
Clusters

Overview

Overview

Immutable Infrastructure

Immutable Infrastructure

Cluster Node Planning

Cluster Node Planning

Menu

Clusters - Alauda Container Platform

Creating an On-Premise Cluster

Creating an On-Premise Cluster

etcd Encryption

etcd Encryption

How to

Add External Address for Built-in Registry

Choosing a Container Runtime

Updating Public Repository Credentials

Clusters - Alauda Container Platform

A cluster is the foundational resource collection for running containerized applications,

encompassing nodes, load balancers, storage, and other critical components. It is a

prerequisite for successfully running containerized applications on the platform. During initial

platform installation, a standard Kubernetes cluster, known as the global cluster, is created.

Subsequently, multiple clusters can be integrated into the global cluster for unified

management.

Cluster Type

On-Premises Cluster

Managed Cluster

Multi-Cloud and Hybrid Cloud Support

Implementation Considerations and Limitations

Version Compatibility

Network and Security Requirements

Best Practices for Cluster Management

1. Pre-Implementation Assessment

2. Security and Compliance

3. Monitoring and Observability

4. Backup and Disaster Recovery

5. Continuous Optimization

Overview

TOC

Menu ON THIS PAGE

Overview - Alauda Container Platform

On-Premises cluster is Kubernetes clusters directly created by the platform. Users provide

virtual or physical machines, and the platform installs and configures Kubernetes clusters on

these machines. This approach is suitable for enterprises with existing hardware resources,

allowing full utilization of infrastructure.

Managed cluster is Kubernetes clusters provided by cloud service providers, which are

integrated into the platform for unified management. Supported integration methods include:

Method Description Use Case Key Characteristics

Import
Integrating existing

Kubernetes clusters

Existing clusters

with direct

network access

Cluster information

submitted to global

cluster

global cluster must

have network access to

the cluster

Register

Integrating clusters

with strict security

requirements

Clusters with high

security

constraints

Specific plugins

installed on the target

cluster

Reverse proxy

establishes a secure

tunnel

Maintains cluster

security while enabling

management

Cluster Type

On-Premises Cluster

Managed Cluster

Overview - Alauda Container Platform

Method Description Use Case Key Characteristics

Proxy

Create

Creating clusters

through cloud

service providers

Leveraging public

cloud Kubernetes

services

Cloud service provider

credentials required

Platform creates

Kubernetes clusters

using provided

credentials

These cluster management approaches meet enterprise needs in multi-cloud and hybrid cloud

scenarios, supporting container transformation at different stages:

Existing Hardware: Create platform-provided clusters

Existing Clusters: Import or register into the platform

Elastic Demands: Quickly create public cloud clusters

Supported Kubernetes versions: 1.28, 1.29, 1.30, 1.31

Both On-Premises and Managed clusters must ensure version compatibility

Version mismatches may result in feature limitations or compatibility issues

Ensure network connectivity between global and target clusters

Implement appropriate firewall and network security policies

Multi-Cloud and Hybrid Cloud Support

Implementation Considerations and Limitations

Version Compatibility

Network and Security Requirements

Overview - Alauda Container Platform

Manage access credentials and authentication mechanisms securely

Conduct thorough infrastructure and workload analysis

Identify specific requirements for each cluster

Develop a comprehensive migration and integration strategy

Implement role-based access control (RBAC)

Use network policies to restrict cluster communication

Regularly audit and update security configurations

Ensure compliance with industry standards and regulations

Set up centralized logging and monitoring

Implement proactive alerting mechanisms

Use platform-provided observability tools

Track cluster performance, resource utilization, and health

Establish regular backup procedures

Create and test disaster recovery plans

Implement multi-cluster backup strategies

Ensure minimal downtime and data loss

Best Practices for Cluster Management

1. Pre-Implementation Assessment

2. Security and Compliance

3. Monitoring and Observability

4. Backup and Disaster Recovery

Overview - Alauda Container Platform

Regularly review cluster configurations

Optimize resource allocation

Update to the latest supported Kubernetes versions

Leverage platform features for automatic updates and scaling

5. Continuous Optimization

Overview - Alauda Container Platform

Immutable Infrastructure uses an immutable operating system to provision Kubernetes

clusters. Unlike traditional OS-based clusters, all node configurations are baked into images

and remain unchanged after deployment. Cluster upgrades and configuration changes are

applied by replacing nodes with new images, ensuring consistency, reliability, and simplified

operations throughout the cluster lifecycle.

Note

Because Immutable Infrastructure releases on a different cadence from Alauda Container Platform,

the Immutable Infrastructure documentation is now available as a separate documentation set at

Immutable Infrastructure .

About Immutable Infrastructure

↗

Menu

Immutable Infrastructure - Alauda Container Platform

https://docs.alauda.io/immutable-infra/
https://docs.alauda.io/immutable-infra/
https://docs.alauda.io/immutable-infra/

A cluster utilizes the Kubernetes node role labels node-role.kubernetes.io/<role> to assign

different roles to nodes. For convenience of description, we refer to this type of label as a role

label.

By default, a cluster contains two types of nodes: control plane nodes and worker nodes, used

to host control plane workloads and application workloads, respectively.

In a cluster:

The control plane nodes are labeled with the role label node-role.kubernetes.io/control-

plane .

Note:

Prior to Kubernetes v1.24, the community also used the label node-

role.kubernetes.io/master to mark control plane nodes. For backward compatibility, both

labels are considered valid for identifying control plane nodes.

The worker nodes, by default, have no role labels. However, you can explicitly assign the

role label node-role.kubernetes.io/worker to a worker node if desired.

In addition to these default role labels, you can also define custom role labels on worker

nodes to further classify them into different functional types. For example:

You can add the role label node-role.kubernetes.io/infra to designate a node as an infra

node, intended for hosting infrastructure components.

You can add the role label node-role.kubernetes.io/log to designate a node as a log node,

specialized for hosting logging components.

This document will guide you through creating infra nodes and custom role nodes, and

migrating workloads to those nodes.

Cluster Node Planning

Menu ON THIS PAGE

Cluster Node Planning - Alauda Container Platform

Creating Infra Nodes on Non-Immutable Cluster

Adding Infra Nodes

Step 1: Add the Infra Role Label to the Node resources

Step 2: Add a Taint to the Node resources

Step 3: Verify the Label and Taint

Migrating Pods to Infra Nodes

Custom Node Planning

General Steps for Defining Custom Role Nodes

Step 1: Add a Custom Role Label

Step 2: Add a Corresponding Taint

Step 3: Verify the Configuration

Example: Create A Node Dedicated To Logging Components

Step 1: Add the Log Role Label

Step 2: Add a Taint to the Node

Step 3: Verify the Label and Taint

By default, a cluster only includes control plane nodes and worker nodes. If you want to

designate certain worker nodes as infra nodes dedicated to hosting infrastructure

components, you need to manually add the appropriate role label and taint to those nodes.

Note:
The operations in this section are only applicable to non-immutable clusters. That is, the

following operations are not supported on cloud clusters (such as EKS managed clusters

deployed via the Alauda Container Platform EKS Provider Cluster Plugin), third-party

clusters, or clusters where the nodes use an immutable OS.

TOC

Creating Infra Nodes on Non-Immutable Cluster

Cluster Node Planning - Alauda Container Platform

This command adds the infra role label to the Node 192.168.143.133: node-

role.kubernetes.io/infra: "" , indicating that the node is an infra node.

Add a taint to prevent other workloads from being scheduled onto the infra node.

This command adds the taint node-role.kubernetes.io/infra=reserved:NoSchedule to Node

192.168.143.133, indicating that only applications that tolerate this taint can be scheduled

onto this node.

Check whether the node has been assigned the infra role label and taint:

The output indicates that the Node 192.168.143.133 has been configured as an infra node

and has been tainted with tainted with node-role.kubernetes.io/infra=reserved:NoSchedule .

Adding Infra Nodes

Step 1: Add the Infra Role Label to the Node resources

Step 2: Add a Taint to the Node resources

Step 3: Verify the Label and Taint

Migrating Pods to Infra Nodes

kubectl label nodes 192.168.143.133 node-role.kubernetes.io/infra="" --overwrite

kubectl taint nodes 192.168.143.133 node-role.kubernetes.io/infra=reserved:NoSchedule

kubectl describe node 192.168.143.133

Name: 192.168.143.133

Roles: infra

Labels: node-role.kubernetes.io/infra=reserved

 ...

Taints: node-role.kubernetes.io/infra=reserved:NoSchedule

Cluster Node Planning - Alauda Container Platform

If you want to schedule specific Pod onto infra nodes, you need to make the following

configurations:

A nodeSelector targeting the infra role label.

Corresponding tolerations for the infra node's taint.

Below is an example Deployment manifest configured to run on the infra node.

The nodeSelector ensures the Pod is only scheduled on nodes with the label node-

role.kubernetes.io/infra: "" , the toleration allows the Pod to tolerate the taint node-

role.kubernetes.io/infra=reserved:NoSchedule .

With these configurations, the Pod will be scheduled onto the infra node.

Note:
Moving pods installed via OLM Operators or Cluster Plugins to an infra node is not always

possible. The capability to move these pods is depends on the configuration of each

Operator or Cluster Plugin.

Custom Node Planning

apiVersion: apps/v1

kind: Pod

metadata:

 name: infra-pod-demo

 namespace: default

spec:

 ...

 nodeSelector:

 node-role.kubernetes.io/infra: ""

 tolerations:

 - effect: NoSchedule

 key: node-role.kubernetes.io/infra

 value: reserved

 operator: Equal

 ...

Cluster Node Planning - Alauda Container Platform

Beyond infra nodes, you may want to designate worker nodes for other specialized purposes

— such as hosting logging components, storage services, or monitoring agents.

You can achieve this by assigning more custom role labels and corresponding taints to worker

nodes, effectively turning them into custom role nodes.

The process is similar to creating infra nodes.

Replace <role> with your desired role name, such as monitoring, storage, or log.

Replace <role> with your custom role name and replace <value> with a meaningful descriptor,

such as reserved or dedicated. This value is optional but useful for documentation and clarity.

Ensure the Labels and Taints fields reflect your custom role configuration.

If you want to create a node specifically for installing logging components, you can add the log

role. In this case, create the log node as follows.

General Steps for Defining Custom Role Nodes

Step 1: Add a Custom Role Label

Step 2: Add a Corresponding Taint

Step 3: Verify the Configuration

Example: Create A Node Dedicated To Logging
Components

kubectl label nodes <node> node-role.kubernetes.io/<role>="" --overwrite

kubectl taint nodes <node> node-role.kubernetes.io/<role>=<value>:NoSchedule

kubectl describe node <node>

Cluster Node Planning - Alauda Container Platform

This label indicates that the node is designated for log-related workloads.

This taint prevents unscheduled workloads from being deployed to the node.

This confirms that the node has been successfully configured as a log node with the

appropriate label and taint.

By following the above practices, you can effectively partition your Kubernetes nodes based

on their intended purpose, improve workload isolation, and ensure that specific components

are deployed onto appropriately configured nodes.

Step 1: Add the Log Role Label

Step 2: Add a Taint to the Node

Step 3: Verify the Label and Taint

kubectl label nodes 192.168.143.133 node-role.kubernetes.io/log="" --overwrite

kubectl taint nodes 192.168.143.133 node-role.kubernetes.io/log=reserved:NoSchedule

Name: 192.168.143.133

Roles: log

Labels: node-role.kubernetes.io/log=reserved

 ...

Taints: node-role.kubernetes.io/log=reserved:NoSchedule

Cluster Node Planning - Alauda Container Platform

Prerequisites

Node Requirements

Load Balancing

Connecting global Cluster and Workload Cluster

Image Registry

Container Networking

Creation Procedure

Basic Info

Container Network

Node Settings

Extended Parameters

Post-Creation Steps

Viewing Creation Progress

Associating with Projects

Creating an On-Premise Cluster

TOC

Prerequisites

Node Requirements

Menu ON THIS PAGE

Creating an On-Premise Cluster - Alauda Container Platform

1. If you downloaded a single-architecture installation package from Download Installation

Package, ensure your node machines have the same architecture as the package.

Otherwise, nodes won't start due to missing architecture-specific images.

2. Verify that your node operating system and kernel are supported. See Supported OS and

Kernels for details.

3. Perform availability checks on node machines. For specific check items, refer to Node

Preprocessing > Node Checks.

4. If node machine IPs cannot be directly accessed via SSH, provide a SOCKS5 proxy for the

nodes. The global cluster will access nodes through this proxy service.

For production environments, a load balancer is required for cluster control plane nodes to

ensure high availability. You can provide your own hardware load balancer or enable Self-

built VIP , which provides software load balancing using haproxy + keepalived. We

recommend using a hardware load balancer because:

Better Performance: Hardware load balancing performs better than software load

balancing.

Lower Complexity: If you're unfamiliar with keepalived, misconfigurations could make the

cluster unavailable, leading to lengthy troubleshooting and seriously affecting cluster

reliability.

When using your own hardware load balancer, you can use the load balancer's VIP as the IP

Address / Domain parameter. If you have a domain name that resolves to the load balancer's

VIP, you can use that domain as the IP Address / Domain parameter. Note:

The load balancer must correctly forward traffic to ports 6443 , 11780 , and 11781 on all

control plane nodes in the cluster.

If your cluster has only one control plane node and you use that node's IP as the IP

Address / Domain parameter, the cluster cannot be scaled from a single node to a highly

available multi-node setup later. Therefore, we recommend providing a load balancer even

for single-node clusters.

When enabling Self-built VIP , you need to prepare:

1. An available VRID

Load Balancing

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/install/prepare/download.html#download_core_package
http://localhost:4173/container_platform/install/prepare/download.html#download_core_package
http://localhost:4173/container_platform/install/prepare/prerequisites.html#supported_os_and_kernels
http://localhost:4173/container_platform/install/prepare/prerequisites.html#supported_os_and_kernels
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks

2. A host network that supports the VRRP protocol

3. All control plane nodes and the VIP must be on the same subnet, and the VIP must be

different from any node IP.

The platform requires mutual access between the global cluster and workload clusters. If

they're not on the same network, you need to:

1. Provide External Access for the workload cluster to ensure the global cluster can access

it. Network requirements must ensure global can access ports 6443 , 11780 , and 11781

on all control plane nodes.

2. Add an additional address to global that the workload cluster can access. When creating

a workload cluster, add this address to the cluster's annotations with the key

cpaas.io/platform-url and the value set to the public access address of global .

Cluster images support Platform Built-in, Private Repository, and Public Repository options.

Platform Built-in: Uses the image registry provided by the global cluster. If the cluster

cannot access global , see Add External Address for Built-in Registry.

Private Repository: Uses your own image registry. For details on pushing required images

to your registry, contact technical support.

Public Repository: Uses the platform's public image registry. Before using, complete

Updating Public Repository Credentials.

If you plan to use Kube-OVN's Underlay for your cluster, refer to Preparing Kube-OVN

Underlay Physical Network.

Connecting global Cluster and Workload Cluster

Image Registry

Container Networking

Creation Procedure

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html
http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html

1. Enter the Administrator view, and click Clusters/Clusters in the left navigation bar.

2. Click Create Cluster.

3. Configure the following sections according to the instructions below: Basic Info, Container

Network, Node Settings, and Extended Parameters.

Parameter Description

Kubernetes

Version

All optional versions are rigorously tested for stability and

compatibility.

Recommendation: Choose the latest version for optimal features

and support.

Container

Runtime

Containerd is provided as the default container runtime.

If you prefer using Docker as the container runtime, please refer to

Choosing a Container Runtime.

Cluster

Network

Protocol

Supports three modes: IPv4 single stack, IPv6 single stack,

IPv4/IPv6 dual stack.

Note: If you select dual stack mode, ensure all nodes have correctly

configured IPv6 addresses; the network protocol cannot be

changed after setting.

Basic Info

Creating an On-Premise Cluster - Alauda Container Platform

Cluster

Endpoint

IP Address / Domain : Enter the pre-prepared domain name or VIP if

no domain name is available.

Self-Built VIP : Disabled by default. Only enable if you haven't

provided a LoadBalancer. When enabled, the installer will

automatically deploy keepalived for software load balancing

support.

External Access : Enter the externally accessible address prepared

for the cluster when it's not in the same network environment as the

global cluster.

Container Network

An enterprise-grade Cloud Native Kubernetes container network orchestration system

developed by Alauda. It brings mature networking capabilities from the OpenStack domain

to Kubernetes, supporting cross-cloud network management, traditional network

architecture and infrastructure interconnection, and edge cluster deployment scenarios,

while greatly enhancing Kubernetes container network security, management efficiency, and

performance.

Parameter Description

Subnet
Also known as Cluster CIDR, represents the default subnet segment.

After cluster creation, additional subnets can be added.

Transmit

Mode Overlay: A virtual network abstracted over the infrastructure that

doesn't consume physical network resources. When creating an

Kube-OVN

Creating an On-Premise Cluster - Alauda Container Platform

Overlay default subnet, all Overlay subnets in the cluster use the same

cluster NIC and node NIC configuration.

Underlay: This transmission method relies on physical network

devices. It can directly allocate physical network addresses to Pods,

ensuring better performance and connectivity with the physical

network. Nodes in an Underlay subnet must have multiple NICs, and

the NIC used for bridge networking must be exclusively used by

Underlay and not carry other traffic like SSH. When creating an

Underlay default subnet, the cluster NIC is actually a default NIC for

bridge networking, and the node NIC is the node NIC configuration in

the bridge network.

Default Gateway: The physical network gateway address, which is

the gateway address for the Cluster CIDR segment (must be within

the Cluster CIDR address range).

VLAN ID: Virtual LAN identifier (VLAN number), e.g., 0 .

Reserved IPs: Set reserved IPs that won't be automatically

allocated, such as IPs in the subnet that are already used by other

devices.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the default subnet range.

Join CIDR

In Overlay transmission mode, this is the IP address range used for

communication between nodes and pods. Cannot overlap with the

default subnet or Service CIDR.

Calico is a layer 3 networking solution that provides secure network connections for

containers.

Parameter Description

Calico

Creating an On-Premise Cluster - Alauda Container Platform

Default

Subnet

Also known as Cluster CIDR, represents the default subnet

segment. After cluster creation, additional subnets can be added.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the default subnet range.

Flannel provides a flat network environment for all containers in the cluster, giving

containers created on different node hosts a unique virtual IP address across the entire

cluster. The pod subnet is divided evenly among the cluster nodes according to the mask,

and pods on each node are assigned IP addresses from the segment allocated to that

node. This improves communication efficiency between containers without having to

consider IP translation issues.

Parameter Description

Cluster

CIDR

IP address range used by pods created when the cluster starts.

Supports setting the maximum number of IP addresses that can be

allocated to pods on each node under the current container network.

Note: The platform will automatically calculate the maximum number

of nodes the cluster can accommodate based on the above

configuration and display it in the hint below the input field.

Important: After cluster creation, the cluster network cannot be

changed, so please plan the network carefully.

Flannel

Creating an On-Premise Cluster - Alauda Container Platform

Parameter Description

Network

Interface

Card

The name of the host network interface device used by the cluster

network plugin.

Note:

When selecting Underlay transmission mode for the Kube-OVN

default subnet, you must specify the network interface name, which

will be the default NIC for bridge networking.

- The platform's network interface traffic monitoring by default

recognizes traffic on interfaces named like eth.|en.|wl.|ww. . If you

use interfaces with different naming conventions, please refer to

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the container subnet range.

If you need to install other network plugins, select Custom mode. You can manually install

network plugins after the cluster is successfully created.

Parameter Description

Cluster

CIDR
IP address range used by pods created when the cluster starts.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the container subnet range.

Custom

Node Settings

Creating an On-Premise Cluster - Alauda Container Platform

Collect Network Data from Custom-Named Network Interfaces after

cluster onboarding to modify the relevant resources and ensure the

platform can properly monitor network interface traffic.

Node Name

You can choose to use either the node IP or hostname as the node

name on the platform.

Note: When choosing to use hostname as the node name, ensure that

the hostnames of nodes added to the cluster are unique.

Nodes

Add nodes to the cluster, or Recovery from draft temporarily saved

node information. See the detailed parameter descriptions for adding

nodes below.

Monitoring

Type

Supports Prometheus and VictoriaMetrics.

When selecting VictoriaMetrics as the monitoring component, you

must configure the Deploy Type:

- Deploy VictoriaMetrics: Deploys all related components, including

VMStorage, VMAlert, VMAgent, etc.

- Deploy VictoriaMetrics Agent: Only deploys the log collection

component, VMAgent. When using this deployment method, you need

to associate with a VictoriaMetrics instance already deployed on

another cluster in the platform to provide monitoring services for the

cluster.

Monitoring

Nodes Select nodes for deploying cluster monitoring components. Supports

selecting compute nodes and control plane nodes that allow

application deployment.

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/how_to/special_network_card_name.html

To avoid affecting cluster performance, it's recommended to prioritize

compute nodes. After the cluster is successfully created, monitoring

components with storage type Local Volume will be deployed on the

selected nodes.

Node Addition Parameters

Parameter Description

Type

Control Plane Node: Responsible for running components such

as kube-apiserver, kube-scheduler, kube-controller-manager, etcd,

container network, and some platform management components in

the cluster. When Application Deployable is enabled, control

plane nodes can also be used as compute nodes.

Worker Node: Responsible for hosting business pods running on

the cluster.

IPv4 Address
The IPv4 address of the node. For clusters created in internal

network mode, enter the node's private IP.

IPv6 Address
Valid when the cluster has IPv4/IPv6 dual stack enabled. The IPv6

address of the node.

Application

Deployable

Valid when Node Type is Control Plane Node. Whether to allow

business applications to be deployed on this control plane node,

scheduling business-related pods to this node.

Display Name The display name of the node.

Creating an On-Premise Cluster - Alauda Container Platform

SSH

Connection IP

The IP address that can connect to the node when accessing it via

SSH service.

If you can log in to the node using ssh <username>@<node's IPv4

address> , this parameter is not required; otherwise, enter the

node's public IP or NAT external IP to ensure the global cluster

and proxy can connect to the node via this IP.

Network

Interface Card

Enter the name of the network interface used by the node. The

priority of network interface configuration effectiveness is as follows

(from left to right, in descending order):

Kube-OVN Underlay: Node NIC > Cluster NIC

Kube-OVN Overlay: Node NIC > Cluster NIC > NIC corresponding

to the node's default route

Calico: Cluster NIC > NIC corresponding to the node's default

route

Flannel: Cluster NIC > NIC corresponding to the node's default

route

Associated

Bridge Network Note: When creating a cluster, bridge network configuration is not

supported; this option is only available when adding nodes to a

cluster that already has Underlay subnets created.

Creating an On-Premise Cluster - Alauda Container Platform

Select an existing Add Bridge Network. If you don't want to use the

bridge network's default NIC, you can configure the node NIC

separately.

SSH Port SSH service port number, e.g., 22 .

SSH Username SSH username, needs to be a user with root privileges, e.g., root .

Proxy

Whether to access the node's SSH port through a proxy. When the

global cluster cannot directly access the node to be added via

SSH (e.g., the global cluster and workload cluster are not in the

same subnet; the node IP is an internal IP that the global cluster

cannot directly access), this switch needs to be turned on and

proxy-related parameters configured. After configuring the proxy,

node access and deployment can be achieved through the proxy.

Note: Currently, only SOCKS5 proxy is supported.

Access URL: Proxy server address, e.g., 192.168.1.1:1080 .

Username: Username for accessing the proxy server.

Password: Password for accessing the proxy server.

SSH

Authentication Authentication method and corresponding authentication

information for logging into the added node. Options include:

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_subnet.html#kube-ovn_underlay_bridge_network

Password: Requires a username with root privileges and the

corresponding SSH password.

Key: Requires a private key with root privileges and the private

key password .

Save Draft

Saves the currently configured data in the dialog as a draft and

closes the Add Node dialog.

Without leaving the Create Cluster page, you can select Restore

from draft to open the Add Node dialog and restore the

configuration data saved as a draft.

Note: The data restored from the draft is the most recently saved

draft data.

Note:

Apart from required configurations, it's not recommended to set extended parameters, as

incorrect settings may make the cluster unavailable and cannot be modified after cluster

creation.

If a entered Key duplicates a default parameter Key, it will override the default

configuration.

Procedure

1. Click Extended Parameters to expand the extended parameter configuration area. You

can optionally set the following extended parameters for the cluster:

Parameter Description

Extended Parameters

Creating an On-Premise Cluster - Alauda Container Platform

Docker

Parameters

dockerExtraArgs , additional configuration parameters for Docker,

which will be written to /etc/sysconfig/docker . Modification is not

recommended. To configure Docker through the daemon.json file, it

must be configured as key-value pairs.

Kubelet

Parameters

kubeletExtraArgs , additional configuration parameters for Kubelet.

Note: When the Container Network's Node IP Count parameter is

entered, a default Kubelet Parameter configuration with the key

max-pods and a value of Node IP Count is automatically generated.

This sets the maximum number of pods that can run on any node in

the cluster. This configuration is not displayed in the interface.

Adding a new max-pods: maximum number of runnable pods key-value

pair in the Kubelet Parameters area will override the default value.

Any positive integer is allowed, but it's recommended to use the

default value (Node IP Count) or enter a value not exceeding 256 .

Controller

Manager

Parameters

controllerManagerExtraArgs , additional configuration parameters for

the Controller Manager.

Scheduler

Parameters

schedulerExtraArgs , additional configuration parameters for the

Scheduler.

APIServer

Parameters

apiServerExtraArgs , additional configuration parameters for the

APIServer.

Creating an On-Premise Cluster - Alauda Container Platform

APIServer

URL

publicAlternativeNames , APIServer access addresses issued in the

certificate. Only IPs or domain names can be entered, with a

maximum of 253 characters.

Cluster

Annotations

Cluster annotation information, marking cluster characteristics in

metadata in the form of key-value pairs for platform components or

business components to obtain relevant information.

4. Click Create. You'll return to the cluster list page where the cluster will be in the Creating

state.

On the cluster list page, you can view the list of created clusters. For clusters in the Creating
state, you can check the execution progress.

Procedure

1. Click the small icon View Execution Progress to the right of the cluster status.

2. In the execution progress dialog that appears, you can view the cluster's execution

progress (status.conditions).

Tip: When a certain type is in progress or in a failed state with a reason, hover your cursor

over the corresponding reason (shown in blue text) to view detailed information about the

reason (status.conditions.reason).

After the cluster is created, you can add it to projects in the project management view.

Post-Creation Steps

Viewing Creation Progress

Associating with Projects

Creating an On-Premise Cluster - Alauda Container Platform

This guide helps you install, understand, and operate the etcd Encryption Manager in ACP to

automate etcd data encryption key rotation within your clusters.

It ensures that sensitive data stored in etcd, such as secrets and configmaps, is encrypted

using a secure algorithm, enhancing your cluster's security.

Installation

How it Works

Default Configuration

Operations Guide

Configuration Files

Checking Status

See Cluster Plugin for installation instructions.

Note:

Currently supported:

On-Premises clusters

etcd Encryption

TOC

Installation

Menu ON THIS PAGE

etcd Encryption - Alauda Container Platform

http://localhost:4173/container_platform/extend/cluster_plugin.html

DCS clusters

Not supported:

global cluster

Upon installation, an etcd-encryption-manager controller is deployed in the kube-system

namespace, which:

Periodically rotates etcd data encryption keys.

Retains the 8 most recent keys for rollback compatibility.

Updates encryption configurations on all control nodes.

Triggers kube-apiserver to hot reload new keys.

Automatically migrates resources to re-encrypt data with new keys.

Cluster stability is maintained throughout these operations.

Parameter Value

Encrypted resources secrets, configmaps

Encryption algorithm 256-bit AES-GCM

Rotation interval 168 hours (7 days)

How it Works

Default Configuration

Operations Guide

etcd Encryption - Alauda Container Platform

Path Content

/etc/kubernetes/encryption-provider.conf Current encryption configuration

/etc/kubernetes/encryption-provider-

history.bak
Historical key records (for recovery)

/etc/kubernetes/encryption-provider-bak/
Expired encryption configuration

versions

Run the following command to check the current rotation status:

Example output:

Configuration Files

Checking Status

kubectl get EtcdEncryptionConfig default -o yaml

etcd Encryption - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alpha1

kind: EtcdEncryptionConfig

metadata:

 name: default

spec:

 resources:

 - secrets

 - configmaps

 rotationInterval: 168h0m0s

 type: aesgcm

status:

 deployStatus:

 192.168.100.1:

 revision: 3

 state: Success

 192.168.100.2:

 revision: 3

 state: Success

 192.168.100.3:

 revision: 3

 state: Success

 migration:

 completeTimestamp: "2025-05-27T05:47:01Z"

 resources:

 - secrets

 - configmaps

 revision: 3

 state: Success

 revision: 3

etcd Encryption - Alauda Container Platform

How to

Add External Address for Built-in Registry

Choosing a Container Runtime

Updating Public Repository Credentials

Menu

How to - Alauda Container Platform

Overview

Prerequisites

Procedure

Configure Certificate and Routing Rules for the Platform Registry

When the global cluster uses the Platform Built-in registry, workload clusters typically also

use this registry to pull images. The registry not only serves components within the global

cluster but must also be accessible to workload cluster nodes.

In certain scenarios, workload cluster nodes cannot directly access the global cluster's

registry address - for example, when the global cluster is in a private data center while

workload clusters are in public clouds or edge environments.

This guide explains how to configure an externally accessible address for the platform's

default registry to allow workload clusters to pull images.

Before you begin, prepare the following:

Add External Address for Built-in Registry

TOC

Overview

Prerequisites

Menu ON THIS PAGE

Add External Address for Built-in Registry - Alauda Container Platform

A domain name accessible by workload cluster nodes

The IP address that the domain name points to

A valid SSL certificate for the domain name

WARNING

The domain name must be different from the platform access address

Ensure the domain's IP address can forward traffic to all control plane nodes of the global

cluster

1. Copy the domain's valid certificate to any control plane node of the global cluster

2. Create a TLS secret containing the domain certificate:

Example:

Note: After creating the certificate, monitor the expiration date of the registry-address.tls

secret in the kube-system namespace of the global cluster. Replace the certificate

before it expires.

3. Create ingress rules on any control plane node of the global cluster:

Procedure

Configure Certificate and Routing Rules for the Platform
Registry

kubectl create secret tls registry-address.tls --cert=<certificate-filename> --key=

<key-filename> -n kube-system

kubectl create secret tls registry-address.tls --cert=custom.crt --key=custom.key -n

kube-system

Add External Address for Built-in Registry - Alauda Container Platform

REGISTRY_DOMAIN_NAME=<www.registry.com> # Replace with your accessible domain name

cat << EOF | kubectl create -f -

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 nginx.ingress.kubernetes.io/backend-protocol: HTTPS

 name: registry-address

 namespace: kube-system

 labels:

 service_name: registry

spec:

 rules:

 - host: $REGISTRY_DOMAIN_NAME

 http:

 paths:

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/_catalog

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/tags/list

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/manifests/[A-Za-z0-9_+.-:]+

Add External Address for Built-in Registry - Alauda Container Platform

A response similar to ... created indicates successful ingress creation.

4. Check if a Registry Service resource exists:

If the Service doesn't exist, create it with:

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/blobls/[A-Za-z0-9-:]+

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/blobls/uploads/[A-Za-z0-9-:]+

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /auth/token

 pathType: ImplementationSpecific

 tls:

 - secretName: registry-address.tls

 hosts:

 - $REGISTRY_DOMAIN_NAME

EOF

kubectl -n kube-system get svc | grep registry

Add External Address for Built-in Registry - Alauda Container Platform

5. Test the configuration by pulling an image from the registry using the domain name:

Or

cat << EOF | kubectl create -f -

apiVersion: v1

kind: Service

metadata:

 labels:

 name: registry

 service_name: registry

 name: registry

 namespace: kube-system

spec:

 ports:

 - protocol: TCP

 port: 443

 targetPort: 60080

 selector:

 component: registry

 type: ClusterIP

EOF

crictl pull <registry-domain-name>/automation/qaimages:helloworld

docker pull <registry-domain-name>/automation/qaimages:helloworld

Add External Address for Built-in Registry - Alauda Container Platform

Overview

Quick Selection Guide

Differences Between Docker and Containerd

Common Commands

Call Chain Differences

Log and Parameter Comparison

CNI Network Comparison

Container Runtime is a core component of Kubernetes, responsible for managing the lifecycle

of images and containers.

When creating clusters through the platform, you can choose either Containerd or Docker as

your runtime component.

Note: Kubernetes version 1.24 and above no longer officially supports Docker runtime. The

officially recommended runtime is Containerd. If you still need to use Docker runtime, you

must first enable cri-docker in the feature gate before you can select Docker as the runtime

component when creating a cluster. For details on using feature gates, see Feature Gate

Configuration.

Choosing a Container Runtime

TOC

Overview

Menu ON THIS PAGE

Choosing a Container Runtime - Alauda Container Platform

http://localhost:4173/container_platform/configure/feature_toggles.html#feature_toggles
http://localhost:4173/container_platform/configure/feature_toggles.html#feature_toggles

Choose Containerd Choose Docker

Shorter call chain

Fewer components

More stable

Consumes fewer node

resources

Supports docker-in-docker

Allows use of docker build/push/save/load

commands on nodes

Can call Docker API

Supports docker compose or docker swarm

Containerd Docker Description

crictl ps docker ps View running containers

crictl inspect docker inspect View container details

crictl logs docker logs View container logs

crictl exec docker exec Execute commands in container

crictl attach docker attach Attach to container

crictl stats docker stats Display container resource usage

crictl create docker create Create container

crictl start docker start Start container

crictl stop docker stop Stop container

crictl rm docker rm Remove container

Quick Selection Guide

Differences Between Docker and Containerd

Common Commands

Choosing a Container Runtime - Alauda Container Platform

Containerd Docker Description

crictl images docker images View image list

crictl pull docker pull Pull image

None docker push Push image

crictl rmi docker rmi Delete image

crictl pods None View pod list

crictl inspectp None View pod details

crictl runp None Start pod

crictl stopp docker images View images

ctr images ls None Stop pod

crictl stopp docker load/save Import/export images

ctr images import/export None Stop pod

ctr images pull/push docker pull/push Pull/push images

ctr images tag docker tag Tag images

Docker as Kubernetes container runtime has the following call relationship:

kubelet > cri-dockerd > dockerd > containerd > runC

Containerd as Kubernetes container runtime has the following call relationship:

kubelet > cri plugin (in containerd process) > containerd > runC

Summary: Although dockerd adds features like swarm cluster, docker build, and Docker API,

it can introduce bugs and adds an extra layer in the call chain. Containerd has a shorter call

chain, fewer components, greater stability, and consumes fewer node resources.

Call Chain Differences

Choosing a Container Runtime - Alauda Container Platform

Comparison Docker Containerd

Storage Path

When Docker serves as the Kubernetes

container runtime, container logs are

stored by Docker in directories like

/var/lib/docker/containers/$CONTAINERID .

Kubelet creates symbolic links in

/var/log/pods and /var/log/containers

pointing to the container log files in this

directory.

When Containerd serves a

the Kubernetes container

runtime, container logs are

stored by Kubelet in the

/var/log/pods/$CONTAINER_NA

directory, with symbolic link

created in the

/var/log/containers directo

pointing to the log files.

Configuration

Parameters

Specified in the Docker configuration

file:

"log-driver": "json-file",

"log-opts": {"max-size": "100m","max-

file": "5"}

Method 1: Specified in kube

parameters:

--container-log-max-files=5

--container-log-max-

size="100Mi"

Method 2: Specified in

KubeletConfiguration:

"containerLogMaxSize":

"100Mi",

"containerLogMaxFiles": 5,

Saving

Container

Logs to Data

Disk

Mount the data disk to "data-root"

(default is /var/lib/docker).

Create a symbolic link

/var/log/pods pointing to a

directory under the data dis

mount point.

Comparison Docker Containerd

Who Calls CNI cri-dockerd
cri-plugin built into Containerd

(after containerd 1.1)

Log and Parameter Comparison

CNI Network Comparison

Choosing a Container Runtime - Alauda Container Platform

Comparison Docker Containerd

How to

Configure CNI

cri-dockerd parameters --cni-

conf-dir --cni-bin-dir --cni-

cache-dir

Containerd configuration file

(toml):

[plugins.cri.cni]

bin_dir = "/opt/cni/bin"

conf_dir = "/etc/cni/net.d"

Choosing a Container Runtime - Alauda Container Platform

Overview

Procedure

The Public Repository is a platform-provided image registry service available on the public

internet. When you want your clusters to use the Public Repository as their image registry,

you need to update the built-in public-registry-credential Cloud Credentials. This ensures

your platform has permission to pull images from the public registry.

1. Log in to the Customer Portal and download your organization's authentication file from

the Enterprise Management section located in the User Information dropdown in the

upper right corner.

2. Navigate to Clusters > Cloud Credential in the left navigation bar of the Administrator

console.

3. Locate the cloud credential named public-registry-credential and click Update from the

dropdown menu on the right.

Updating Public Repository Credentials

TOC

Overview

Procedure

Menu ON THIS PAGE

Updating Public Repository Credentials - Alauda Container Platform

4. In the Upload Public Repository Address section, upload the authentication file you

downloaded from the Customer Portal.

5. Click Update to apply the changes.

Updating Public Repository Credentials - Alauda Container Platform

	Clusters
	Overview
	TOC
	Cluster Type
	On-Premises Cluster
	Managed Cluster

	Multi-Cloud and Hybrid Cloud Support
	Implementation Considerations and Limitations
	Version Compatibility
	Network and Security Requirements

	Best Practices for Cluster Management
	1. Pre-Implementation Assessment
	2. Security and Compliance
	3. Monitoring and Observability
	4. Backup and Disaster Recovery
	5. Continuous Optimization

	About Immutable Infrastructure
	Cluster Node Planning
	TOC
	Creating Infra Nodes on Non-Immutable Cluster
	Adding Infra Nodes
	Step 1: Add the Infra Role Label to the Node resources
	Step 2: Add a Taint to the Node resources
	Step 3: Verify the Label and Taint

	Migrating Pods to Infra Nodes
	Custom Node Planning
	General Steps for Defining Custom Role Nodes
	Step 1: Add a Custom Role Label
	Step 2: Add a Corresponding Taint
	Step 3: Verify the Configuration

	Example: Create A Node Dedicated To Logging Components
	Step 1: Add the Log Role Label
	Step 2: Add a Taint to the Node
	Step 3: Verify the Label and Taint

	Creating an On-Premise Cluster
	TOC
	Prerequisites
	Node Requirements
	Load Balancing
	Connecting global Cluster and Workload Cluster
	Image Registry
	Container Networking

	Creation Procedure
	Basic Info
	Container Network
	Node Settings
	Extended Parameters

	Post-Creation Steps
	Viewing Creation Progress
	Associating with Projects

	etcd Encryption
	TOC
	Installation
	How it Works
	Default Configuration

	Operations Guide
	Configuration Files
	Checking Status

	How to
	Add External Address for Built-in Registry
	TOC
	Overview
	Prerequisites
	Procedure
	Configure Certificate and Routing Rules for the Platform Registry

	Choosing a Container Runtime
	TOC
	Overview
	Quick Selection Guide
	Differences Between Docker and Containerd
	Common Commands
	Call Chain Differences
	Log and Parameter Comparison
	CNI Network Comparison

	Updating Public Repository Credentials
	TOC
	Overview
	Procedure

