Menu

HowTo - Alauda Container Security

Alauda Container Security enables you to automatically generate Kubernetes network policies

based on observed network flows, helping you secure pod communication and reduce your

attack surface.

Overview

How to Generate Network Policies

Downloading and Applying Policies

Reverting and Deleting Policies

Additional Notes

Kubernetes network policies define which pods can receive or send network traffic. Manually

creating these YAML files can be complex. Alauda Container Security simplifies this by

generating policies according to the following principles:

One Policy per Deployment: Alauda Container Security generates a network policy for

each deployment in the selected namespace, using the deployment's pod selector.

If a deployment already has a network policy, Alauda Container Security will not

overwrite or delete it.

New deployments are unrestricted until you generate or create new policies for them.

Generating Network Policies with Alauda
Container Security

TOC

Overview

Menu ON THIS PAGE

Generating Network Policies with Alauda Container Security - Alauda Container Security

If a new deployment needs to access a protected deployment, you may need to update

the policy.

Naming Convention: Each policy is named stackrox-generated-<deployment-name>

and includes an identifying label.

Allowing External Traffic: Alauda Container Security generates a rule allowing traffic from

any IP if:

The deployment receives connections from outside the cluster during the selected

period, or

The deployment is exposed via a node port or load balancer service.

Ingress Rules: For each observed incoming connection:

If from the same namespace, Alauda Container Security uses the source deployment's

pod selector.

If from a different namespace, Alauda Container Security uses a namespace selector

and automatically labels namespaces as needed.

Note: If a standalone pod lacks labels, the generated policy may allow traffic from/to the

entire namespace.

You can generate policies for clusters, namespaces, or specific deployments using the Alauda

Container Security Network Graph.

To generate network policies, follow these steps:

1. In the Alauda Container Security portal, go to Network Graph.

2. Select a cluster and one or more namespaces.

3. (Optional) Select specific deployments or use Filter deployments to narrow the scope.

4. Click Network Policy Generator in the header.

5. (Optional) In the info panel, select Exclude ports & protocols to remove port/protocol

restrictions.

How to Generate Network Policies

Generating Network Policies with Alauda Container Security - Alauda Container Security

6. Click Generate and simulate network policies. The selected scope is shown at the top

of the panel.

7. (Optional) Copy or download the generated YAML file.

8. (Optional) Click Compare to view existing and generated policies side by side.

9. (Optional) Use the Actions menu to:

Share the YAML file with notifiers (e.g., Slack, ServiceNow, webhooks).

Rebuild rules from active traffic.

Revert to previously applied YAML.

Note: Some namespaces (e.g., with existing ingress policies or protected namespaces)

may not have generated policies.

After generating policies, you can download and apply them to your cluster using the CLI or

automated tools.

To apply policies:

To remove policies:

Warning: Always test network policies in a development or test environment before

applying to production, as they may disrupt running applications.

Downloading and Applying Policies

$ kubectl create -f "<generated_file>.yml"

$ kubectl delete -f "<generated_file>.yml"

Reverting and Deleting Policies

Generating Network Policies with Alauda Container Security - Alauda Container Security

To revert to a previous policy, use the Revert rules to previously applied YAML option in

the Alauda Container Security portal.

To delete all automatically generated policies:

The Network Graph does not visualize generated policies.

Only ingress traffic is restricted by generated policies; egress policies are not generated.

$ kubectl get ns -o jsonpath='{.items[*].metadata.name}' | \

xargs -n 1 kubectl delete networkpolicies -l \

'network-policy-generator.stackrox.io/generated=true' -n

Additional Notes

Generating Network Policies with Alauda Container Security - Alauda Container Security

Introduction

Introduction

Guides

Responding to Violations

Violation

What is a Policy Violation?

How Violations Are Detected

Namespace Conditions for Platform Components

Viewing Violations

Violation Details

Policy Tab

Menu

Violation - Alauda Container Security

What is a Policy Violation?

How Violations Are Detected

Alauda Container Security for Kubernetes allows you to view, investigate, and address policy

violations in your clusters. You can quickly identify the root cause of a violation and take

corrective actions to improve your security posture.

Alauda Container Security's built-in policies detect a wide range of security issues, including:

Vulnerabilities (CVEs)

Violations of DevOps best practices

High-risk build and deployment activities

Suspicious runtime behaviors

You can use the default security policies or define your own custom policies. When an

enabled policy is violated, Alauda Container Security reports it as a violation for your review

and remediation.

Introduction

TOC

What is a Policy Violation?

How Violations Are Detected

Menu ON THIS PAGE

Introduction - Alauda Container Security

Responding to Violations

Guides

Namespace Conditions for Platform Components

Viewing Violations

Violation Details

Policy Tab

Menu

Guides - Alauda Container Security

Alauda Container Security helps you view, investigate, and address policy violations.

Its built-in policies detect vulnerabilities (CVEs), DevOps best practice violations, risky

build/deploy actions, and suspicious runtime behaviors. Violations are reported when enabled

policies are not met.

Understanding namespace conditions helps you manage which namespaces belong to the

Alauda Container Platform, layered products, and third-party partners.

Namespace Conditions for Platform Components

Viewing Violations

Violation Details

Violation Tab

Deployment Tab

Container Configuration

Port Configuration

Security Context

Network Policy

Policy Tab

Policy Overview

Policy Behavior

Policy Criteria

Responding to Violations

TOC

Menu ON THIS PAGE

Responding to Violations - Alauda Container Security

Platform
Component

Namespace Condition

Alauda

Container

Platform

Namespace = cpaas-system , Namespace starts with kube-

Layered

Products

Namespace = stackrox , Namespace starts with acs-operator ,

Namespace starts with open-cluster-management , Namespace =

multicluster-engine , Namespace = aap , Namespace = hive

Third Party

Partners
Namespace = nvidia-gpu-operator

Alauda Container Security uses the following regex to identify platform workloads:

This definition is not customizable. To see its effect:

1. Click Search in the portal.

2. Select Show Orchestrator Components.

3. Filter by Platform Component: true .

1. In the portal, click Violations.

2. Tabs let you view violations by category:

User Workloads: User-managed workloads

Platform: Platform and layered services

Namespace Conditions for Platform Components

^kube-.*|^alauda-.*|^stackrox$|^acs-operator$|^open-cluster-management$|^mult

Viewing Violations

Responding to Violations - Alauda Container Security

All Violations: All, including audit log violations

3. Tabs let you view by type:

Active: Unresolved or in build/deploy

Resolved: Addressed or manually resolved

Attempted: Blocked by enforced policies

4. Sort, filter, and view details as needed.

5. To exclude deployments from a policy:

For one: use the overflow menu, select Exclude deployment from policy

For multiple: use Row actions > Exclude deployments from policy

The Violations page shows:

Policy: Violated policy name

Entity: Where the violation occurred

Type: Entity type (e.g., Deployment, Pod, DaemonSet, Secrets, ConfigMaps, ClusterRoles)

Enforced: Whether enforcement was active

Severity: Low , Medium , High , Critical

Categories: Policy category

Lifecycle: Build , Deploy , Runtime

Time: When the violation occurred

Selecting a violation opens a details panel:

Shows how the policy was violated, including specific values or runtime process details.

Violation Details

Violation Tab

Deployment Tab

Responding to Violations - Alauda Container Security

Shows deployment details:

Deployment ID/Name/Type

Cluster/Namespace/Replicas

Created/Updated times

Labels/Annotations/Service Account

Image Name

Resources: CPU/Memory requests and limits

Volumes

Secrets: Name and container path

Volume Details: Name, source, destination, type

containerPort

protocol

exposure

exposureInfo: Internal/external, service name/ID, cluster IP, service port, node port,

external IPs

Privileged: true or false

Lists namespace and network policies; click a policy name to view YAML

Shows details of the policy that caused the violation.

Container Configuration

Port Configuration

Security Context

Network Policy

Policy Tab

Responding to Violations - Alauda Container Security

Severity

Categories

Type: User or system policy

Description

Rationale

Guidance

MITRE ATT&CK: Related tactics/techniques

Lifecycle Stage: Build , Deploy , Runtime

Event Source (for Runtime):

Deployment: Triggered by process/network activity, pod execution, or port forwarding

Audit logs: Triggered by matching audit log records

Response:

Inform: Generates a violation

Inform and enforce: Enforced

Enforcement:

Build: Fails CI builds for noncompliant images

Deploy: Blocks creation/update of noncompliant deployments if admission controller is

enabled

Runtime: Deletes pods when events match policy criteria

Alauda Container Security supports two deploy-time enforcement types:

Hard Enforcement: Admission controller blocks creation or update of violating

deployments

Policy Overview

Policy Behavior

Policy Criteria

Responding to Violations - Alauda Container Security

Soft Enforcement: Sensor scales replicas to 0 for violating deployments

Note: By default, certain admin namespaces (e.g., stackrox , kube-system , cpaas-

system , istio-system) are excluded from enforcement. Requests from service accounts in

system namespaces are also bypassed.

For existing deployments, policy changes are enforced at the next relevant Kubernetes event.

To reassess, go to Policy Management and click Reassess All.

Responding to Violations - Alauda Container Security

Introduction

Introduction

Guides

Workload and Cluster Compliance Monitoring

How to

How to

Compliance

Overview

Key Concepts

Running a Compliance Scan

Viewing Compliance Results

Generating Compliance Reports

Menu

Compliance - Alauda Container Security

Alauda Container Security provides automated compliance checks to help your Kubernetes

clusters meet industry standards and regulatory requirements. By continuously scanning your

environment against benchmarks CIS, it enables you to identify and address compliance gaps

efficiently.

With support for multiple compliance frameworks—including CIS, allows you to:

Evaluate and demonstrate regulatory compliance across your infrastructure.

Strengthen the security posture of your Kubernetes environment.

Gain clear visibility into the compliance status of clusters, namespaces, and nodes.

By leveraging these capabilities, you can proactively manage compliance risks, streamline

audits, and ensure your containerized workloads operate in accordance with best practices

and regulatory requirements.

Introduction

Menu

Introduction - Alauda Container Security

Workload and Cluster Compliance Monitoring

Guides

Overview

Key Concepts

Running a Compliance Scan

Viewing Compliance Results

Generating Compliance Reports

Menu

Guides - Alauda Container Security

Alauda Container Security enables you to perform compliance scans to assess the

compliance status of your entire infrastructure. The compliance dashboard provides a

centralized view, allowing you to filter data and monitor compliance across clusters,

namespaces, and nodes.

Overview

Key Concepts

Running a Compliance Scan

Viewing Compliance Results

Compliance Dashboard

By Standard

By Control

Filtering Compliance Data

Generating Compliance Reports

Evidence Report Fields

By generating detailed compliance reports and focusing on specific standards, controls, and

industry benchmarks, you can track and share the compliance status of your environment,

ensuring your infrastructure meets required standards.

Workload and Cluster Compliance Monitoring

TOC

Overview

Menu ON THIS PAGE

Workload and Cluster Compliance Monitoring - Alauda Container Security

A compliance scan creates a snapshot of your environment, including alerts, images, network

policies, deployments, and host-based data. Data is collected from Sensors and compliance

containers running in each Collector pod.

The compliance container gathers:

Configurations for the container daemon, runtime, and images

Container network information

Command-line arguments and processes for the container runtime, Kubernetes, and

Alauda Container Platform

Permissions for specific file paths

Configuration files for Kubernetes and Alauda Container Platform core services

After data collection, Alauda Container Security analyzes the results, which are available in

the compliance dashboard and can be exported as reports.

Control: A single requirement in an industry or regulatory standard. Alauda Container

Security verifies compliance with a control by performing one or more checks.

Check: A specific test performed during a control assessment. If any check fails, the control

is marked as Fail.

1. In the Alauda Container Security portal, go to Compliance Dashboard.

2. (Optional) To filter by specific standards:

Click Manage standards.

Deselect any standards you do not want to display.

Click Save.

Key Concepts

Running a Compliance Scan

Workload and Cluster Compliance Monitoring - Alauda Container Security

3. Click Scan environment.

INFO

Scanning the entire environment typically takes about 2 minutes, depending on the number of

clusters and nodes.

The dashboard provides an overview of compliance standards across all clusters,

namespaces, and nodes, including charts and options to investigate issues.

To view compliance status for all clusters: Go to Compliance Dashboard and select the

Clusters tab.

To view a specific cluster: In the Passing standards by cluster widget, click a cluster

name.

To view all namespaces: Go to Compliance Dashboard and select the Namespaces tab.

To view a specific namespace: In the Namespaces table, click a namespace to open its

details.

Alauda Container Security supports CIS compliance standards. To view controls for a specific

standard:

1. Go to Compliance Dashboard.

2. In the Passing standards across clusters widget, click a standard to see all associated

controls.

Viewing Compliance Results

Compliance Dashboard

By Standard

By Control

Workload and Cluster Compliance Monitoring - Alauda Container Security

To view the compliance status for a specific control:

1. Go to Compliance Dashboard.

2. In the Passing standards by cluster widget, click a standard.

3. In the Controls table, click a control to view its details.

You can filter compliance data by clusters, standards, or control status:

1. Go to Compliance Dashboard.

2. Select the Clusters, Namespaces, or Nodes tab.

3. Enter filtering criteria in the search bar and press Enter.

Alauda Container Security allows you to generate:

Executive reports: Business-focused, with charts and summaries (PDF format)

Evidence reports: Technical, with detailed information (CSV format)

To export reports:

1. Go to Compliance Dashboard.

2. Click the Export tab:

Select Download Page as PDF for executive reports

Select Download Evidence as CSV for evidence reports

INFO

The Export option is available on all compliance pages and filtered views.

Filtering Compliance Data

Generating Compliance Reports

Evidence Report Fields

Workload and Cluster Compliance Monitoring - Alauda Container Security

CSV Field Description

Standard The compliance standard, e.g., CIS Kubernetes

Cluster The name of the assessed cluster

Namespace The namespace or project where the deployment exists

Object Type
The Kubernetes entity type (e.g., node, cluster, DaemonSet,

Deployment)

Object Name The unique name of the object

Control The control number as per the compliance standard

Control

Description
Description of the compliance check

State Whether the compliance check passed or failed

Evidence Explanation for the compliance check result

Assessment Time The time and date when the compliance scan was run

Workload and Cluster Compliance Monitoring - Alauda Container Security

How to

Menu

How to - Alauda Container Security

Introduction

Introduction

Guides

Vulnerability Management Process

Vulnerablitiy

Overview

Key Steps in Vulnerability Management

Asset Assessment

Key Assets to Monitor

Vulnerability Scanning and Assessment

Prioritizing Vulnerabilities

Exposure Assessment

Taking Action

Menu

Vulnerablitiy - Alauda Container Security

Viewing and Addressing Vulnerabilities

Vulnerability Reporting

How to

Examining Images for Vulnerabilities

Overview of Vulnerability Management

Navigating Vulnerability Views

Exception Management

Identifying and Remediating Vulnerabilities

Exporting Vulnerability Data

Best Practices

Planning Vulnerability Reports

Creating a Vulnerability Report

Configuring Delivery Destinations and Schedule

Reviewing and Creating the Report Configuration

Access Control and Permissions

Editing and Managing Report Configurations

Generating and Downloading Reports

Sending Reports Immediately

Report Retention and Expiry Settings

Scanner V4 Overview

Scanner Workflow

Supported Platforms and Formats

Image Scanning and Watch List

Vulnerability Data Updates

Vulnerablitiy - Alauda Container Security

Generating SBOMs from Scanned Images

Image Scanning Using the roxctl CLI

What is an SBOM?

How to Generate SBOMs

Scanning an Image in a Remote Cluster

roxctl image scan Command Options

Vulnerablitiy - Alauda Container Security

Security vulnerabilities can be exploited by attackers to perform actions such as denial of

service, remote code execution, or unauthorized access to sensitive data. Effective

vulnerability management is essential for building a secure Kubernetes environment.

Introduction

Menu

Introduction - Alauda Container Security

Vulnerability Management Process

Viewing and Addressing Vulnerabilities

Guides

Overview

Key Steps in Vulnerability Management

Asset Assessment

Key Assets to Monitor

Vulnerability Scanning and Assessment

Prioritizing Vulnerabilities

Exposure Assessment

Taking Action

Overview of Vulnerability Management

Navigating Vulnerability Views

Exception Management

Identifying and Remediating Vulnerabilities

Exporting Vulnerability Data

Best Practices

Menu

Guides - Alauda Container Security

Vulnerability Reporting
Planning Vulnerability Reports

Creating a Vulnerability Report

Configuring Delivery Destinations and Schedule

Reviewing and Creating the Report Configuration

Access Control and Permissions

Editing and Managing Report Configurations

Generating and Downloading Reports

Sending Reports Immediately

Report Retention and Expiry Settings

Guides - Alauda Container Security

Overview

Key Steps in Vulnerability Management

Asset Assessment

Key Assets to Monitor

Vulnerability Scanning and Assessment

Prioritizing Vulnerabilities

Exposure Assessment

Taking Action

Remediation Methods

Vulnerability management is a continuous process to identify and remediate vulnerabilities.

Alauda Container Security helps you facilitate an effective vulnerability management process.

A successful vulnerability management program typically includes the following key tasks:

Asset assessment

Vulnerability prioritization

Vulnerability Management Process

TOC

Overview

Key Steps in Vulnerability Management

Menu ON THIS PAGE

Vulnerability Management Process - Alauda Container Security

Exposure assessment

Taking action

Continuous reassessment

Alauda Container Security enables organizations to continuously assess their Alauda

Container Platform and Kubernetes clusters, providing the contextual information needed to

prioritize and address vulnerabilities more effectively.

To assess your organization's assets, follow these steps:

Identify assets in your environment

Scan these assets to detect known vulnerabilities

Report vulnerabilities to relevant stakeholders

When you install Alauda Container Security on your Kubernetes or Alauda Container Platform

cluster, it aggregates the assets running inside your cluster to help you identify them. Alauda

Container Security allows organizations to perform ongoing assessments and provides the

context required to prioritize and remediate vulnerabilities efficiently.

Key assets to monitor in your vulnerability management process using Alauda Container

Security include:

Components: Software packages used as part of an image or running on a node.

Components are the lowest level where vulnerabilities exist. Organizations must upgrade,

modify, or remove software components to remediate vulnerabilities.

Images: Collections of software components and code that create an environment to run

executable code. Images are where you upgrade components to fix vulnerabilities.

Asset Assessment

Key Assets to Monitor

Vulnerability Management Process - Alauda Container Security

Nodes: Servers used to manage and run applications using Alauda Container Platform or

Kubernetes, including the components that make up the platform or service.

Alauda Container Security organizes these assets into the following structures:

Deployment: A definition of an application in Kubernetes that may run pods with containers

based on one or more images.

Namespace: A grouping of resources, such as Deployments, that support and isolate an

application.

Cluster: A group of nodes used to run applications using Alauda Container Platform or

Kubernetes.

Alauda Container Security scans assets for known vulnerabilities and uses Common

Vulnerabilities and Exposures (CVE) data to assess their impact.

To prioritize vulnerabilities for action and investigation, consider the following questions:

How important is the affected asset to your organization?

How severe must a vulnerability be to warrant investigation?

Can the vulnerability be fixed by patching the affected software component?

Does the vulnerability violate any of your organization's security policies?

The answers to these questions help security and development teams determine the

exposure and necessary response to a vulnerability.

Alauda Container Security provides tools to facilitate the prioritization of vulnerabilities in your

applications and components. You can use data reported by Alauda Container Security to

decide which vulnerabilities are critical to address. For example, when reviewing vulnerability

Vulnerability Scanning and Assessment

Prioritizing Vulnerabilities

Vulnerability Management Process - Alauda Container Security

findings by CVE, consider the following data provided by Alauda Container Security to sort

and prioritize vulnerabilities:

CVE severity: Number of images affected by the CVE and its severity rating (e.g., low,

moderate, important, or critical).

Top CVSS: The highest Common Vulnerability Scoring System (CVSS) score, from vendor

sources, for this CVE across images.

Top NVD CVSS: The highest CVSS score from the National Vulnerability Database for this

CVE across images. Scanner V4 must be enabled to view this data.

EPSS probability: The likelihood that the vulnerability will be exploited, according to the

Exploit Prediction Scoring System (EPSS) . This provides a percentage estimate of the

probability that exploitation will be observed in the next 30 days. EPSS data should be

used alongside other information, such as the age of the CVE, to help prioritize

vulnerabilities.

To assess your exposure to a vulnerability, ask:

Is your application impacted by the vulnerability?

Is the vulnerability mitigated by other factors?

Are there known threats that could lead to exploitation?

Are you using the vulnerable software package?

Is it worthwhile to spend time addressing this specific vulnerability and package?

Based on your assessment, you may take the following actions:

Mark the vulnerability as a false positive if there is no exposure or it does not apply in your

environment.

↗

Exposure Assessment

Taking Action

Vulnerability Management Process - Alauda Container Security

https://www.first.org/epss/model
https://www.first.org/epss/model
https://www.first.org/epss/model

Decide whether to remediate, mitigate, or accept the risk if you are exposed.

Remove or change the software package to reduce your attack surface.

Once you decide to act on a vulnerability, you can:

Remediate the vulnerability

Mitigate and accept the risk

Accept the risk

Mark the vulnerability as a false positive

To remediate vulnerabilities, you can:

Remove a software package

Update a software package to a non-vulnerable version

Remediation Methods

Vulnerability Management Process - Alauda Container Security

Alauda Container Security provides comprehensive tools for discovering, viewing, prioritizing,

and addressing vulnerabilities in your container and cluster environments. This document

describes how to use the platform to manage vulnerabilities efficiently and securely.

Overview of Vulnerability Management

Navigating Vulnerability Views

User Workload Vulnerabilities

How to View User Workload Vulnerabilities

User Workload Filter Options

Platform Vulnerabilities

How to View Platform Vulnerabilities

Platform Filter Options

Node Vulnerabilities

How to View Node Vulnerabilities

Node Filter Options

More Views

How to Use More Views

Exception Management

Snoozing CVEs

Steps to Snooze/Unsnooze CVEs

Marking CVEs as False Positives

Steps to Mark as False Positive

Deferring CVEs

Steps to Defer CVEs

Viewing and Addressing Vulnerabilities

TOC

Menu ON THIS PAGE

Viewing and Addressing Vulnerabilities - Alauda Container Security

Managing Exception Requests

Viewing Deferred and False Positive CVEs

Identifying and Remediating Vulnerabilities

Identifying Vulnerable Dockerfile Lines

Steps

Upgrading Components

Steps

Exporting Vulnerability Data

How to Export via API

Example

Best Practices

Alauda Container Security enables you to:

Identify vulnerabilities in workloads, platform components, and nodes

Filter and prioritize vulnerabilities based on risk

Take action through remediation, deferral, or exception management

Export vulnerability data for further analysis

Vulnerability data is organized into several main views, accessible from Vulnerability

Management > Results:

User workloads: Vulnerabilities in workloads and images you have deployed

Platform: Vulnerabilities in platform components (e.g., Alauda Container Platform and

layered services)

Nodes: Vulnerabilities across all nodes

Overview of Vulnerability Management

Navigating Vulnerability Views

Viewing and Addressing Vulnerabilities - Alauda Container Security

More views: Additional perspectives, such as all vulnerable images, inactive images,

images without CVEs, and Kubernetes components

View and filter vulnerabilities in your deployed workloads and images.

1. Go to Vulnerability Management > Results.

2. Select the User Workloads tab.

3. Use the Observed, Deferred, or False positives tabs to filter by vulnerability status.

4. Refine results by namespace, severity, or other filters as needed.

5. Use the filter bar to search by entity (e.g., CVE, image, deployment).

Note The Filtered view icon indicates that results are filtered. Click Clear filters to remove

all filters, or remove individual filters by clicking them.

Entity Attributes

Image Name; Operating system; Tag; Label; Registry

CVE Name; Discovered time; CVSS; EPSS probability

Image

Component

Name; Source (OS, Python, Java, Ruby, Node.js, Go, Dotnet Core

Runtime, Infrastructure); Version

Deployment Name; Label; Annotation; Status

Namespace ID; Name; Label; Annotation

Cluster ID; Name; Label; Type; Platform type

CVE severity; CVE status

User Workload Vulnerabilities

How to View User Workload Vulnerabilities

User Workload Filter Options

Viewing and Addressing Vulnerabilities - Alauda Container Security

View vulnerabilities in platform components and layered services.

1. Go to Vulnerability Management > Results.

2. Select the Platform tab.

3. Use the Observed, Deferred, or False positives tabs as needed.

4. Refine results by namespace, severity, or other filters.

5. Use the filter bar to search by entity.

Entity Attributes

Image Name; Operating system; Tag; Label; Registry

CVE Name; Discovered time; CVSS; EPSS probability

Image Component Name; Source; Version

Deployment Name; Label; Annotation; Status

Namespace ID; Name; Label; Annotation

Cluster ID; Name; Label; Type; Platform type

CVE severity; CVE status

View vulnerabilities across all nodes in your environment.

1. Go to Vulnerability Management > Results.

Platform Vulnerabilities

How to View Platform Vulnerabilities

Platform Filter Options

Node Vulnerabilities

How to View Node Vulnerabilities

Viewing and Addressing Vulnerabilities - Alauda Container Security

2. Select the Nodes tab.

3. Optionally, click Show snoozed CVEs.

4. Use filters to narrow down by node, CVE, component, or cluster.

Entity Attributes

Node Name; Operating system; Label; Annotation; Scan time

CVE Name; Discovered time; CVSS

Node Component Name; Version

Cluster ID; Name; Label; Type; Platform type

Access additional perspectives on vulnerabilities:

All vulnerable images: See all images with vulnerabilities

Inactive images: View vulnerabilities in watched or inactive images

Images without CVEs: Identify images with no detected vulnerabilities

Kubernetes components: View vulnerabilities in the underlying Kubernetes structure

1. Go to Vulnerability Management > Results.

2. Click More Views and select the desired view.

3. Use available filters and columns to organize and analyze the data.

Node Filter Options

More Views

How to Use More Views

Viewing and Addressing Vulnerabilities - Alauda Container Security

Exception management allows you to snooze, defer, or mark CVEs as false positives, tailoring

vulnerability management to your organization's needs.

Temporarily ignore a CVE for a specified period. Snoozed CVEs do not appear in reports or

trigger policy violations.

1. Go to Vulnerability Management > Platform CVEs or Node CVEs.

2. Select CVEs and use the overflow menu or bulk actions to snooze or unsnooze.

3. Choose the duration and confirm.

Mark a CVE as a false positive globally or for specific images. Requires approval.

1. Go to Vulnerability Management > Results > User Workloads.

2. Select CVEs and use the overflow menu or bulk actions.

3. Enter a rationale and submit the request.

Defer a CVE, accepting the risk for a specified period. Requires approval.

1. Go to Vulnerability Management > Results > User Workloads.

2. Select CVEs and use the overflow menu or bulk actions.

3. Choose the deferral period, enter a rationale, and submit.

Exception Management

Snoozing CVEs

Steps to Snooze/Unsnooze CVEs

Marking CVEs as False Positives

Steps to Mark as False Positive

Deferring CVEs

Steps to Defer CVEs

Viewing and Addressing Vulnerabilities - Alauda Container Security

Review, approve, deny, update, or cancel exception requests in Vulnerability Management >

Exception Management.

In User Workloads, use the Deferred or False positives tabs to view relevant CVEs.

Alauda Container Security can show which Dockerfile line introduced a vulnerable

component.

1. Go to Vulnerability Management > Results > User Workloads.

2. Click a CVE to view details and expand to see the affected Dockerfile line.

Find and upgrade to a fixed version of a vulnerable component.

1. Go to Vulnerability Management > Results > User Workloads > Images.

2. Select an image and expand the CVE to see the fixed version.

3. Update your image accordingly.

Managing Exception Requests

Viewing Deferred and False Positive CVEs

Identifying and Remediating Vulnerabilities

Identifying Vulnerable Dockerfile Lines

Steps

Upgrading Components

Steps

Viewing and Addressing Vulnerabilities - Alauda Container Security

Export vulnerability data for further analysis or reporting using the API.

Use the /v1/export/vuln-mgmt/workloads streaming API.

Output is JSON, each line contains a deployment and its images.

Use filters and exception management to focus on relevant vulnerabilities.

Regularly review deferred and false positive CVEs.

Integrate exported data with external tools for compliance and reporting.

Keep Alauda Container Security and scanners up to date.

Alauda Container Security provides a robust platform for vulnerability discovery, prioritization,

remediation, exception management, and data export. By following the structured procedures

and best practices in this document, you can effectively manage container and cluster security

risks in your environment.

Exporting Vulnerability Data

How to Export via API

Example

curl -H "Authorization: Bearer $ROX_API_TOKEN" $ROX_ENDPOINT/v1/export/vuln-m

Best Practices

Summary

Viewing and Addressing Vulnerabilities - Alauda Container Security

Viewing and Addressing Vulnerabilities - Alauda Container Security

Alauda Container Security allows you to create, schedule, and download on-demand image

vulnerability reports from the Vulnerability Management > Vulnerability Reporting menu.

These reports provide a comprehensive list of vulnerabilities (CVEs) in images and

deployments (user workloads).

You can share these reports with auditors or internal stakeholders by scheduling email

delivery or downloading and distributing the report manually. Scheduled communications help

keep key stakeholders informed about the vulnerability status of your environment.

Planning Vulnerability Reports

Creating a Vulnerability Report

Steps

Configuring Delivery Destinations and Schedule

Reviewing and Creating the Report Configuration

Access Control and Permissions

Editing and Managing Report Configurations

Editing a Report Configuration

Cloning a Report Configuration

Deleting a Report Configuration

Generating and Downloading Reports

Steps

Sending Reports Immediately

Report Retention and Expiry Settings

Vulnerability Reporting

TOC

Menu ON THIS PAGE

Vulnerability Reporting - Alauda Container Security

When planning scheduled vulnerability reports, consider:

What schedule is most effective for your stakeholders?

Who is the audience?

Should the report include only specific severity levels?

Should the report include only fixable vulnerabilities?

Alauda Container Security guides you through creating a vulnerability report configuration,

which determines the content and schedule of each report.

1. In the Alauda Container Security portal, go to Vulnerability Management >

Vulnerability Reporting.

2. Click Create report.

3. On the Configure report parameters page, provide:

Report name: Name for your report configuration.

Report description: (Optional) Description of the report.

CVE severity: Select the severity levels to include.

CVE status: Select one or more statuses (Fixable, Unfixable).

Image type: Select one or more types (Deployed images, Watched images).

CVEs discovered since: Select the time period for included CVEs.

(Optional) Include NVD CVSS: Add the NVD CVSS column to the report.

Configure collection included: Select or create at least one collection to include. You

can view, edit, or preview collections.

Planning Vulnerability Reports

Creating a Vulnerability Report

Steps

Vulnerability Reporting - Alauda Container Security

Note For more about collections, see "Creating and using deployment collections".

1. Click Next to configure delivery destinations and schedule (optional unless you selected

to include CVEs discovered since the last scheduled report).

1. In Configure delivery destinations, add a destination and set up a schedule.

2. To email reports, configure at least one email notifier. Select an existing notifier or create a

new one. Default recipients appear in the Distribution list; you can add more addresses

separated by commas.

3. Edit the default email template if needed:

1.1. Click the edit icon and customize the subject and body in the Edit tab.

1.2. Preview your template in the Preview tab.

1.3. Click Apply to save changes.

Note When reviewing report jobs, you can see whether the default or a custom template

was used.

4. In Configure schedule, select the frequency and day of the week.

5. Click Next to review and finish creating the report configuration.

1. In the Review and create section, review all configuration parameters, delivery

destination, email template, schedule, and format. Click Back to edit any field.

2. Click Create to save the configuration.

Configuring Delivery Destinations and Schedule

Reviewing and Creating the Report Configuration

Vulnerability Reporting - Alauda Container Security

You can only view, create, and download reports for data your user account has permission

to access.

You can only download reports you have generated; you cannot download reports

generated by others.

If your access permissions change, old reports do not reflect the new permissions. To view

new data, create a new report.

You can edit, clone, or delete report configurations as needed.

1. In Vulnerability Management > Vulnerability Reporting, locate the report

configuration.

2. Click the overflow menu (three dots) and select Edit report, or click the report name,

then Actions > Edit report.

3. Make changes and save.

1. In the list, click Clone report for the desired configuration.

2. Modify parameters and destinations as needed.

3. Click Create.

1. In the list, click the overflow menu for the configuration and select Delete report.

Access Control and Permissions

Editing and Managing Report Configurations

Editing a Report Configuration

Cloning a Report Configuration

Deleting a Report Configuration

Vulnerability Reporting - Alauda Container Security

Note Deleting a configuration also deletes all reports previously run using it.

You can generate and download on-demand vulnerability reports.

1. In Vulnerability Management > Vulnerability Reporting, locate the desired

configuration.

2. Generate the report:

From the list: Click the overflow menu and select Generate download. The status

appears in My active job status. When processing is complete, the report is ready for

download.

From the report window: Click the report name, then Actions > Generate download.

3. To download, open the report configuration, click All report jobs, and click the Ready

for download link in the Status column. The report is a .csv file compressed as .zip .

Note You can only download reports you have generated.

You can send a report immediately instead of waiting for the scheduled time.

1. In Vulnerability Management > Vulnerability Reporting, locate the configuration.

2. Click the overflow menu and select Send report now.

Generating and Downloading Reports

Steps

Sending Reports Immediately

Report Retention and Expiry Settings

Vulnerability Reporting - Alauda Container Security

You can configure how long report jobs and downloadable files are retained.

1. In Platform Configuration > System Configuration, set:

Vulnerability report run history retention: Number of days to keep report job records.

Prepared downloadable vulnerability reports retention days: Number of days

downloadable reports are available.

Prepared downloadable vulnerability reports limit: Maximum space (MB) for

downloadable reports; oldest jobs are removed when the limit is reached.

2. Click Edit to change values, then Save.

Note These settings do not affect jobs in WAITING or PREPARING state, the last

successful scheduled/on-demand/emailed/downloaded job, or jobs not yet deleted

manually or by pruning.

Vulnerability Reporting - Alauda Container Security

Examining Images for Vulnerabilities

Generating SBOMs from Scanned Images

Image Scanning Using the roxctl CLI

How to

Scanner V4 Overview

Scanner Workflow

Supported Platforms and Formats

Image Scanning and Watch List

Vulnerability Data Updates

What is an SBOM?

How to Generate SBOMs

Scanning an Image in a Remote Cluster

roxctl image scan Command Options

Menu

How to - Alauda Container Security

Alauda Container Security for Kubernetes enables you to analyze container images for

vulnerabilities using the built-in Scanner V4. The scanner inspects image layers, identifies

packages, and matches them against vulnerability databases from sources like NVD, OSV,

and OS-specific feeds.

When vulnerabilities are detected, Alauda Container Security:

Displays them in the Vulnerability Management view

Ranks and highlights them for risk assessment

Checks them against enabled security policies

The scanner identifies installed components by inspecting specific files. If these files are

missing, some vulnerabilities may not be detected. Required files include:

Component
Type

Required Files

Package

managers

/etc/alpine-release ; /etc/lsb-release ; /etc/os-release

or /usr/lib/os-release ; /etc/oracle-release ;

/etc/centos-release ; /etc/redhat-release ; /etc/system-

release ; other similar files

Language-level

dependencies

package.json (JavaScript); dist-info / egg-info (Python);

MANIFEST.MF (Java JAR)

Application-

level

dependencies

dotnet/shared/Microsoft.AspNetCore.App/ ;

dotnet/shared/Microsoft.NETCore.App/

Examining Images for Vulnerabilities

TOC

Menu ON THIS PAGE

Examining Images for Vulnerabilities - Alauda Container Security

Scanner V4 Overview

Scanner Workflow

Workflow Steps

Common Scanner Warning Messages

Supported Platforms and Formats

Supported Linux Distributions

Supported Package Formats

Supported Programming Languages

Supported Container Image Layer Formats

Image Scanning and Watch List

Vulnerability Data Updates

Scanner V4 enhances scanning for language and OS-specific components. Scanner V4 is

enabled by default and is required for all vulnerability scanning scenarios.

1. Central requests Scanner V4 Indexer to analyze images.

2. Indexer pulls metadata and downloads layers.

3. Indexer produces an index report.

4. Matcher matches images to vulnerabilities and generates reports.

Scanner V4 Overview

Scanner Workflow

Workflow Steps

Common Scanner Warning Messages

Examining Images for Vulnerabilities - Alauda Container Security

Message Description

Unable to retrieve the OS CVE data, only

Language CVE data is available

Base OS not supported; no OS-

level CVEs.

Stale OS CVE data
OS is end-of-life; data may be

outdated.

Failed to get the base OS information
Scanner could not determine the

base OS.

Failed to retrieve metadata from the registry
Registry unreachable or

authentication failed.

Image out of scope for Red Hat Vulnerability

Scanner Certification
Image is too old for certification.

Distribution Version

Alpine Linux alpine:3.2 – alpine:3.21 , alpine:edge

Amazon Linux amzn:2018.03 , amzn:2 , amzn:2023

CentOS centos:6 , centos:7 , centos:8

Debian debian:11 , debian:12 , debian:unstable , Distroless

Oracle Linux ol:5 – ol:9

Photon OS photon:1.0 – photon:3.0

RHEL rhel:6 – rhel:9

SUSE sles:11 – sles:15 , opensuse-leap:15.5 , opensuse-leap:15.6

Supported Platforms and Formats

Supported Linux Distributions

↗

Examining Images for Vulnerabilities - Alauda Container Security

https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless

Distribution Version

Ubuntu ubuntu:14.04 – ubuntu:24.10

INFO

Some older Debian/Ubuntu versions are not updated by the vendor. Fedora is not supported for OS

CVEs.

Package Format Package Managers

apk apk

dpkg apt; dpkg

rpm dnf; microdnf; rpm; yum

Language Package Format

Go Binaries (analyzes stdlib and, if present, go.mod dependencies)

Java JAR; WAR; EAR; JPI; HPI

JavaScript package.json

Python egg; wheel

Ruby gem

Format Scanner V4

No compression Yes

Supported Package Formats

Supported Programming Languages

Supported Container Image Layer Formats

Examining Images for Vulnerabilities - Alauda Container Security

Format Scanner V4

bzip2 Yes

gzip Yes

xz No

zstd Yes

Alauda Container Security scans all active images every 4 hours. You can also enable

automatic scanning of inactive images (from version 3.0.57) via the Watch setting.

Steps:

1. In the portal, go to Vulnerability Management > Results.

2. Click More Views > Inactive images.

3. Click Manage watched images and add or remove images as needed.

INFO

Data for removed images is retained for the configured period in System Configuration.

Central fetches vulnerability definitions every 5 minutes from

https://definitions.stackrox.io

Image Scanning and Watch List

Vulnerability Data Updates

Examining Images for Vulnerabilities - Alauda Container Security

Alauda Container Security enables you to generate a Software Bill of Materials (SBOM) from

scanned container images. This feature provides a detailed overview of software components,

dependencies, and libraries within your application, helping organizations locate vulnerable

packages and comply with security requirements.

What is an SBOM?

How to Generate SBOMs

Using the Portal

Using the roxctl CLI

CLI Options

A Software Bill of Materials (SBOM) is a digital record listing the components of a piece of

software and their origins. SBOMs help organizations:

Identify the presence of vulnerable packages and components

Respond quickly to mitigate risks

Comply with regulations such as Executive Order 14028

SBOMs can be generated in different ways. The SBOMs generated by Alauda Container

Security are "Analyzed" SBOMs, created by analyzing artifacts such as executables,

packages, containers, and VM images. According to CISA, analyzed SBOMs:

Generating SBOMs from Scanned Images

TOC

What is an SBOM?

↗

Menu ON THIS PAGE

Generating SBOMs from Scanned Images - Alauda Container Security

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity

Provide information without requiring an active development environment

Can be generated without access to the build process

Help discover hidden dependencies

The SBOM generated by Alauda Container Security is in System Package Data Exchange

(SPDX) 2.3 format.

You can generate SBOMs using the Alauda Container Security portal, the roxctl CLI, or the

API.

1. Go to Vulnerability Management > Results and locate the image you want.

2. Do one of the following:

In the image row, click the overflow menu and select Generate SBOM.

Select the image to view details, then click Generate SBOM.

3. A window will display information about the image and the SBOM format. Click Generate

SBOM to create the file in JSON format. The file will be downloaded automatically

depending on your browser settings.

Run the following command:

Replace image-name with the name and reference of the image (e.g., nginx:latest or

nginx@sha256:...).

↗

How to Generate SBOMs

Using the Portal

Using the roxctl CLI

roxctl image sbom --image=image-name

CLI Options

Generating SBOMs from Scanned Images - Alauda Container Security

https://spdx.org/rdf/terms/
https://spdx.org/rdf/terms/
https://spdx.org/rdf/terms/
https://spdx.org/rdf/terms/

Option Description

-f, --force
Bypass Central's cache for the image and force a new pull

from the scanner. Default: false .

-d, --retry-delay

integer
Time to wait between retries in seconds. Default: 3.

-i, --image

string

Image name and reference (e.g., nginx:latest or

nginx@sha256:...).

-r, --retries

integer

Number of times Scanner V4 should retry before exiting with

an error. Default: 3.

Generating SBOMs from Scanned Images - Alauda Container Security

You can scan images stored in image registries, including cluster local registries such as the

Alauda Container Platform integrated image registry, by using the roxctl CLI.

INFO

Image scanning requires appropriate permissions and network access to the registry and Central.

Scanning an Image in a Remote Cluster

Example Output

roxctl image scan Command Options

Option Descriptions

Run the following command to scan the specified image

For <image_registry> , specify the registry where the image is located, e.g., image-

registry.alauda-image-registry.svc:5000/ .

Image Scanning Using the roxctl CLI

TOC

Scanning an Image in a Remote Cluster

roxctl image scan \

 --image=<image_registry>/<image_name>

Menu ON THIS PAGE

Image Scanning Using the roxctl CLI - Alauda Container Security

Id : A unique identifier for the image, serving as a fingerprint for integrity and authenticity.

name.registry : The image registry location.

name.remote : The remote path to the image.

name.tag : The version or tag of the image.

name.fullName : The complete name of the image (registry, path, tag).

Option Description

--cluster string Delegate image scanning to a specific cluster.

--compact-output
Print the JSON output in a compact format. Default:

false .

-f, --force
Ignore Central's cache for the scan and force a fresh re-

pull from Scanner. Default: false .

Example Output

{

 "Id": "sha256:3f439d7d71adb0a0c8e05257c091236ab00c6343bc44388d091450ff58664

 "name": {

 "registry": "image-registry.alauda-image-registry.svc:5000",

 "remote": "default/image-stream",

 "tag": "latest",

 "fullName": "image-registry.alauda-image-registry.svc:5000/default/image-

 }

 // ...

}

roxctl image scan Command Options

Option Descriptions

Image Scanning Using the roxctl CLI - Alauda Container Security

Option Description

--headers strings
Print the headers in a tabular format. Default:

COMPONENT , VERSION , CVE , SEVERITY , LINK .

--headers-as-

comments

Print the headers as comments in a CSV tabular output.

Default: false .

-h, --help View the help text for the roxctl image scan command.

-i, --image string Specify the image name and reference you want to scan.

-a, --include-

snoozed

Return both snoozed and unsnoozed CVEs. Default:

false .

--merge-output Merge duplicate cells in a tabular output. Default: true .

--no-header Do not print headers for tabular format. Default: false .

-o, --output string
Specify the output format: table , CSV , JSON , or

SARIF .

-r, --retries int
Set the number of retries before aborting with an error.

Default: 3 .

-d, --retry-delay

int

Set the time in seconds to wait between retries. Default:

3 .

--row-jsonpath-

expressions string

Use JSON path expressions to create rows from the

JSON object. See roxctl image scan --help for

details.

Image Scanning Using the roxctl CLI - Alauda Container Security

Introduction

Introduction

Guides

Evaluating Security Risks

Using Process Baseline

Risk

Risk View

Risk Details Panel

What is a Process Baseline?

Baseline States

Managing Process Baselines

Menu

Risk - Alauda Container Security

Alauda Container Security for Kubernetes is a platform designed to help you identify, assess,

and manage security risks across your containerized environments. It provides visibility into

vulnerabilities, misconfigurations, and risky runtime activities, enabling you to prioritize and

address the most critical security issues in your deployments.

Introduction

Menu

Introduction - Alauda Container Security

Evaluating Security Risks

Using Process Baseline

Guides

Risk View

Risk Details Panel

What is a Process Baseline?

Baseline States

Managing Process Baselines

Menu

Guides - Alauda Container Security

Alauda Container Security assesses and ranks your deployments by security risk, highlighting

vulnerabilities, configurations, and runtime activities needing attention.

Risk View

Creating Policies from Risk View

Filter Mapping Table

Risk Details Panel

Risk Indicators Tab

Deployment Details Tab

Process Discovery Tab

Event Timeline

The Risk view lists all deployments, sorted by a multi-factor risk metric (policy violations,

image contents, configuration, etc.). Deployments at the top are the most at risk.

Each deployment shows:

Name

Created

Cluster

Namespace

Evaluating Security Risks

TOC

Risk View

Menu ON THIS PAGE

Evaluating Security Risks - Alauda Container Security

Priority

Features:

Sort and filter violations

Create new policies from filtered results

To see more details, select a deployment.

You can create security policies based on your filters in the Risk view.

Steps:

1. Go to Risk in the portal.

2. Apply filters.

3. Click New Policy and fill required fields.

Note: Only Cluster, Namespace, Deployment, and Label filters are converted to policy

scopes. Other filters may be dropped or modified.

Search Attribute Policy Criteria

Add Capabilities Add Capabilities

Annotation Disallowed Annotation

CPU Cores Limit Container CPU Limit

CPU Cores Request Container CPU Request

CVE CVE

CVE Published On ✕ Dropped

CVE Snoozed ✕ Dropped

CVSS CVSS

Creating Policies from Risk View

Filter Mapping Table

Evaluating Security Risks - Alauda Container Security

Search Attribute Policy Criteria

Cluster ⟳ Converted to scope

Component Image Component (name)

Component Version Image Component (version)

Deployment ⟳ Converted to scope

Deployment Type ✕ Dropped

Dockerfile Instruction Keyword Dockerfile Line (key)

Dockerfile Instruction Value Dockerfile Line (value)

Drop Capabilities ✕ Dropped

Environment Key Environment Variable (key)

Environment Value Environment Variable (value)

Environment Variable Source Environment Variable (source)

Exposed Node Port ✕ Dropped

Exposing Service ✕ Dropped

Exposing Service Port ✕ Dropped

Exposure Level Port Exposure

External Hostname ✕ Dropped

External IP ✕ Dropped

Image ✕ Dropped

Image Command ✕ Dropped

Image Created Time Days since image was created

Image Entrypoint ✕ Dropped

Image Label Disallowed Image Label

Evaluating Security Risks - Alauda Container Security

Search Attribute Policy Criteria

Image OS Image OS

Image Pull Secret ✕ Dropped

Image Registry Image Registry

Image Remote Image Remote

Image Scan Time Days since image was last scanned

Image Tag Image Tag

Image Top CVSS ✕ Dropped

Image User ✕ Dropped

Image Volumes ✕ Dropped

Label ⟳ Converted to scope

Max Exposure Level ✕ Dropped

Memory Limit (MB) Container Memory Limit

Memory Request (MB) Container Memory Request

Namespace ⟳ Converted to scope

Namespace ID ✕ Dropped

Pod Label ✕ Dropped

Port Port

Port Protocol Protocol

Priority ✕ Dropped

Privileged Privileged

Process Ancestor Process Ancestor

Process Arguments Process Arguments

Evaluating Security Risks - Alauda Container Security

Search Attribute Policy Criteria

Process Name Process Name

Process Path ✕ Dropped

Process Tag ✕ Dropped

Process UID Process UID

Read Only Root Filesystem Read-Only Root Filesystem

Secret ✕ Dropped

Secret Path ✕ Dropped

Service Account ✕ Dropped

Service Account Permission Level Minimum RBAC Permission Level

Toleration Key ✕ Dropped

Toleration Value ✕ Dropped

Volume Destination Volume Destination

Volume Name Volume Name

Volume ReadOnly Writable Volume

Volume Source Volume Source

Volume Type Volume Type

Scope Conversion Example: Filtering by Cluster:A,B and Namespace:Z creates:

(Cluster=A AND Namespace=Z)

(Cluster=B AND Namespace=Z)

Risk Details Panel

Evaluating Security Risks - Alauda Container Security

Selecting a deployment opens the Risk Details panel with multiple tabs.

Shows:

Policy Violations

Suspicious Process Executions

Image Vulnerabilities

Service Configurations

Service Reachability

Components Useful for Attackers

Number of Components in Image

Image Freshness

RBAC Configuration

Only relevant sections are shown for the selected deployment.

Provides:

Deployment ID

Namespace

Updated (timestamp)

Deployment Type

Replicas

Labels

Cluster name

Annotations

Service Account

Container Configuration:

Risk Indicators Tab

Deployment Details Tab

Evaluating Security Risks - Alauda Container Security

Image Name

Resources: CPU/Memory requests and limits

Mounts: Name, Source, Destination, Type

Secrets: Kubernetes secrets and X.509 certificate details

Security Context:

Privileged: true if privileged

Lists all binaries executed in each container, summarized by deployment:

Binary Name

Container

Arguments

Time (most recent)

Pod ID

UID

Use Process Name:<name> in the filter bar to search.

The Event Timeline shows events for the selected deployment:

Process activities

Policy violations

Container restarts/terminations

Events appear as icons on a timeline. Hover for details. You can:

Show legend for event types

Export as PDF/CSV

Filter event types

Expand to see events per container

Process Discovery Tab

Event Timeline

Evaluating Security Risks - Alauda Container Security

A minimap controls the visible range.

Notes:

On container restarts, up to 10 inactive instances per container are shown; process

activities for previous instances are not tracked.

Only the most recent execution of each (process name, arguments, UID) per pod is shown.

Events are shown only for active pods.

Timestamps are adjusted for accuracy.

Evaluating Security Risks - Alauda Container Security

Process baselining in Alauda Container Security helps secure your infrastructure by learning

which processes normally run in your containers and enforcing that only these are allowed.

What is a Process Baseline?

Baseline States

Unlocked

Locked

Managing Process Baselines

Viewing Baselines

Adding a Process

Removing a Process

Locking/Unlocking the Baseline

When you deploy Alauda Container Security, there is no default process baseline. As

deployments are discovered, a process baseline is automatically created for each container

type, including all observed processes.

Using Process Baseline

TOC

What is a Process Baseline?

Baseline States

Menu ON THIS PAGE

Using Process Baseline - Alauda Container Security

During initial discovery (first hour), baselines are unlocked.

New processes are automatically added to the baseline and do not trigger risks or

violations.

After one hour, new processes are marked as risks but do not trigger violations, and are not

added to the baseline.

Locking a baseline stops new processes from being added.

Any process not in the baseline triggers a violation.

You can always manually add or remove processes from the baseline.

If a deployment has multiple container types, each has its own baseline. If some are locked

and others unlocked, the deployment status shows as Mixed.

You can view and manage process baselines in the Risk view of the Alauda Container

Security portal.

1. Go to Risk in the portal.

2. Select a deployment.

3. In the details panel, open the Process Discovery tab.

4. Baselines are listed under Spec Container Baselines.

1. In Process Discovery, under Running Processes, click the Add icon next to a process

not already in the baseline.

Unlocked

Locked

Managing Process Baselines

Viewing Baselines

Adding a Process

Using Process Baseline - Alauda Container Security

1. In Process Discovery, under Spec Container Baselines, click the Remove icon next

to the process you want to remove.

Click the Lock icon to enforce violations for unlisted processes.

Click the Unlock icon to stop enforcing violations.

By managing process baselines, you ensure only approved processes run in your

environment, reducing security risks.

Removing a Process

Locking/Unlocking the Baseline

Using Process Baseline - Alauda Container Security

Introduction

Introduction

Guides

View Security Policy

Learn how to view and manage security policies in Alauda Container Security.

Create Custom Policy

Learn how to create custom policies in Alauda Container Security.

Security Policy

Policy Categories

Policy Lifecycle Stages

Policy Criteria and Attributes

Policy Enforcement

Exporting and Importing Policies

Methods to Create Custom Policies

Creating Policies via the Portal

Editing and Managing Policies

Menu

Security Policy - Alauda Container Security

Default Policies in Alauda Container Security
Overview of default and custom policies in Alauda Container Security.

How To

Checking Policy Compliance with roxctl
Learn how to check policy compliance using roxctl in Alauda Container Security.

Use Policy to Verify Image Signature in Alauda Container Security
Learn how to use policies to verify image signatures in Alauda Container Security.

Overview

Policy Table Structure

Critical Severity Policies

High Severity Policies

Medium Severity Policies

Low Severity Policies

Managing Default Policies

Prerequisites

Output Formats

Output Options

Checking Policy Compliance for Deployments

Checking Policy Compliance for Images

Viewing Image Scan Results

Supported Signature Verification Methods

Prerequisites

Configure Signature Integration

Create and Enforce Image Signature Verification Policies

Security Policy - Alauda Container Security

Alauda Container Security is a security solution designed for containerized environments. It

helps prevent high-risk service deployments and enables timely response to runtime security

incidents, ensuring the safety and compliance of your container infrastructure.

Introduction

Menu

Introduction - Alauda Container Security

View Security Policy
Learn how to view and manage security policies in Alauda Container Security.

Create Custom Policy
Learn how to create custom policies in Alauda Container Security.

Default Policies in Alauda Container Security
Overview of default and custom policies in Alauda Container Security.

Guides

Policy Categories

Policy Lifecycle Stages

Policy Criteria and Attributes

Policy Enforcement

Exporting and Importing Policies

Methods to Create Custom Policies

Creating Policies via the Portal

Editing and Managing Policies

Overview

Policy Table Structure

Critical Severity Policies

High Severity Policies

Medium Severity Policies

Low Severity Policies

Managing Default Policies

Menu

Guides - Alauda Container Security

Guides - Alauda Container Security

Alauda Container Security offers both default and customizable security policies to help you

prevent high-risk deployments and respond to runtime incidents in your container

environment.

Policy Categories

Policy Lifecycle Stages

Policy Criteria and Attributes

Image Registry and Contents

Container Configuration

Deployment Metadata

Storage and Networking

Process Activity (Runtime Only)

Kubernetes Access and Events

Policy Enforcement

Exporting and Importing Policies

Exporting a Policy

Importing a Policy

Viewing and Managing Security Policies

TOC

Policy Categories

Menu ON THIS PAGE

View Security Policy - Alauda Container Security

Policies are organized by type and function for easier management and search. Default

categories include:

Anomalous Activity

Cryptocurrency Mining

DevOps Best Practices

Docker CIS

Kubernetes

Kubernetes Events

Network Tools

Package Management

Privileges

Security Best Practices

Supply Chain Security

System Modification

Vulnerability Management

Zero Trust

To manage categories:

1. Go to Platform Configuration > Policy Management.

2. Click the Policy Categories tab.

3. Create, view, or manage categories as needed.

When creating or editing a policy, you can specify one or more lifecycle stages:

Build: Checks image fields (e.g. CVEs, Dockerfile instructions).

Deploy: Includes build-time checks and cluster configuration (e.g. privileged mode).

Policy Lifecycle Stages

View Security Policy - Alauda Container Security

Runtime: Adds process execution and runtime event checks.

Policies are triggered by specific criteria (attributes). The following tables summarize common

attributes and their descriptions. For details on allowed values, operators, and applicable

phases, see the notes below each table.

Attribute Description Allowed Values

Image Registry Name of the image registry String

Image Name Full image name in registry String

Image Tag Image identifier String

Image Signature Signature integration for image Integration ID

Fixable Image has fixable CVE Boolean

Days Since CVE Days since CVE discovered Integer

Image Age Days since image creation Integer

Image Scan Age Days since last image scan Integer

Image User USER directive in Dockerfile String

Dockerfile Line Dockerfile instruction/argument LABEL/RUN/etc.

Unscanned Image Image scan status Boolean

CVSS Vulnerability score Number

Severity Vulnerability severity Level

Policy Criteria and Attributes

Image Registry and Contents

View Security Policy - Alauda Container Security

Attribute Description Allowed Values

Fixed By Version that fixes vulnerability String

CVE Specific CVE number String

Image Component Software component in image key=value

Image OS Base OS of the image String

Required Image Label Required Docker image label key=value

Disallowed Image Label Disallowed Docker image label key=value

Operators: Regex, NOT, AND, OR, OR only, AND only, None, etc.

Phases: Build, Deploy, Runtime

Attribute Description Allowed Values

Environment

Variable

Check

environment

variables

RAW=key=value

Container

CPU Request

CPU cores

requested
Number

Container

CPU Limit

CPU cores

limit
Number

Container

Memory

Request

Memory

requested

(MB)

Number

Container

Memory Limit

Memory limit

(MB)
Number

Container Configuration

View Security Policy - Alauda Container Security

Attribute Description Allowed Values

Privileged

Container

Privileged

mode

enabled

Boolean

Read-Only

Root

Filesystem

Root

filesystem is

read-only

Boolean

Seccomp

Profile Type

Seccomp

profile type
UNCONFINED/RUNTIME_DEFAULT/LOCALHOST

Allow

Privilege

Escalation

Privilege

escalation

allowed

Boolean

Drop

Capabilities

Linux

capabilities to

drop

List

Add

Capabilities

Linux

capabilities

not allowed

List

Container

Name

Name of the

container
String

AppArmor

Profile

AppArmor

profile used
String

Liveness

Probe

Liveness

probe defined
Boolean

Readiness

Probe

Readiness

probe defined
Boolean

Operators: Regex, AND, OR, None, etc.

Phases: Deploy, Runtime

View Security Policy - Alauda Container Security

Attribute Description Allowed Values

Disallowed Annotation Annotation not allowed key=value

Required Label Required Kubernetes label key=value

Required Annotation Required Kubernetes annotation key=value

Runtime Class RuntimeClass of the deployment String

Host Network Host network enabled Boolean

Host PID Host PID namespace shared Boolean

Host IPC Host IPC namespace shared Boolean

Namespace Namespace of the deployment String

Replicas Number of deployment replicas Number

Operators: Regex, AND, OR, NOT, None, etc.

Phases: Deploy, Runtime

Attribute Description Allowed Values

Volume

Name

Name of the

storage
String

Volume

Source

Volume

provision

type

String

Volume

Destination

Path where

volume is

mounted

String

Deployment Metadata

Storage and Networking

View Security Policy - Alauda Container Security

Attribute Description Allowed Values

Volume

Type

Type of

volume
String

Writable

Mounted

Volume

Volume

mounted as

writable

Boolean

Mount

Propagation

Mount

propagation

mode

NONE/HOSTTOCONTAINER/BIDIRECTIONAL

Writable

Host Mount

Host path

mounted

writable

Boolean

Exposed

Port

Protocol

Protocol

used by

exposed

port

String

Exposed

Port

Port

numbers

exposed

Number

Exposed

Node Port

Node port

exposed

externally

Number

Port

Exposure

Method

Service

exposure

method

UNSET/EXTERNAL/NODE/HOST/INTERNAL/ROUTE

Unexpected

Network

Flow

Detected

network

traffic not in

baseline

Boolean

Has Ingress

Network

Presence of

ingress

Boolean

View Security Policy - Alauda Container Security

Attribute Description Allowed Values

Policy network

policy

Has Egress

Network

Policy

Presence of

egress

network

policy

Boolean

Operators: Regex, AND, OR, NOT, None, etc.

Phases: Deploy, Runtime, Runtime (Network)

Attribute Description Allowed Values

Process Name Name of executed process String

Process Ancestor Parent process name String

Process Arguments Command arguments String

Process UID Unix user ID Integer

Unexpected Process Executed Not in locked baseline Boolean

Operators: Regex, AND, OR, NOT, None, etc.

Phases: Runtime (Process)

Process Activity (Runtime Only)

Kubernetes Access and Events

View Security Policy - Alauda Container Security

Attribute Description Allowed Values

Service

Account

Name of the

service

account

String

Automount

Service

Account

Token

Auto-mount

service

account

token

Boolean

Minimum

RBAC

Permissions

Minimum

RBAC

permission

level

DEFAULT/ELEVATED_IN_NAMESPACE/ELEVATED_C

Kubernetes

Action

Name of

Kubernetes

action

PODS_EXEC/PODS_PORTFORWARD

Kubernetes

User Name

Name of user

accessing

resource

String

Kubernetes

User Groups

User group

name
String

Kubernetes

Resource

Type

Type of

accessed

resource

String

Kubernetes

API Verb

API verb

used
CREATE/DELETE/GET/PATCH/UPDATE

Kubernetes

Resource

Name

Name of

accessed

resource

String

User Agent
User agent

used
String

View Security Policy - Alauda Container Security

Attribute Description Allowed Values

Source IP

Address

Source IP

address
IPv4/IPv6

Is

Impersonated

User

Request

made by

impersonated

user

Boolean

Operators: Regex, AND, OR, NOT, None, etc.

Phases: Deploy, Runtime, Runtime (K8s Events), Runtime (Audit Log)

Alauda Container Security supports multiple enforcement types depending on the policy

phase:

Build-time enforcement: Fails CI builds if images violate policy. The API returns a non-

zero exit code, which can be used to fail the build pipeline.

Deploy-time enforcement: Integrates with Kubernetes admission controllers and Alauda

Container Platform admission plugins to block noncompliant workloads. Enforcement can

be:

Hard enforcement: Admission controller blocks creation or update of violating

deployments.

Soft enforcement: Sensor scales violating deployments to zero replicas, preventing

pods from being scheduled.

Runtime enforcement: When enabled, any runtime activity within a pod that violates this

policy will cause the pod to be automatically deleted. Violations triggered via the API server

will also be blocked.

Policy Enforcement

View Security Policy - Alauda Container Security

Note: By default, administrative namespaces such as stackrox , kube-system , cpaas-

system ,and istio-system are excluded from enforcement blocking. Requests from

service accounts in system namespaces are also bypassed.

To apply policy changes to existing deployments, use Policy Management > Reassess All to

trigger enforcement on all deployments.

You can share security policies between different Central instances by exporting and

importing policies as JSON files.

1. Go to Platform Configuration > Policy Management.

2. Select the policy to export.

3. Click Actions > Export policy to JSON.

1. Go to Platform Configuration > Policy Management.

2. Click Import Policy.

3. Upload the JSON file and click Begin Import.

Import Handling:

If the imported policy UID and name are unique, a new policy is created.

If the UID matches but the name differs, you can keep both (new UID) or replace the

existing policy.

If the name matches but the UID differs, you can keep both (rename) or replace the

existing policy.

Exporting and Importing Policies

Exporting a Policy

Importing a Policy

View Security Policy - Alauda Container Security

If both UID and name match, Alauda Container Security checks if the criteria match. If so,

the existing policy is kept; otherwise, you can keep both (rename) or replace.

Important:

When importing into the same Central instance, all exported fields are used.

When importing into a different Central instance, certain fields (e.g. cluster scopes

exclusions notifications) are omitted and cannot be migrated.

View Security Policy - Alauda Container Security

Alauda Container Security allows you to create custom security policies in addition to using

the default ones. You can create and manage policies through the web portal or as code using

Kubernetes custom resources (CRs).

Methods to Create Custom Policies

Creating Policies via the Portal

Enter Policy Details

Configure Policy Lifecycle

Define Policy Rules and Criteria

Set Policy Scope

Configure Policy Actions

Review and Save Policy

Editing and Managing Policies

In the Alauda Container Security portal, go to Platform Configuration > Policy

Management and click Create Policy.

In the Risk section, use filters to select criteria and click Create Policy.

Manage policies as code by saving them as Kubernetes CRs and applying them to clusters

using tools like Argo CD.

Creating Custom Policies in Alauda Container
Security

TOC

Methods to Create Custom Policies

Menu ON THIS PAGE

Create Custom Policy - Alauda Container Security

Name: Enter a name for the policy.

Severity: Select a severity level.

Category: Choose a policy category (required).

Description: Provide details about the policy.

Rationale: Explain the reason for the policy.

Guidance: Add steps to resolve violations.

MITRE ATT&CK: Select relevant tactics and techniques.

Select applicable Lifecycle Stages: Build, Deploy, or Runtime.

For Runtime, choose an Event Source: Deployment or Audit logs.

In the Rules section, set conditions to trigger the policy.

Drag and drop policy fields to build rules. Available fields depend on the selected lifecycle

stage.

Combine multiple values or rules using logical operators (AND/OR).

Inclusion Scope: Restrict policy to specific clusters, namespaces, or deployment labels.

Supports RE2 regex for namespaces and labels.

Exclusion Scope: Exclude specific deployments, clusters, namespaces, or labels. Regex

supported for namespaces and labels (not for deployments).

For Build stage, you can exclude images from the policy.

Creating Policies via the Portal

Enter Policy Details

Configure Policy Lifecycle

Define Policy Rules and Criteria

Set Policy Scope

Create Custom Policy - Alauda Container Security

Activation State: Set the policy as active or inactive.

Enforcement:

Inform: Only report violations.

Inform and enforce: Enforce actions based on lifecycle stage:

Build: Fails CI builds for noncompliant images.

Deploy: Blocks or edits noncompliant deployments if admission controller is enabled.

Runtime: Deletes pods matching policy criteria.

Notifiers: Attach notifiers to send alerts to email or external tools (e.g., Jira, Splunk,

webhooks). Notifiers must be pre-configured in Platform Configuration > Integrations.

Review all settings and preview potential violations.

Click Save to create the policy.

To edit a policy, go to Platform Configuration > Policy Management, select a policy, and

click Actions > Edit Policy.

Default policies cannot be edited directly; clone them first.

Configure Policy Actions

Review and Save Policy

Editing and Managing Policies

Create Custom Policy - Alauda Container Security

Alauda Container Security offers a set of default policies to help you prevent high-risk

deployments and respond to runtime incidents in your Kubernetes environment. These

policies are designed to identify security issues and enforce best practices across your

clusters.

Overview

Viewing Policies

Policy Table Structure

Critical Severity Policies

High Severity Policies

Medium Severity Policies

Low Severity Policies

Managing Default Policies

Default policies cover the entire container lifecycle: build, deploy, and runtime. You can view,

clone, and edit these policies in the Alauda Container Security portal. Default policies cannot

be deleted or directly modified.

1. Go to Platform Configuration > Policy Management in the portal.

Default Policies in Alauda Container Security

TOC

Overview

Viewing Policies

Menu ON THIS PAGE

Default Policies in Alauda Container Security - Alauda Container Security

2. The Policies view lists all default and custom policies, including their status, severity,

and lifecycle stage.

Policy: Policy name

Description: What the policy detects or enforces

Status: Enabled or Disabled

Severity: Critical, High, Medium, or Low

Lifecycle: Build, Deploy, or Runtime

Lifecycle
Stage

Policy Name Description Status

Build/Deploy
Apache Struts:

CVE-2017-5638

Alerts on images with the CVE-

2017-5638 Apache Struts

vulnerability.

Enabled

Build/Deploy

Log4Shell: log4j

Remote Code

Execution

Alerts on images with CVE-2021-

44228 and CVE-2021-45046

vulnerabilities.

Enabled

Build/Deploy

Spring4Shell &

Spring Cloud

Function

Alerts on images with CVE-2022-

22965 (Spring MVC) or CVE-

2022-22963 (Spring Cloud).

Enabled

Policy Table Structure

Critical Severity Policies

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Runtime

Iptables Executed

in Privileged

Container

Alerts when privileged pods run

iptables.
Enabled

Lifecycle
Stage

Policy Name Description Status

Build/Deploy Fixable CVSS >= 7
Alerts on fixable

vulnerabilities with CVSS ≥ 7.
Disabled

Build/Deploy
Fixable Severity at

least Important

Alerts on fixable

vulnerabilities rated Important

or higher.

Enabled

Build/Deploy
Rapid Reset: HTTP/2

DoS Vulnerability

Alerts on images susceptible

to HTTP/2 Rapid Reset DoS.
Disabled

Build/Deploy
Secure Shell (ssh)

Port Exposed in Image

Alerts when port 22 is

exposed in images.
Enabled

Deploy

Emergency

Deployment

Annotation

Alerts on deployments using

emergency annotations to

bypass admission checks.

Enabled

Deploy
Environment Variable

Contains Secret

Alerts when environment

variables contain 'SECRET'.
Enabled

Deploy
Fixable CVSS >= 6

and Privileged

Alerts on privileged

deployments with fixable

CVSS ≥ 6 vulnerabilities.

Disabled

High Severity Policies

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Deploy

Privileged Containers

with Important and

Critical Fixable CVEs

Alerts on privileged

containers with

important/critical fixable

vulnerabilities.

Enabled

Deploy
Secret Mounted as

Environment Variable

Alerts when secrets are

mounted as environment

variables.

Disabled

Deploy
Secure Shell (ssh)

Port Exposed

Alerts when port 22 is

exposed in deployments.
Enabled

Runtime
Cryptocurrency Mining

Process Execution

Detects crypto-currency

mining processes.
Enabled

Runtime iptables Execution
Detects iptables usage in

containers.
Enabled

Runtime
Kubernetes Actions:

Exec into Pod

Alerts on exec commands run

in containers via Kubernetes

API.

Enabled

Runtime
Linux Group Add

Execution

Detects groupadd/addgroup

usage.
Enabled

Runtime
Linux User Add

Execution

Detects useradd/adduser

usage.
Enabled

Runtime Login Binaries Detects login attempts. Disabled

Runtime
Network Management

Execution

Detects network configuration

commands.
Enabled

Runtime nmap Execution
Alerts on nmap process

execution.
Enabled

Runtime
OpenShift: Kubeadmin

Secret Accessed

Alerts on kubeadmin secret

access.
Enabled

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Runtime Password Binaries
Detects password change

attempts.
Disabled

Runtime

Process Targeting

Cluster Kubelet

Endpoint

Detects misuse of

kubelet/heapster endpoints.
Enabled

Runtime

Process Targeting

Cluster Kubernetes

Docker Stats Endpoint

Detects misuse of docker

stats endpoint.
Enabled

Runtime

Process Targeting

Kubernetes Service

Endpoint

Detects misuse of

Kubernetes Service API

endpoint.

Enabled

Runtime Process with UID 0
Alerts on processes running

as UID 0.
Disabled

Runtime
Secure Shell Server

(sshd) Execution

Detects SSH daemon

execution in containers.
Enabled

Runtime SetUID Processes Detects setuid binary usage. Disabled

Runtime
Shadow File

Modification

Detects shadow file

modifications.
Disabled

Runtime
Shell Spawned by

Java Application

Detects shell spawned as a

subprocess of Java apps.
Enabled

Runtime
Unauthorized Network

Flow

Alerts on anomalous network

flows.
Enabled

Runtime
Unauthorized

Processed Execution

Alerts on unauthorized

process execution in locked

baselines.

Enabled

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Build

Docker CIS 4.4: Ensure

images are scanned and

rebuilt

Alerts if images are not

scanned and rebuilt with

security patches.

Disabled

Deploy 30-Day Scan Age
Alerts if a deployment hasn't

been scanned in 30 days.
Enabled

Deploy
CAP_SYS_ADMIN

capability added

Alerts if containers escalate

with CAP_SYS_ADMIN.
Enabled

Deploy
Container using read-write

root filesystem

Alerts if containers have

read-write root filesystems.
Disabled

Deploy
Container with privilege

escalation allowed

Alerts if containers allow

privilege escalation.
Enabled

Deploy

Deployments should have

at least one Ingress

Network Policy

Alerts if deployments lack

an Ingress Network Policy.
Disabled

Deploy

Deployments with

externally exposed

endpoints

Alerts if deployments have

externally exposed services.
Disabled

Deploy
Docker CIS 5.1: AppArmor

profile enabled

Alerts if AppArmor is not

enabled.
Enabled

Deploy

Docker CIS 5.15: Host's

process namespace not

shared

Alerts if host's process

namespace is shared.
Enabled

Deploy

Docker CIS 5.16: Host's

IPC namespace not

shared

Alerts if host's IPC

namespace is shared.
Enabled

Medium Severity Policies

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Deploy

Docker CIS 5.19: Mount

propagation mode not

enabled

Alerts if mount propagation

mode is enabled.
Enabled

Deploy

Docker CIS 5.21: Default

seccomp profile not

disabled

Alerts if seccomp profile is

disabled.
Disabled

Deploy

Docker CIS 5.7: Privileged

ports mapped within

containers

Alerts if privileged ports

(<1024) are mapped.
Enabled

Deploy

Docker CIS 5.9/5.20:

Host's network namespace

not shared

Alerts if host's network

namespace is shared.
Enabled

Deploy Images with no scans

Alerts if images in

deployments are not

scanned.

Disabled

Runtime
Kubernetes Actions: Port

Forward to Pod

Alerts on port forward

requests via Kubernetes

API.

Enabled

Deploy
Mount Container Runtime

Socket

Alerts if container runtime

socket is mounted.
Enabled

Deploy
Mounting Sensitive Host

Directories

Alerts if sensitive host

directories are mounted.
Enabled

Deploy
No resource requests or

limits specified

Alerts if containers lack

resource requests/limits.
Enabled

Deploy

Pod Service Account

Token Automatically

Mounted

Alerts if default service

account token is mounted

unnecessarily.

Enabled

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Deploy Privileged Container
Alerts if containers run in

privileged mode.
Enabled

Runtime crontab Execution Detects crontab usage. Enabled

Runtime Netcat Execution Detected Detects netcat usage. Enabled

Runtime
OpenShift: Central Admin

Secret Accessed

Alerts on access to Central

Admin secret.
Enabled

Runtime

OpenShift: Secret

Accessed by

Impersonated User

Alerts on secret access by

impersonated users.
Enabled

Runtime
Remote File Copy Binary

Execution

Alerts on remote file copy

tool execution.
Enabled

Lifecycle
Stage

Policy Name Description Status

Build/Deploy 90-Day Image Age
Alerts if a deployment hasn't

been updated in 90 days.
Enabled

Build/Deploy
ADD Command used

instead of COPY

Alerts if ADD command is

used in Dockerfile.
Disabled

Build/Deploy

Alpine Linux Package

Manager (apk) in

Image

Alerts if apk is present in

images.
Enabled

Low Severity Policies

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Build/Deploy Curl in Image
Alerts if curl is present in

images.
Disabled

Build/Deploy

Docker CIS 4.1: User

for the Container

Created

Ensures containers run as

non-root users.
Enabled

Build/Deploy
Docker CIS 4.7: Alert

on Update Instruction

Ensures update instructions

are not used alone in

Dockerfile.

Enabled

Build/Deploy
Insecure specified in

CMD

Alerts if 'insecure' is used in

command.
Enabled

Build/Deploy Latest tag
Alerts if images use the 'latest'

tag.
Enabled

Build/Deploy
Red Hat Package

Manager in Image

Alerts if Red Hat, Fedora, or

CentOS package managers

are present.

Enabled

Build/Deploy Required Image Label
Alerts if images are missing

required labels.
Disabled

Build/Deploy
Ubuntu Package

Manager Execution

Detects Ubuntu package

manager usage.
Enabled

Build/Deploy
Ubuntu Package

Manager in Image

Alerts if Debian/Ubuntu

package managers are

present in images.

Enabled

Build/Deploy Wget in Image
Alerts if wget is present in

images.
Disabled

Deploy Drop All Capabilities
Alerts if deployments do not

drop all capabilities.
Disabled

Default Policies in Alauda Container Security - Alauda Container Security

Lifecycle
Stage

Policy Name Description Status

Deploy

Improper Usage of

Orchestrator Secrets

Volume

Alerts if Dockerfile uses

'VOLUME /run/secrets'.
Enabled

Deploy
Kubernetes

Dashboard Deployed

Alerts if a Kubernetes

dashboard service is detected.
Enabled

Deploy
Required Annotation:

Email

Alerts if 'email' annotation is

missing.
Disabled

Deploy
Required Annotation:

Owner/Team

Alerts if 'owner' or 'team'

annotation is missing.
Disabled

Deploy
Required Label:

Owner/Team

Alerts if 'owner' or 'team' label

is missing.
Disabled

Runtime
Alpine Linux Package

Manager Execution
Alerts if apk is run at runtime. Enabled

Runtime chkconfig Execution Detects chkconfig usage. Enabled

Runtime
Compiler Tool

Execution

Alerts if compiler binaries are

run at runtime.
Enabled

Runtime
Red Hat Package

Manager Execution

Alerts if Red Hat, Fedora, or

CentOS package managers

are run at runtime.

Enabled

Runtime Shell Management
Alerts on shell add/remove

commands.
Disabled

Runtime systemctl Execution Detects systemctl usage. Enabled

Runtime systemd Execution Detects systemd usage. Enabled

Default Policies in Alauda Container Security - Alauda Container Security

Default policies provide broad security coverage.

You can view, clone, and edit cloned default policies in the portal.

Default policies cannot be deleted or directly modified.

Note: Default policies are not supported with the policies-as-code feature.

Managing Default Policies

Default Policies in Alauda Container Security - Alauda Container Security

Checking Policy Compliance with roxctl
Learn how to check policy compliance using roxctl in Alauda Container Security.

Use Policy to Verify Image Signature in Alauda Container Security

Learn how to use policies to verify image signatures in Alauda Container Security.

How To

Prerequisites

Output Formats

Output Options

Checking Policy Compliance for Deployments

Checking Policy Compliance for Images

Viewing Image Scan Results

Supported Signature Verification Methods

Prerequisites

Configure Signature Integration

Create and Enforce Image Signature Verification Policies

Menu

How To - Alauda Container Security

Alauda Container Security provides the roxctl CLI to help you check deployment YAML

files and container images for policy compliance. This guide explains how to use roxctl for

these checks and interpret the results.

Prerequisites

Output Formats

Example

Output Options

Example: Custom Headers and JSONPath

Checking Policy Compliance for Deployments

Checking Policy Compliance for Images

Viewing Image Scan Results

Set the ROX_ENDPOINT environment variable:

Replace <host:port> with the address of your Alauda Container Security Central

instance.

Checking Policy Compliance with roxctl

TOC

Prerequisites

export ROX_ENDPOINT=<host:port>

Menu ON THIS PAGE

Checking Policy Compliance with roxctl - Alauda Container Security

When running roxctl deployment check or roxctl image check , you can specify the

output format using the -o option. Supported formats are json , table , csv , and

junit . If not specified, the default is table for deployment and image checks, and json

for image scans.

The following table summarizes the available output options:

Option Description Formats

--compact-output
Display JSON output in a compact

format.
json

--headers Specify custom headers.
table ,

csv

--no-header Omit the header row from the output.
table ,

csv

--row-jsonpath-

expressions

Use GJSON paths to select specific

data.

table ,

csv

--merge-output Merge table cells with the same value. table

headers-as-comment
Include the header row as a comment in

the output.
csv

Output Formats

Example

roxctl deployment check --file=<yaml_filename> -o csv

Output Options

↗

Checking Policy Compliance with roxctl - Alauda Container Security

https://github.com/tidwall/gjson
https://github.com/tidwall/gjson
https://github.com/tidwall/gjson

Option Description Formats

--junit-suite-name Specify the name of the JUnit test suite. junit

To check build-time and deploy-time policy violations in your deployment YAML files, run:

<yaml_filename> : Path to the deployment YAML file(s). You can specify multiple files by

repeating the --file flag.

<cluster_namespace> : (Optional) Namespace for context. Default is default .

<cluster_name_or_id> : (Optional) Cluster name or ID for context.

--verbose : (Optional) Show additional information, such as RBAC permissions and

network policies.

Note: Additional deployment information is included in JSON output, regardless of the --

verbose flag.

To force Alauda Container Security to re-pull image metadata and scan results, add the --

force option.

Example: Custom Headers and JSONPath

roxctl deployment check --file=<yaml_filename> \

 -o table --headers POLICY-NAME,SEVERITY \

 --row-jsonpath-expressions="{results..violatedPolicies..name,results..viola

Checking Policy Compliance for Deployments

roxctl deployment check --file=<yaml_filename> \

 --namespace=<cluster_namespace> \

 --cluster=<cluster_name_or_id> \

 --verbose

Checking Policy Compliance with roxctl - Alauda Container Security

Permission Requirement: To check specific image scan results, your token must have

both read and write permissions for the Image resource. The default Continuous

Integration system role includes these permissions.

The deployment check validates:

Configuration options in the YAML file (e.g., resource limits, privilege settings)

Image aspects (e.g., components, vulnerabilities)

To check build-time policy violations in images, run:

To force Alauda Container Security to re-pull image metadata and scan results, add the --

force option.

Permission Requirement: To check specific image scan results, your token must have

both read and write permissions for the Image resource. The default Continuous

Integration system role includes these permissions.

To view the components and vulnerabilities found in an image in JSON format, run:

To force Alauda Container Security to re-pull image metadata and scan results, add the --

force option.

Checking Policy Compliance for Images

roxctl image check --image=<image_name>

Viewing Image Scan Results

roxctl image scan --image=<image_name>

Checking Policy Compliance with roxctl - Alauda Container Security

Permission Requirement: To check specific image scan results, your token must have

both read and write permissions for the Image resource. The default Continuous

Integration system role includes these permissions.

Checking Policy Compliance with roxctl - Alauda Container Security

Alauda Container Security allows you to ensure the integrity of container images in your

clusters by verifying image signatures against pre-configured keys. You can create policies to

block unsigned images or images without a verified signature, and enforce these policies

using the admission controller to prevent unauthorized deployments.

Supported Signature Verification Methods

Prerequisites

Configure Signature Integration

Using Cosign Public Keys

Using Cosign Certificates

Create and Enforce Image Signature Verification Policies

Prerequisites

Procedure

Alauda Container Security supports the following signature verification methods:

Cosign public keys

Cosign certificates

Note:

Use Policy to Verify Image Signature

TOC

Supported Signature Verification Methods

Menu ON THIS PAGE

Use Policy to Verify Image Signature in Alauda Container Security - Alauda Container Security

Only Cosign signatures and Cosign Public Keys/Certificates verification are supported.

For more information, see Cosign overview .

Communication with the transparency log Rekor is not supported.

At least one Cosign verification method must be configured for signature verification.

For all deployed and watched images:

Signatures are fetched and verified every 4 hours.

Signatures are verified whenever you update signature integration verification data.

You must have a PEM-encoded Cosign public key or the required certificate identity and

issuer. For more details, see Cosign overview and Cosign certificate verification .

1. In the Alauda Container Security portal, go to Platform Configuration > Integrations.

2. Scroll to Signature Integrations and click Signature.

3. Click New integration.

4. Enter a name for the integration.

5. Click Cosign public Keys and then Add a new public key.

6. Enter the public key name and the PEM-encoded public key value.

7. (Optional) Add more public keys as needed.

8. Click Save.

↗

↗

Prerequisites

↗ ↗

Configure Signature Integration

Using Cosign Public Keys

Using Cosign Certificates

Use Policy to Verify Image Signature in Alauda Container Security - Alauda Container Security

https://docs.sigstore.dev/cosign/overview
https://docs.sigstore.dev/cosign/overview
https://docs.sigstore.dev/cosign/overview
https://docs.sigstore.dev/logging/overview/
https://docs.sigstore.dev/logging/overview/
https://docs.sigstore.dev/logging/overview/
https://docs.sigstore.dev/cosign/overview
https://docs.sigstore.dev/cosign/overview
https://docs.sigstore.dev/cosign/overview
https://docs.sigstore.dev/verifying/verify/#verify-image-with-user-provided-trusted-chain
https://docs.sigstore.dev/verifying/verify/#verify-image-with-user-provided-trusted-chain
https://docs.sigstore.dev/verifying/verify/#verify-image-with-user-provided-trusted-chain

1. In the Alauda Container Security portal, go to Platform Configuration > Integrations.

2. Scroll to Signature Integrations and click Signature.

3. Click New integration.

4. Enter a name for the integration.

5. Click Cosign certificates and then Add a new certificate verification.

6. Enter the Certificate OIDC Issuer (regular expressions in RE2 Syntax are supported).

7. Enter the Certificate identity (regular expressions in RE2 Syntax are supported).

8. (Optional) Enter the Certificate Chain PEM encoded to verify certificates. If not

provided, certificates are verified against the Fulcio root.

9. (Optional) Enter the Certificate PEM encoded to verify the signature.

10. (Optional) Add more certificate verifications as needed.

11. Click Save.

At least one Cosign public key must be configured in a signature integration.

1. When creating or editing a policy, drag the Not verified by trusted image signers

criteria into the policy field under Policy criteria.

2. Click Select.

3. Choose the trusted image signers from the list and click Save.

To prevent the use of unsigned images, enable the Contact Image Scanners feature in your

cluster configuration. Then, when creating a security policy to enforce signature verification,

select the Inform and enforce option.

↗

↗

↗

Create and Enforce Image Signature Verification Policies

Prerequisites

Procedure

Use Policy to Verify Image Signature in Alauda Container Security - Alauda Container Security

https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://docs.sigstore.dev/certificate_authority/overview/
https://docs.sigstore.dev/certificate_authority/overview/
https://docs.sigstore.dev/certificate_authority/overview/

For more information, refer to the official Cosign documentation .↗

Use Policy to Verify Image Signature in Alauda Container Security - Alauda Container Security

https://docs.sigstore.dev/cosign/overview/
https://docs.sigstore.dev/cosign/overview/
https://docs.sigstore.dev/cosign/overview/

Managing Deployment Collections
Learn how to manage deployment collections in Alauda Container Security.

API Token Configuration

Integrating with a Generic Docker Registry

Configuration

Overview

Prerequisites

Benefits of Collections

Accessing and Managing Collections

Creating a Deployment Collection

Regular Expression Examples

Attaching Collections

Migration from Access Scopes

API Usage

Key Points

Procedure

Token Expiration and Notification

Configuring Notification Settings

Prerequisites

Integration Steps

Menu

Configuration - Alauda Container Security

Integration with Email
Configuring Email Integration

Enabling Email Notifications for Policies

Configuration - Alauda Container Security

Alauda Container Security allows you to define and manage deployment collections, which

are logical groupings of resources based on matching patterns. Collections help you organize

your infrastructure and streamline configuration management.

Overview

Prerequisites

Benefits of Collections

Accessing and Managing Collections

Creating a Deployment Collection

Steps

Defining Collection Rules

Regular Expression Examples

Match Production Clusters

Match Non-Production Clusters

Match All Entities

Match Specific Deployments and Labels

Attaching Collections

Migration from Access Scopes

API Usage

Managing Deployment Collections

TOC

Overview

Menu ON THIS PAGE

Managing Deployment Collections - Alauda Container Security

Collections in Alauda Container Security are user-defined, named references that group

deployments, namespaces, or clusters using selection rules. These rules can be based on

exact matches or regular expressions (RE2 syntax is supported). Collections can also be

nested, allowing you to build complex hierarchies.

Key Points:

Collections are currently available only for deployments.

Collections are used with vulnerability reporting.

Deployment collections require the PostgreSQL database backend.

To use collections, your account must have the following permissions:

WorkflowAdministration: Read access to view collections; Write access to add, modify, or

delete collections.

Deployment: Read or Read/Write access to view how rules match deployments.

These permissions are included in the Admin system role. For more details, see the RBAC

management documentation.

Collections provide a flexible way to:

Group resources owned by specific teams.

Apply different policies for development and production environments.

Manage distributed applications spanning multiple namespaces or clusters.

Organize production or test environments efficiently.

Prerequisites

Benefits of Collections

Managing Deployment Collections - Alauda Container Security

You can manage collections through the Alauda Container Security portal:

1. Navigate to Platform Configuration > Collections.

2. The page displays a list of existing collections. You can:

Search collections by name.

View collection details in read-only mode.

Edit, clone, or delete collections (collections in use cannot be deleted).

Create new deployment collections.

1. Click Create collection.

2. Enter a name and description.

3. In Collection rules, do at least one of the following:

Define selection rules (see below).

Attach existing collections.

4. Use the live preview panel to see matching results.

5. Click Save.

Note: At least one rule or attached collection is required.

You can configure rules to select resources for the collection:

Deployments

Accessing and Managing Collections

Creating a Deployment Collection

Steps

Defining Collection Rules

Managing Deployment Collections - Alauda Container Security

No deployments specified: Ignore deployment criteria.

Deployments with names matching:

Exact value: Enter the deployment name.

Regex value: Use a regular expression (RE2 syntax) for pattern matching. For

example, .* matches all deployments.

Deployments with labels matching exactly: Enter a valid Kubernetes label in the

format key=value .

Namespaces

Namespaces with names matching: Use exact or regex values.

Namespaces with labels matching exactly: Enter a label in key=value format.

Clusters

Clusters with names matching: Use exact or regex values.

To add more criteria, use the OR option to combine multiple rules.

Alauda Container Security supports RE2 syntax for regular expressions. Here are some

common examples:

To match clusters with names starting with prod :

To match clusters where prod does not appear in the name (RE2 does not support negative

lookahead):

Regular Expression Examples

Match Production Clusters

^prod.*

Match Non-Production Clusters

Managing Deployment Collections - Alauda Container Security

To match all deployments, namespaces, and clusters:

Deployments with names matching: .*

Namespaces with names matching: .*

Clusters with names matching: .*

To include the reporting deployment, any deployment ending with -db , and namespaces

labeled kubernetes.io/metadata.name=medical :

Deployments with names matching: reporting

OR: Regex value .*-db

Namespaces with labels matching exactly: kubernetes.io/metadata.name=medical

You can build hierarchical collections by attaching existing collections:

1. Filter collections by name or select from the list.

2. Click +Attach to add the selected collection.

3. Attached collections extend the parent collection using an OR relationship.

^[^p]*(p([^r]|$|r([^o]|$|o([^d]|$))))*[^p]*$

Match All Entities

Match Specific Deployments and Labels

Attaching Collections

Migration from Access Scopes

Managing Deployment Collections - Alauda Container Security

When migrating from rocksdb to PostgreSQL, existing access scopes used in vulnerability

reporting are converted to collections. The migration process creates embedded and root

collections to replicate the original selection logic.

Embedded collections: Mimic the original access scope logic.

Root collection: Attaches embedded collections and is used in report configurations.

If a scope cannot be migrated (e.g., uses unsupported label selector operators), a log

message is generated. Only the IN operator is supported for label selectors.

Collections can also be managed via the CollectionService API. For example,

CollectionService_DryRunCollection returns results similar to the live preview in the

portal. Refer to the API reference in the portal for more details.

API Usage

Managing Deployment Collections - Alauda Container Security

Alauda Container Security requires API tokens for system integrations, authentication, and

various system functions. You can manage tokens through the Alauda Container Security web

interface.

Key Points

Procedure

Token Expiration and Notification

Configuring Notification Settings

To prevent privilege escalation, when you create a new token, your role's permissions limit

the permissions you can assign to that token. For example, if you only have read

permission for the Integration resource, you cannot create a token with write permission.

If you want a custom role to create tokens for other users, you must assign the required

permissions to that custom role.

Use short-lived tokens for machine-to-machine communication, such as CI/CD pipelines,

scripts, and automation. For human-to-machine communication, such as CLI or API

access, use the roxctl central login command.

Most cloud service providers support OIDC identity tokens, such as Microsoft Entra ID,

Google Cloud Identity Platform, and AWS Cognito. OIDC identity tokens issued by these

services can be used for Alauda Container Security short-lived access.

API Token Configuration

TOC

Key Points

Menu ON THIS PAGE

API Token Configuration - Alauda Container Security

1. In the Alauda Container Security portal, go to Platform Configuration > Integrations.

2. Scroll to the Authentication Tokens category and click API Token.

3. Click Generate Token.

4. Enter a name for the token and select a role that provides the required level of access (for

example, Continuous Integration or Sensor Creator).

5. Click Generate.

Important:

Copy the generated token and store it securely. You will not be able to view it again.

API tokens expire one year from the creation date. Alauda Container Security alerts you in the

web interface and by sending log messages to Central when a token will expire in less than

one week. The log message process runs once an hour. Once a day, the process lists the

tokens that are expiring and creates a log message for each one. Log messages are issued

once a day and appear in Central logs.

Log message format:

You can change the default settings for the log message process by configuring the following

environment variables:

Procedure

Token Expiration and Notification

Warn: API Token [token name] (ID [token ID]) will expire in less than X days.

Configuring Notification Settings

API Token Configuration - Alauda Container Security

Environment Variable
Default
Value

Descriptio

ROX_TOKEN_EXPIRATION_NOTIFIER_INTERVAL 1h

Frequency

at which th

backgroun

process

checks and

logs

expiring

tokens.

ROX_TOKEN_EXPIRATION_NOTIFIER_BACKOFF_INTERVAL 24h

Frequency

at which

notification

are issued

for expiring

tokens.

ROX_TOKEN_EXPIRATION_DETECTION_WINDOW 168h

Time perio

before

token

expiration

that trigger

a

notification

(default: 1

week).

API Token Configuration - Alauda Container Security

This guide explains how to integrate Alauda Container Security with Docker Registry or

Harbor.

Prerequisites

Integration Steps

Obtain a username and password for authenticating with the Docker Registry or Harbor.

1. In the Alauda Container Security portal, navigate to Platform Configuration >

Integrations.

2. Under the Image Integrations section, select Generic Docker Registry.

3. Click New integration.

4. Fill in the following fields:

Integration name: Enter a name for this integration.

Endpoint: Specify the registry address.

Username and Password: Enter your credentials.

Integrating with a Generic Docker Registry

TOC

Prerequisites

Integration Steps

Menu ON THIS PAGE

Integrating with a Generic Docker Registry - Alauda Container Security

5. (Optional) If you are not using a TLS certificate to connect to the registry, select Disable

TLS certificate validation (insecure).

6. To verify the connection, click Test. If you prefer to skip testing, select Create

integration without testing.

7. Click Save to complete the integration.

Integrating with a Generic Docker Registry - Alauda Container Security

Alauda Container Security supports sending notifications via email. You can configure your

existing email provider or use the built-in email notifier to send alerts. Notifications can be sent

to a default recipient or dynamically determined using annotations in your deployment or

namespace.

INFO

Port 25 is blocked by default. Configure your mail server to use port 587 or 465 for sending

email notifications.

Configuring Email Integration

Add a New Email Integration

Dynamic Recipient with Annotations (Optional)

TLS and StartTLS Settings

Enabling Email Notifications for Policies

Follow these steps to set up email notifications:

1. Navigate to Platform Configuration > Integrations.

Integration with Email

TOC

Configuring Email Integration

Add a New Email Integration

Menu ON THIS PAGE

Integration with Email - Alauda Container Security

2. Under Notifier Integrations, select Email.

3. Click New Integration.

4. Enter a name for your integration in the Integration name field.

5. In the Email server field, provide the address of your email server, including the FQDN and

port (e.g., smtp.example.com:465).

6. (Optional) To use unauthenticated SMTP, select Enable unauthenticated SMTP.

WARNING

This is insecure and not recommended unless required for internal servers.

7. Enter the username and password for the service account used for authentication.

8. (Optional) Specify the display name for the FROM header in the From field (e.g.,

Security Alerts).

9. Enter the sender's email address in the Sender field.

10. Specify the default recipient's email address in the Default recipient field.

You can use annotations to dynamically determine the recipient of email notifications:

1. In the Annotation key for recipient field, enter an annotation key (e.g., email).

2. Add an annotation to your deployment or namespace YAML file:

3. Alauda Container Security will send alerts to the email specified in the annotation. If no

annotation is found, the alert is sent to the default recipient.

Recipient Resolution Rules:

If a deployment has the annotation key, its value overrides the default recipient.

Dynamic Recipient with Annotations (Optional)

metadata:

 annotations:

 email: <recipient_email@example.com>

Integration with Email - Alauda Container Security

If the namespace has the annotation key, its value overrides the default recipient.

If neither exists, the default recipient is used.

(Optional) To send email without TLS, select Disable TLS certificate validation

(insecure).

INFO

It is recommended to use TLS for secure email delivery.

(Optional) To use StartTLS, select either Login or Plain from the Use STARTTLS drop-

down menu.

Login: Credentials are sent as a base64-encoded string.

Plain: Credentials are sent in plain text.

WARNING

With StartTLS, credentials are transmitted in plain text before encryption is established.

1. In the Alauda Container Security portal, go to Platform Configuration > Policy

Management.

2. Select one or more policies to enable notifications for.

3. Under Bulk actions, select Enable notification.

4. In the Enable notification window, choose the Email notifier.

5. Click Enable.

INFO

TLS and StartTLS Settings

Enabling Email Notifications for Policies

Integration with Email - Alauda Container Security

Notifications are opt-in. Assign a notifier to each policy to receive alerts.

Notifications are sent only once per alert. A new alert is generated for:

The first policy violation in a deployment.

A runtime-phase policy violation after the previous alert is resolved.

By following these steps, you can ensure that Alauda Container Security notifies the right

people about important security events in your container platform.

Integration with Email - Alauda Container Security

	Navigation
	Overview
	Introduction
	TOC
	What is Alauda Container Security?
	What Problems Does Alauda Container Security Solve?
	Limitations

	Architecture
	TOC
	System Architecture
	Abstract
	Key Components
	Scanner Overview
	Vulnerability Sources
	Deployment Notes
	External Integrations

	Component Interactions
	Alauda Container Security with Scanner V4
	Default Ports and Protocols

	Installation
	Alauda Container Security Plugin Installation
	TOC
	Installation Requirements
	Central Service Plugin Installation
	Pre-installation Steps
	Install via UI
	Install via YAML
	Access Central Console

	Cluster Service Plugin Installation
	Generate Cluster Access Certificate
	Cluster Pre-installation Steps
	Cluster Install via UI
	Cluster Install via YAML

	Plugin Uninstallation

	Roxctl CLI Installation
	TOC
	Overview
	Installation
	Install on Linux
	Install on macOS
	Install on Windows

	Verification
	Configuration
	Setting Environment Variables
	Authentication Methods
	API Token

	Using the roxctl CLI
	Check Authentication and User Info

	Using Alauda Container Security in Offline Mode
	TOC
	Enabling Offline Mode
	Updating Vulnerability Definitions
	Downloading the Definitions
	Uploading the Definitions to Central
	Using an API Token

	Dashboards
	Viewing Dashboard
	TOC
	Introduction
	Status Bar
	Dashboard Widgets
	Violations by Severity
	Top Vulnerable Images
	Top Risky Deployments
	Image Age Distribution
	Policy Violations by Category
	Compliance by Standard

	Network
	Introduction
	Guides
	Network Graph
	TOC
	Entities in the Network Graph
	Internal Entities
	External Entities

	Network Components
	Network Flows
	Network Policies
	Tips for Using the Network Graph
	Scenarios for Internal Entities

	Viewing Deployment Details in a Namespace
	Viewing Network Policies
	Managing CIDR Blocks

	Network Baseline Management in the Network Graph
	TOC
	How Network Baselining Works
	Viewing and Managing Network Baselines
	Steps to View Baselines
	Marking Baseline Flows as Anomalous
	Additional Options

	Downloading Network Baselines
	Configuring Baseline Observation Period
	Setting Environment Variables

	Enabling Alerts for Anomalous Network Flows

	HowTo
	Generating Network Policies with Alauda Container Security
	TOC
	Overview
	How to Generate Network Policies
	Downloading and Applying Policies
	Reverting and Deleting Policies
	Additional Notes

	Violation
	Introduction
	TOC
	What is a Policy Violation?
	How Violations Are Detected

	Guides
	Responding to Violations
	TOC
	Namespace Conditions for Platform Components
	Viewing Violations
	Violation Details
	Violation Tab
	Deployment Tab
	Container Configuration
	Port Configuration
	Security Context
	Network Policy

	Policy Tab
	Policy Overview
	Policy Behavior
	Policy Criteria

	Compliance
	Introduction
	Guides
	Workload and Cluster Compliance Monitoring
	TOC
	Overview
	Key Concepts
	Running a Compliance Scan
	Viewing Compliance Results
	Compliance Dashboard
	By Standard
	By Control
	Filtering Compliance Data

	Generating Compliance Reports
	Evidence Report Fields

	How to
	Vulnerablitiy
	Introduction
	Guides
	Vulnerability Management Process
	TOC
	Overview
	Key Steps in Vulnerability Management
	Asset Assessment
	Key Assets to Monitor
	Vulnerability Scanning and Assessment
	Prioritizing Vulnerabilities
	Exposure Assessment
	Taking Action
	Remediation Methods

	Viewing and Addressing Vulnerabilities
	TOC
	Overview of Vulnerability Management
	Navigating Vulnerability Views
	User Workload Vulnerabilities
	How to View User Workload Vulnerabilities
	User Workload Filter Options

	Platform Vulnerabilities
	How to View Platform Vulnerabilities
	Platform Filter Options

	Node Vulnerabilities
	How to View Node Vulnerabilities
	Node Filter Options

	More Views
	How to Use More Views

	Exception Management
	Snoozing CVEs
	Steps to Snooze/Unsnooze CVEs

	Marking CVEs as False Positives
	Steps to Mark as False Positive

	Deferring CVEs
	Steps to Defer CVEs

	Managing Exception Requests
	Viewing Deferred and False Positive CVEs

	Identifying and Remediating Vulnerabilities
	Identifying Vulnerable Dockerfile Lines
	Steps

	Upgrading Components
	Steps

	Exporting Vulnerability Data
	How to Export via API
	Example

	Best Practices

	Summary
	Vulnerability Reporting
	TOC
	Planning Vulnerability Reports
	Creating a Vulnerability Report
	Steps

	Configuring Delivery Destinations and Schedule
	Reviewing and Creating the Report Configuration
	Access Control and Permissions
	Editing and Managing Report Configurations
	Editing a Report Configuration
	Cloning a Report Configuration
	Deleting a Report Configuration

	Generating and Downloading Reports
	Steps

	Sending Reports Immediately
	Report Retention and Expiry Settings

	How to
	Examining Images for Vulnerabilities
	TOC
	Scanner V4 Overview
	Scanner Workflow
	Workflow Steps
	Common Scanner Warning Messages

	Supported Platforms and Formats
	Supported Linux Distributions
	Supported Package Formats
	Supported Programming Languages
	Supported Container Image Layer Formats

	Image Scanning and Watch List
	Vulnerability Data Updates

	Generating SBOMs from Scanned Images
	TOC
	What is an SBOM?
	How to Generate SBOMs
	Using the Portal
	Using the roxctl CLI
	CLI Options

	Image Scanning Using the roxctl CLI
	TOC
	Scanning an Image in a Remote Cluster
	Example Output

	roxctl image scan Command Options
	Option Descriptions

	Risk
	Introduction
	Guides
	Evaluating Security Risks
	TOC
	Risk View
	Creating Policies from Risk View
	Filter Mapping Table

	Risk Details Panel
	Risk Indicators Tab
	Deployment Details Tab
	Process Discovery Tab
	Event Timeline

	Using Process Baseline
	TOC
	What is a Process Baseline?
	Baseline States
	Unlocked
	Locked

	Managing Process Baselines
	Viewing Baselines
	Adding a Process
	Removing a Process
	Locking/Unlocking the Baseline

	Security Policy
	Introduction
	Guides
	Viewing and Managing Security Policies
	TOC
	Policy Categories
	Policy Lifecycle Stages
	Policy Criteria and Attributes
	Image Registry and Contents
	Container Configuration
	Deployment Metadata
	Storage and Networking
	Process Activity (Runtime Only)
	Kubernetes Access and Events

	Policy Enforcement
	Exporting and Importing Policies
	Exporting a Policy
	Importing a Policy

	Creating Custom Policies in Alauda Container Security
	TOC
	Methods to Create Custom Policies
	Creating Policies via the Portal
	Enter Policy Details
	Configure Policy Lifecycle
	Define Policy Rules and Criteria
	Set Policy Scope
	Configure Policy Actions
	Review and Save Policy

	Editing and Managing Policies

	Default Policies in Alauda Container Security
	TOC
	Overview
	Viewing Policies

	Policy Table Structure
	Critical Severity Policies
	High Severity Policies
	Medium Severity Policies
	Low Severity Policies
	Managing Default Policies

	How To
	Checking Policy Compliance with roxctl
	TOC
	Prerequisites
	Output Formats
	Example

	Output Options
	Example: Custom Headers and JSONPath

	Checking Policy Compliance for Deployments
	Checking Policy Compliance for Images
	Viewing Image Scan Results

	Use Policy to Verify Image Signature
	TOC
	Supported Signature Verification Methods
	Prerequisites
	Configure Signature Integration
	Using Cosign Public Keys
	Using Cosign Certificates

	Create and Enforce Image Signature Verification Policies
	Prerequisites
	Procedure

	Configuration
	Managing Deployment Collections
	TOC
	Overview
	Prerequisites
	Benefits of Collections
	Accessing and Managing Collections
	Creating a Deployment Collection
	Steps
	Defining Collection Rules

	Regular Expression Examples
	Match Production Clusters
	Match Non-Production Clusters
	Match All Entities
	Match Specific Deployments and Labels

	Attaching Collections
	Migration from Access Scopes
	API Usage

	API Token Configuration
	TOC
	Key Points
	Procedure
	Token Expiration and Notification
	Configuring Notification Settings

	Integrating with a Generic Docker Registry
	TOC
	Prerequisites
	Integration Steps

	Integration with Email
	TOC
	Configuring Email Integration
	Add a New Email Integration
	Dynamic Recipient with Annotations (Optional)
	TLS and StartTLS Settings

	Enabling Email Notifications for Policies

