
Overview

Introduction

Features

Install

Install

Application Development

Hardware accelerators

Hardware accelerator Introduction

Product Advantages

Application Scenarios

Technical Limitations

vGPU (Based on Opensource GPU-Manager)

pGPU (NVIDIA Device Plugin)

MPS (NVIDIA Multi-Process Service Plugin)

Installing Kubernetes Hardware accelerator Toolkit

Menu

Hardware accelerators - Alauda Container Platform

Introduction

Guides

Troubleshooting

Configuration Management

Introduction

Guides

Resource Monitoring

Introduction

Application Development Introduction

Configuration Management Introduction

Resource Monitoring Introduction

Advantages

Application Scenarios

Usage Limitations

Hardware accelerators - Alauda Container Platform

Guides

Hardware accelerators - Alauda Container Platform

Introduction

Features

Overview

Hardware accelerator Introduction

Product Advantages

Application Scenarios

Technical Limitations

vGPU (Based on Opensource GPU-Manager)

pGPU (NVIDIA Device Plugin)

MPS (NVIDIA Multi-Process Service Plugin)

Menu

Overview - Alauda Container Platform

Hardware accelerator Introduction

Product Advantages

vGPU Module

pGPU Module

MPS Module

Application Scenarios

vGPU Use Cases

pGPU Use Cases

MPS Use Cases

Technical Limitations

Privileged Required

Hardware Device Access Requirements

Kernel-Level Operations

K8s Device Plugin Architecture Requirements

vGPU Constraints

pGPU Constraints

MPS Constraints

The Kubernetes Hardware accelerator Suite is an enterprise-grade solution for optimizing

GPU resource allocation, isolation, and sharing in cloud-native environments. Built on

Introduction

TOC

Hardware accelerator Introduction

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Kubernetes device plugins and NVIDIA-native technologies, it provides three core modules:

1.

vGPU Module

Based on Opensource GPU-Manager, this enables fine-grained GPU virtualization by

splitting physical GPUs into shareable virtual units with memory/compute quotas. Ideal for

multi-tenant environments requiring dynamic resource allocation.

2.

pGPU Module

Leveraging NVIDIA's official Device Plugin, it delivers full physical GPU isolation with

NUMA-aware scheduling. Designed for high-performance computing (HPC) workloads

needing dedicated GPU access.

3.

MPS Module

Implements NVIDIA's Multi-Process Service to allow concurrent GPU context execution

with resource constraints. Optimizes latency-sensitive applications through CUDA kernel

fusion.

Dynamic Slicing: Split GPUs to support multi progress used one physical gpu

QoS Enforcement: Guaranteed compute units (vcuda-core) and memory quotas (vcuda-

memory)

Hardware-Level Isolation: Direct PCIe passthrough with IOMMU protection

NUMA Optimization: Minimize cross-socket data transfer via automatic NUMA node

binding

Product Advantages

vGPU Module

pGPU Module

Introduction - Alauda Container Platform

Low-Latency Execution: 30-50% latency reduction through CUDA context fusion

Resource Caps: Limit per-process GPU compute (0-100%) and memory usage

Zero Code Changes: Works with unmodified CUDA applications

Multi-Tenant AI Platforms: Share A100/H100 GPUs across teams with guaranteed SLAs

VDI Environments: Deliver GPU-accelerated virtual desktops for CAD/3D rendering

Batch Inference: Parallelize model serving with fractional GPU allocations

HPC Clusters: Run MPI jobs with exclusive GPU access for weather simulation

ML Training: Full GPU utilization for large language model training

Medical Imaging: Process high-resolution MRI data without resource contention

Real-Time Inference: Low-latency video analytics using concurrent CUDA streams

Microservice Orchestration: Co-locate multiple GPU microservices on shared Hardware

High-Concurrency Serving: Improve QPS by 3x for recommendation systems

MPS Module

Application Scenarios

vGPU Use Cases

pGPU Use Cases

MPS Use Cases

Technical Limitations

Privileged Required

Introduction - Alauda Container Platform

Device File Permissions NVIDIA GPU devices require direct access to protected system

resources:

Requirement: Root access to read/write device files

Consequence: Non-root containers get permission denied errors

Essential NVIDIA Driver Interactions

Operation Privilege Requirement Purpose

Module Loading CAP_SYS_MODULE Load NVIDIA kernel modules

Memory Management CAP_IPC_LOCK GPU memory allocation

Interrupt Handling CAP_SYS_RAWIO Process GPU interrupts

1. Socket Creation: Write to /var/lib/kubelet/device-plugins

2. Health Monitoring: Access to nvidia-smi and kernel logs

3. Resource Allocation: Modify device cgroups

support only cuda less then 12.4

No MIG support when vGPU enabled

Hardware Device Access Requirements

Device file ownership and permissions

$ ls -l /dev/nvidia*

crw-rw-rw- 1 root root 195, 0 Aug 1 10:00 /dev/nvidia0

crw-rw-rw- 1 root root 195, 255 Aug 1 10:00 /dev/nvidiactl

crw-rw-rw- 1 root root 195, 254 Aug 1 10:00 /dev/nvidia-uvm

Kernel-Level Operations

K8s Device Plugin Architecture Requirements

vGPU Constraints

Introduction - Alauda Container Platform

No GPU sharing capability (1

pod-to-GPU mapping)

Requires Kubernetes 1.25+ with SR-IOV enabled

Limited to PCIe/NVSwitch-connected GPUs

Potential fault propagation across fused contexts

Requires CUDA 11.4+ for memory limits

No support for MIG-sliced GPUs

pGPU Constraints

MPS Constraints

Introduction - Alauda Container Platform

vGPU (Based on Opensource GPU-Manager)

pGPU (NVIDIA Device Plugin)

MPS (NVIDIA Multi-Process Service Plugin)

Fine-Grained Resource Slicing

Splits physical GPUs core from 1-100 quotas. Supports dynamic allocation for multi-tenant

environments like AI inference and virtual desktops.

Topology-Aware Scheduling

Automatically prioritizes NVLink/C2C-connected GPUs to minimize cross-socket data

transfer latency. Ensures optimal GPU pairing for distributed training workloads.

NUMA-Optimized Allocation

Enforces 1

GPU-to-Pod mapping with NUMA node binding, reducing PCIe bus contention for high-

performance computing (HPC) tasks like LLM training.

Exclusive Hardware Access

Provides full physical GPU isolation through PCIe passthrough, ideal for mission-critical

Features

TOC

vGPU (Based on Opensource GPU-Manager)

pGPU (NVIDIA Device Plugin)

Menu ON THIS PAGE

Features - Alauda Container Platform

applications requiring deterministic performance (e.g., medical imaging processing).

Latency-Optimized Execution

Enables CUDA kernel fusion across processes, reducing inference latency by 30-50% for

real-time applications like video analytics.

Resource Sharing with Caps

Allows concurrent GPU context execution while enforcing per-process compute (0-100%)

and memory limits via environment variables.

MPS (NVIDIA Multi-Process Service Plugin)

Features - Alauda Container Platform

Installing Kubernetes Hardware accelerator Toolkit

Prerequisites

Installing via Web Console

Before installation, ensure the following requirements are met:

1. Kubernetes Cluster: Version ≥1.25 with DevicePlugins feature gate enabled.

2. NVIDIA Drivers: Installed on all GPU nodes . Verify with nvidia-smi .

3. Container Runtime: Configured with NVIDIA Container Toolkit (≥1.7.0) for GPU support.

1.

Navigate to Cluster Plugins:

Go to Platform Management → Catalog → Cluster Plugin

Search for "gpu" and click Install

Install

TOC

Installing Kubernetes Hardware accelerator Toolkit

Prerequisites

Installing via Web Console

Menu ON THIS PAGE

Install - Alauda Container Platform

2.

Feature Toggles: Enable/disable advanced capabilities during installation:

Option Functionality Recommended Scenario

PGPU
Physical GPU isolation with NUMA-

aware scheduling

AI training/high-performance

computing

vGPU Virtual GPU slicing via GPU-Manager
Multi-tenant sharing/resource

quotas

MPS
Multi-Process Service for

compute/memory sharing

Low-latency inference/parallel

tasks

Install - Alauda Container Platform

Introduction

Introduction

Guides

CUDA Driver and Runtime Compatibility

Add Custom Devices Using ConfigMap

Application Development

Application Development Introduction

Hierarchical Architecture & Core Concepts

Version Compatibility Matrix & Constraints

Deployment Best Practices

Troubleshooting Handbook

Introduction

Features

Advantages

Function Module 1: ConfigMap Authoring Specifications

Function Module 2: Resource Value Definition

Menu

Application Development - Alauda Container Platform

Troubleshooting

Troubleshooting float16 is only supported on GPUs with compute
capability at least xx Error in vLLM

Paddle Autogrow Memory Allocation Crash on GPU-Manager

Problem Description

Root Cause

Troubleshooting

Solution

Preventive Measures

Related Content

Problem Description

Root Cause

Solution

Verification Methods

Preventive Measures

Related Content

Application Development - Alauda Container Platform

Application Development Introduction

Application Development Module guides users in configuring Hardware accelerators from

multiple vendors (e.g., AMD/Intel GPUs, FPGAs) through a unified interface, enabling the

orchestration and optimization of heterogeneous computing resources in containerized

environments to enhance high-performance workloads like AI training and image processing.

Introduction

TOC

Application Development Introduction

Menu ON THIS PAGE

Introduction - Alauda Container Platform

CUDA Driver and Runtime Compatibility

Add Custom Devices Using ConfigMap

Guides

Hierarchical Architecture & Core Concepts

Version Compatibility Matrix & Constraints

Deployment Best Practices

Troubleshooting Handbook

Introduction

Features

Advantages

Function Module 1: ConfigMap Authoring Specifications

Function Module 2: Resource Value Definition

Menu

Guides - Alauda Container Platform

Hierarchical Architecture & Core Concepts

1. CUDA Runtime API Layer

Technical Positioning

Version Detection Methods

2. CUDA Driver API Layer

Technical Positioning

Version Detection Methods

Version Compatibility Matrix & Constraints

Physical GPU Deployment - Core Compatibility Principles

Formal Rules

Virtualization Scenario Enhancements (HAMI/GPU-Manager)

Version Requirements

Deployment Best Practices

Recommended Strategy

Alternative Solutions for Legacy Systems

1. Physical GPU Scheduling or GPU-Manager Whole-Card Allocation

2. Node Labeling Strategy

3. Runtime Version Upgrade

Troubleshooting Handbook

Common Error Codes

CUDA Driver and Runtime Compatibility

TOC

Hierarchical Architecture & Core Concepts

Menu ON THIS PAGE

CUDA Driver and Runtime Compatibility - Alauda Container Platform

1. Functional Scope: Provides high-level abstraction interfaces for developers,

encapsulating core GPU operations (memory allocation, stream management, kernel

launches, etc.)

2. Version Binding: Determined by the CUDA Toolkit version used during build (e.g.,

CUDA 12.0.1)

1. CUDA Runtime API Layer

Technical Positioning

Version Detection Methods

CUDA Driver and Runtime Compatibility - Alauda Container Platform

if you find multi lib version, you should check your program which version used,like PATH,

LD_LIBRARY_PATH or other program set

1. Functional Scope: Low-level interface directly interacting with GPU hardware, handling

instruction translation and hardware resource scheduling

2. Version Binding: Determined by NVIDIA driver version, following SemVer specification

Python environment detection (recommended priority method)

pip list | grep cuda

conda list |grep cuda

Example output: cu121 # cu121 indicates CUDA 12.1 environment

System-level runtime library detection

find / -name "libcudart*"

cudart means cuda runtime

Example output:

/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudart.so.12

/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudart.so.12.4.127

Indicates CUDA 12.4

env |grep PATH

Example output:

LIBRARY_PATH=/usr/local/cuda/lib64/stubs

LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64

PATH=/go/bin:/usr/local/go/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr

#that means your cuda program used the first lib by lib path order

2. CUDA Driver API Layer

Technical Positioning

Version Detection Methods

CUDA Driver and Runtime Compatibility - Alauda Container Platform

First reference NVIDIA's official statement,the base constraints is

1. Driver version must always be ≥ Runtime version

2. NVIDIA officially guarantees 1 major version backward compatibility (e.g., CUDA

Driver 12.x supports Runtime 11.x)

3. Cross-two-major-version compatibility (e.g., Driver 12.x with Runtime 10.x) is neither

officially supported nor recommended

when you deploy cuda program，please comply with the base constraints

nvidia-smi

Example output:

+--

| NVIDIA-SMI 550.144.03 Driver Version: 550.144.03 CUDA Versi

|---+------------------------+---------

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util

| | |

|===+========================+=========

| 0 NVIDIA A30 Off | 00000000:00:0B.0 Off |

| N/A 31C P0 28W / 165W | 10195MiB / 24576MiB | 0%

| | |

+---+------------------------+---------

Version Compatibility Matrix & Constraints

Physical GPU Deployment - Core Compatibility Principles

Formal Rules

+ Mandatory: Driver version ≥ Runtime version

+ Recommended: Driver major version - Runtime major version ≤ 1

- Blocked: Driver version < Runtime version → May trigger CUDA_ERROR_UNKNOWN(

- Unstable: Driver major version - Runtime major version > 1 → Application ma

CUDA Driver and Runtime Compatibility - Alauda Container Platform

When using Virtual GPU solutions like GPU-Manager or HAMI, besides the base

constraints up, you must comply with the additional constraints apply:

Special Note for GPU-Manager: We implemented partial cross-1-major-version compatibility

(e.g., baseline 12.4 supporting vLLM 11.8). However, this requires per-application hook

adjustments and must be analyzed case-by-case.

• Adopt newer CUDA versions (e.g., CUDA 12.x) for both Driver and Runtime in new GPU

cluster planning

Whole-card scheduling provides native compatibility equivalent to physical GPU access GPU-

Manager can use whole card mode when you set tencent.com/vcuda-core to 100 multily

positive integer,like 100,200,300

Virtualization Scenario Enhancements (HAMI/GPU-Manager)

Version Requirements

1. Virtual GPU solutions baseline version ≥ Runtime version

2. Runtime major version = Driver major version = Baseline major version

Deployment Best Practices

Recommended Strategy

Alternative Solutions for Legacy Systems

1. Physical GPU Scheduling or GPU-Manager Whole-Card Allocation

resources:

 limits:

 tencent.com/vcuda-core: "100"

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Label nodes based on supported Driver CUDA versions:

this means your node is cuda 12.4

Configure scheduling affinity in deployments: you can set cuda-major-version and cuda-minor-

version by your program cuda runtime need

Legacy CUDA Runtimes may have security vulnerabilities (CVEs) and lack support for new

GPU features. Prioritize upgrades to CUDA 12.x.

nvidia recomend to upgrade both

2. Node Labeling Strategy

node_labels:

 cuda-major-version: "12"

 cuda-minor-version: "4"

apiVersion: apps/v1

kind: Deployment

metadata:

 name: cuda-app

spec:

 template:

 spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: cuda-major-version

 operator: In

 values: ["12"]

 - key: cuda-minor-version

 operator: Gt

 values: ["2"]

3. Runtime Version Upgrade

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Error Code Description
Recommended

Action

CUDA_ERROR_INVALID_IMAGE

Driver-

Runtime

incompatibility

Align driver

version with

container

CUDA version

CUDA_ERROR_ILLEGAL_ADDRESS

Virtual

memory

violation

(common in

version

mismatch)

Verify Runtime

vs baseline

constraints

Troubleshooting Handbook

Common Error Codes

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Error Code Description
Recommended

Action

CUDA_ERROR_UNSUPPORTED_PTX_VERSION

PTX

instruction set

mismatch

Recompile with

explicit -

arch=sm_xx

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Introduction

Features

Advantages

Function Module 1: ConfigMap Authoring Specifications

Core Rules

Parameter Specification

Function Module 2: Resource Value Definition

Single Key Example

Multi-key Association

Policy Specification

Implements standardized definition and management of Kubernetes custom resources

through ConfigMap, addressing:

Unified management of custom resource specifications to prevent configuration

fragmentation

Standardized resource definition format for better maintainability

Multi-language description support and default value configuration

Suitable for scenarios requiring Kubernetes resource model extension (e.g., GPU resource

management), providing a standardized resource definition framework

Add Custom Devices Using ConfigMap

TOC

Introduction

Menu ON THIS PAGE

Add Custom Devices Using ConfigMap - Alauda Container Platform

Single-key resource definition specification

Multi-key associated resource definition

Standardized resource request interface

Chinese/English bilingual description support

Resource default value configuration mechanism

Extensibility: Resource group management through labels

Security: Namespace isolation (kube-public)

Stability: Enforced format validation rules

Maintainability: Unified metadata label specifications

1.

Single Responsibility Principle: One ConfigMap per key definition

2.

Namespace: Fixed to namespace=kube-public

3.

Naming Convention:

Features

Advantages

Function Module 1: ConfigMap Authoring Specifications

Core Rules

Add Custom Devices Using ConfigMap - Alauda Container Platform

cf-crl : Fixed prefix

customName : Custom valid name

keyName : Key identifier (special characters replaced with '-')

4.

Label Requirements:

Parameter Required Description

name format Yes Follows cf-crl-{customName}-{keyName}

namespace Yes Fixed as kube-public

label group Yes Must contain specified 3 feature labels

cf-crl-{customName}-{keyName}

labels:

 features.alauda.io/type: CustomResourceLimitation # Fixed value

 features.alauda.io/group: {resource-group} # e.g., gpu-manager

 features.alauda.io/enabled: "true" # Activation flag

Parameter Specification

Function Module 2: Resource Value Definition

Single Key Example

Add Custom Devices Using ConfigMap - Alauda Container Platform

Field Allowed Values Description

limits disabled/required/optional Resource limits configuration

requests disabled/required/fromLimits Resource requests configuration

apiVersion: v1

kind: ConfigMap

metadata:

 name: cf-crl-gpu-manager-vcuda-core

 namespace: kube-public

 labels:

 features.alauda.io/type: CustomResourceLimitation

 features.alauda.io/group: gpu-manager

 features.alauda.io/enabled: "true"

data:

 key: "tencent.com/vcuda-core" # Resource key

 dataType: "integer" # Value type

 defaultValue: "20" # Default value

 descriptionZh: "" # Chinese description

 descriptionEn: "GPU vcore count, 100 virtual cores equal 1 physical GPU cor

 group: "gpu-manager" # Resource group

 limits: "optional" # Limits field policy

 requests: "disabled" # Requests field policy

Multi-key Association

metadata:

 name: cf-crl-gpu-manager-vcuda-core

 labels: [same group labels]

metadata:

 name: cf-crl-gpu-manager-vcuda-memory

 labels: [same group labels] # Association through identical labels

Policy Specification

Add Custom Devices Using ConfigMap - Alauda Container Platform

Troubleshooting float16 is only supported on GPUs with compute
capability at least xx Error in vLLM

Paddle Autogrow Memory Allocation Crash on GPU-Manager

Troubleshooting

Problem Description

Root Cause

Troubleshooting

Solution

Preventive Measures

Related Content

Problem Description

Root Cause

Solution

Verification Methods

Preventive Measures

Related Content

Menu

Troubleshooting - Alauda Container Platform

Problem Description

Environment

Symptoms

Related Logs

Root Cause

Primary Cause

Technical Analysis

Troubleshooting

Step 1: Verify GPU Compute Capability

Step 2: Check Model Precision Requirements

Step 3: Validate Framework Compatibility

Solution

Solution for Insufficient Compute Capability

Considerations

Prerequisites

Steps

Preventive Measures

Related Content

GPU Compute Capability Reference

Official References

Troubleshooting float16 is only supported on
GPUs with compute capability at least xx
Error in vLLM

TOC

Menu ON THIS PAGE

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

Hardware: NVIDIA GPUs with compute capability <8.0 (e.g., Tesla V100, T4)

Model Types: LLMs requiring bfloat16/FP8 precision (e.g., LLaMA-2-70B, GPT-NeoX-20B)

1. Explicit error message:

2. Failed kernel compilation during model loading

Insufficient GPU Compute Capability The GPU's compute capability (CC) doesn't meet the

minimum requirement for specific data types:

bfloat16/FP8: Requires CC ≥8.0 (Ampere architecture or newer)

FP16 Tensor Core Optimization: Requires CC \≥7.0 (Volta architecture or newer)

Problem Description

Environment

Symptoms

ValueError: float16/bfloat16 is only supported on GPUs with compute capabil

Related Logs

vLLM error stack trace

File "/usr/local/lib/python3.10/site-packages/vllm/model_executor/layers/quan

 raise ValueError(

ValueError: bfloat16 is only supported on GPUs with compute capability at lea

Root Cause

Primary Cause

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

1.

Architecture Limitations:

Pre-Ampere GPUs (CC <8.0) lack dedicated matrix math units for bfloat16 operations

Tensor Cores in Volta/Turing (CC 7.0-7.5) only support FP16/FP32 mixed precision

2.

Framework Enforcement:

Technical Analysis

vLLM's capability check (simplified)

def _verify_cuda_compute_capability():

 if device.compute_capability < MIN_REQUIRED_CC:

 raise ValueError(f"Requires compute capability ≥{MIN_REQUIRED_CC}")

Troubleshooting

Step 1: Verify GPU Compute Capability

import torch

print(f"Compute Capability: {torch.cuda.get_device_capability()}")

Step 2: Check Model Precision Requirements

cat model/config.json | grep "torch_dtype"

Expected output: "bfloat16" or "float16"

Step 3: Validate Framework Compatibility

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

Performance degradation expected when downgrading precision

Model accuracy may vary with different precision types

CUDA Toolkit ≥11.8

1. Modify InferenceService yaml: add args like --dtype=half

from vllm import _is_cuda_compute_capability_compatible as compat

print(f"bfloat16 supported: {compat((8,0))}")

Solution

Solution for Insufficient Compute Capability

Considerations

Prerequisites

Steps

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

2. Wait deploy restart

1.

Pre-Flight Checks:

2.

Cluster Configuration:

apiVersion: serving.kserve.io/v1beta1

kind: InferenceService

metadata:

 name: llama-2-service

 annotations:

 serving.kserve.io/enable-prometheus-scraping: "true"

spec:

 predictor:

 containers:

 - name: kserve-container

 image: vllm/vllm-serving:0.3.2

 args:

 - --model=meta-llama/Llama-2-7b-chat-hf

 - --dtype=half # Force FP16 precision

 - --tensor-parallel-size=1

 resources:

 limits:

 nvidia.com/gpu: "1"

Preventive Measures

from vllm import LLM

LLM.validate_environment(model_dtype="bfloat16")

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

3.

Model Optimization:

Architecture CC Range Supported Precisions

Volta 7.0-7.2 FP16 Tensor Core

Turing 7.5 FP16/INT8

Ampere 8.0-8.9 bfloat16/TF32/FP8

Hopper 9.0+ FP4/FP8 with dynamic scale

1. NVIDIA Compute Capability Table

2. vLLM Hardware Requirements

NVIDIA device plugin config

helm upgrade -i nvidia-device-plugin \

 --set compatabilityPolicy=strict \

 --set computeCapabilities=8.0+

Apply AWQ quantization

llm = LLM(model="codellama/CodeLlama-34b",

 quantization="awq",

 load_format="awq")

Related Content

GPU Compute Capability Reference

Official References

↗

↗

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://docs.vllm.ai/en/latest/getting_started/installation.html
https://docs.vllm.ai/en/latest/getting_started/installation.html
https://docs.vllm.ai/en/latest/getting_started/installation.html

Problem Description

Symptoms

Root Cause

Root Cause Analysis

Solution

Solution Overview

Considerations

Implementation Steps

Kubernetes Deployment

Bare Metal Deployment

Verification Methods

Preventive Measures

Related Content

Memory Allocation Strategy Comparison

References

Paddle Autogrow Memory Allocation Crash
on GPU-Manager

TOC

Problem Description

Symptoms

Menu ON THIS PAGE

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

When both PaddlePaddle's Autogrow memory allocation strategy and GPU-Manager's

virtualized memory management are enabled simultaneously, the following anomalies may

occur:

1. OOM errors due to discontinuous memory allocation

2. Abnormal GPU utilization fluctuations

3. Random training process crashes

4. Inconsistent memory usage between nvidia-smi reports and framework statistics

1.

Memory Allocation Strategy Conflict Paddle's Autogrow uses dynamic segmented

allocation while GPU-Manager's virtualization requires contiguous physical memory

mapping

2.

Management Mechanism Incompatibility Autogrow's delayed release mechanism

conflicts with GPU-Manager's memory reclamation strategy

3.

Metadata Maintenance Conflict Separate metadata maintenance by both systems causes

inconsistent memory views

Trigger Mechanism:

Autogrow attempts optimal block sizing during allocation

GPU-Manager virtualization layer intercepts physical memory requests

Non-contiguous allocations cause virtual address mapping failures

Dual management leads to metadata consistency exceptions

Root Cause

Root Cause Analysis

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

Force Paddle to use traditional allocation strategy via environment variable:

1. Requires training process restart

2. May reduce Paddle's memory reuse efficiency

1. Edit Deployment configuration

1. Apply configuration

Solution

Solution Overview

FLAGS_allocator_strategy=naive_best_fit

Considerations

Implementation Steps

Kubernetes Deployment

apiVersion: apps/v1

kind: Deployment

spec:

 template:

 spec:

 containers:

 ◦ name: paddle-container

 env:

 ▪ name: FLAGS_allocator_strategy

 value: "naive_best_fit"

kubectl apply -f updated_deployment.yaml

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

1. Verify configuration

1. Set environment variable before execution

1. Or set in Python code

1. Check allocation strategy confirmation in logs

1. Monitor memory allocation continuity

1. Stress test validation

kubectl exec <pod-name> -- env | grep FLAGS

Bare Metal Deployment

export FLAGS_allocator_strategy=naive_best_fit

python train.py

import os

os.environ['FLAGS_allocator_strategy'] = 'naive_best_fit'

Verification Methods

I0715 14:25:17.112233 12345 allocator.cc:256]

Using Naive Best Fit allocation strategy

nvidia-smi --query-gpu=memory.used --format=csv -l 1

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

1.

Version Compatibility Check Review Paddle release notes for memory allocation

changes during upgrades

2.

Monitoring Configuration Add Prometheus alert rule:

3.

Baseline Testing Perform memory allocation baseline tests for new environments:

Continuous allocation test script

import paddle

for i in range(10):

 data = paddle.randn([1024, 1024, 100], dtype='float32')

 print(f"Allocated {i+1}GB")

Preventive Measures

• alert: GPUAllocConflict

 expr: rate(paddle_gpu_malloc_failed_total[5m]) > 0

 labels:

 severity: critical

 annotations:

 summary: "GPU Memory Allocation Conflict Alert"

python -c "import paddle; paddle.utils.run_check()"

Related Content

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

Strategy Advantages Disadvantages

autogrow High efficiency Poor large-block perf

naive_best_fit Stable allocation Potential fragmentation

Paddle Memory Optimization Whitepaper

Memory Allocation Strategy Comparison

References

↗

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html

Introduction

Introduction

Guides

Configure Hardware accelerator on GPU nodes

Configuration Management

Configuration Management Introduction

Prerequisites

Physical GPU configuration

NVIDIA MPS configuration (driver support cuda version must >= 11.5)

GPU-Manager configuration

Validation of results

Menu

Configuration Management - Alauda Container Platform

Configuration Management Introduction

Configuration Management is the centralized documentation portal for configuring GPU

acceleration capabilities in kubernetes environments. This living document provides

administrators with unified guidance for setting up physical GPU (pGPU), virtual GPU (vGPU),

and Multi-Process Service (MPS) configurations across hybrid infrastructure.

Introduction

TOC

Configuration Management Introduction

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Configure Hardware accelerator on GPU nodes

Guides

Prerequisites

Physical GPU configuration

NVIDIA MPS configuration (driver support cuda version must >= 11.5)

GPU-Manager configuration

Validation of results

Menu

Guides - Alauda Container Platform

As the amount of business data increases, especially for scenarios such as artificial

intelligence and data analysis, you may want to use GPU capabilities in your self-built

business cluster to accelerate data processing. In addition to preparing GPU resources for

cluster nodes, GPU configuration should also be performed.

This solution refers to nodes in the cluster that have GPU computing capabilities as GPU

Nodes.

Note: Unless otherwise specified, the operation steps will apply to both types of nodes. For

driver installation related issues, refer to the NVIDIA official installation documentation .

Prerequisites

Install GPU driver

Gets the driver download address

Installation driver

Installation the NVIDIA Container runtime

Physical GPU configuration

Deploy physical GPU plugin on a GPU Business Cluster

NVIDIA MPS configuration (driver support cuda version must >= 11.5)

Deploy NVIDIA MPS plugin on a GPU Business Cluster

On the management interface of the GPU cluster, perform the following actions:

Configure kube-scheduler (kubernetes> = 1.23)

GPU-Manager configuration

Configure kube-scheduler (kubernetes> = 1.23)

Configure Hardware accelerator on GPU
nodes

↗

TOC

Menu ON THIS PAGE

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html

Deploy GPU Manager plugin on a GPU Business Cluster

Validation of results

GPU resources have been prepared on the operating node, which belongs to the GPU node

mentioned in this section.

Notice: If the GPU node uses the NVIDIA MPS plugin, ensure that the GPU architecture

of the node is Volta or newer (Volta/Turing/Ampere/Hopper, etc.), and the driver

supports CUDA version 11.5 or higher.

1.

Log in to the GPU node and run the command lspci |grep -i NVIDIA to check the

GPU model of the node.

In the following example, the GPU model is Tesla T4.

2.

Go to the NVIDIA official website to obtain the driver download link.

2.1.

Click on Drivers in the top navigation bar on the homepage.

Prerequisites

Install GPU driver

Gets the driver download address

lspci | grep NVIDIA

00:08.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)

↗

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

https://www.nvidia.cn/
https://www.nvidia.cn/
https://www.nvidia.cn/

2.2.

Fill in the required information for downloading the driver according to the GPU node

model .

2.3.

Click on Search.

2.4.

Click on Download.

2.5.

Right-click on Download > Copy Link Address to copy the download link of the driver.

3.

Execute the following command lines on the GPU node in order to create the /home/gpu

directory and download and save the driver file to this directory.

1.

Execute the following command on the GPU node to install the gcc and kernel-devel

packages corresponding to the current operating system.

2.

Create /home/gpu Directory

mkdir -p /home/gpu

cd /home/gpu/

Download the driver file to /home/gpu Directory，Example：wget https://cn

wget <Driver download address>

Verify that the driver file has been downloaded successfully，If the driv

ls <Driver file name>

Installation driver

sudo yum install dkms gcc kernel-devel-$(uname -r) -y

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Execute the following commands in order to install the GPU driver.

3.

After installation, execute the nvidia-smi command. If GPU information similar to the

following example is returned, it indicates that the driver installation was successful.

1.

On the GPU Node, add the NVIDIA yum repository.

chmod a+x /home/gpu/<Driver file name>

/home/gpu/<Driver file name> --dkms

nvidia-smi

Tue Sep 13 01:31:33 2022

+--

| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7

+-------------------------------+-----------------------+------------------

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. E

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute

| | | MIG

|===============================+======================+===================

| 0 Tesla T4 Off | 00000000:00:08.0 Off |

| N/A 55C P0 28W / 70W | 2MiB / 15360MiB | 5% Defau

| | | N

+-------------------------------+-----------------------+------------------

+--

| Processes:

| GPU GI CI PID Type Process name GPU Memo

| ID ID Usage

|==

| No running processes found

+--

Installation the NVIDIA Container runtime

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

When the prompt "Metadata cache created." appears, it indicates that the addition is

successful.

2.

Install NVIDIA Container Runtime.

When the prompt Complete! appears, it means the installation is successful.

3.

Config the default Runtime. Add the following configuration to the file.

Containerd: Modify the /etc/containerd/config.toml file.

distribution=$(. /etc/os-release;echo IDVERSION_ID) && curl -s -L https:/

yum makecache -y

yum install nvidia-container-toolkit -y

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Docker: Modify the /etc/docker/daemon.json file.

4.

[plugins]

 [plugins."io.containerd.grpc.v1.cri"]

 [plugins."io.containerd.grpc.v1.cri".containerd]

...

 default_runtime_name = "nvidia"

...

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes]

...

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]

 runtime_type = "io.containerd.runc.v2"

 runtime_engine = ""

 runtime_root = ""

 privileged_without_host_devices = false

 base_runtime_spec = ""

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc

 SystemdCgroup = true

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia

 privileged_without_host_devices = false

 runtime_engine = ""

 runtime_root = ""

 runtime_type = "io.containerd.runc.v1"

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvid

 BinaryName = "/usr/bin/nvidia-container-runtime"

 SystemdCgroup = true

...

 {

 ...

 "default-runtime": "nvidia",

 "runtimes": {

 "nvidia": {

 "path": "/usr/bin/nvidia-container-runtime"

 }

 },

 ...

 }

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Restart Containerd / Docker.

Containerd

Docker

On the management interface of the GPU cluster, perform the following actions:

1.

In the Catalog leftsidebar, choose "Cluster Plugins" subsidebar, click to deploy the "ACP

GPU Device Plugin" and open the "pGPU" option;

2.

In the "Nodes" tab, select the nodes that need to deploy the physical GPU, then click on

"Label and Taint Manager", add a "device label" and choose "pGPU", and click OK;

3.

In the "Pods" tab, check the running status of the container group corresponding to nvidia-

device-plugin-ds to see if there are any abnormalities and ensure it is running on the

specified nodes.

systemctl restart containerd #Restart

crictl info |grep Runtime #Check

systemctl restart docker #Restart

docker info |grep Runtime #Check

Physical GPU configuration

Deploy physical GPU plugin on a GPU Business Cluster

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

1.

In the Catalog leftsidebar, choose "Cluster Plugins" subsidebar, click to deploy the "ACP

GPU Device Plugin" and open the "MPS" option;

2.

In the "Nodes" tab, select the nodes that need to deploy the physical GPU, then click on

"Label and Taint Manager", add a "device label" and choose "MPS", and click OK;

3.

In the "Pods" tab, check the running status of the container group corresponding to nvidia-

mps-device-plugin-daemonset to see if there are any abnormalities and ensure it is running

on the specified nodes.

1.

On the Business Cluster Control Node, check if the scheduler correctly references the

scheduling policy.

check if has –config option and value is /etc/kubernetes/scheduler-config.yaml, like

NVIDIA MPS configuration (driver support cuda version
must >= 11.5)

Deploy NVIDIA MPS plugin on a GPU Business Cluster

On the management interface of the GPU cluster, perform the
following actions:

Configure kube-scheduler (kubernetes> = 1.23)

cat /etc/kubernetes/manifests/kube-scheduler.yaml

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Note: The above parameters and values are the default configurations of the platform. If you

have modified them, please change them back to the default values. The original custom

configurations can be copied to the scheduling policy file.

1.

Check the configuration of the scheduling policy file.

1.1.

Execute the command: kubectl describe service kubernetes -n default |grep

Endpoints .

1.2.

Replace the contents of the /etc/kubernetes/scheduler-config.yaml file on all

Master nodes with the following content, where ${kube-apiserver} should be

replaced with the output of the first step.

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-scheduler

 tier: control-plane

 name: kube-scheduler

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-scheduler

 - --config=/etc/kubernetes/scheduler-config.yaml

Expected effectEndpoints: 192.168.130.240:6443

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

if schedule-config.yaml already exist extenders,then append yaml to the end

2.

Run the following command to obtain the container ID:

Containerd: Execute crictl ps |grep kube-scheduler , the output is as follows, with

the first column being the container ID.

apiVersion: kubescheduler.config.k8s.io/v1beta2

kind: KubeSchedulerConfiguration

clientConnection:

 kubeconfig: /etc/kubernetes/scheduler.conf

extenders:

- enableHTTPS: true

 filterVerb: predicates

 managedResources:

 - ignoredByScheduler: false

 name: nvidia.com/mps-core

 nodeCacheCapable: false

 urlPrefix: https://${kube-apiserver}/api/v1/namespaces/kube-system/serv

 tlsConfig:

 insecure: false

 certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt

 keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key

 caFile: /etc/kubernetes/pki/ca.crt

- enableHTTPS: true

 filterVerb: predicates

 managedResources:

 - ignoredByScheduler: false

 name: nvidia.com/mps-core

 nodeCacheCapable: false

 urlPrefix: https://${kube-apiserver}/api/v1/namespaces/kube-system/serv

 tlsConfig:

 insecure: false

 certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt

 keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key

 caFile: /etc/kubernetes/pki/ca.crt

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Docker: Run docker ps |grep kube-scheduler , the output is as follows, with the first

column being the container ID.

3.

Restart the Containerd/Docker container using the container ID obtained in the previous

step.

Containerd

4.

Restart Kubelet.

1.

On the Business Cluster Control Node, check if the scheduler correctly references the

scheduling policy.

1d113ccf1c1a9 03c72176d0f15 2 seconds ago Running

30528a45a118 d8a9fef7349c "kube-scheduler --au..." 37 minutes ago

crictl stop <Container ID>

systemctl restart kubelet

GPU-Manager configuration

Configure kube-scheduler (kubernetes> = 1.23)

cat /etc/kubernetes/manifests/kube-scheduler.yaml

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

check if has –config option and value is /etc/kubernetes/scheduler-config.yaml, like

Note: The above parameters and values are the default configurations of the platform. If you

have modified them, please change them back to the default values. The original custom

configurations can be copied to the scheduling policy file.

1.

Check the configuration of the scheduling policy file.

1.1.

Execute the command: kubectl describe service kubernetes -n default |grep

Endpoints .

1.2.

Replace the contents of the /etc/kubernetes/scheduler-config.yaml file on all

Master nodes with the following content, where ${kube-apiserver} should be

replaced with the output of the first step.

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-scheduler

 tier: control-plane

 name: kube-scheduler

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-scheduler

 - --config=/etc/kubernetes/scheduler-config.yaml

Expected effectEndpoints: 192.168.130.240:6443

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

2.

Run the following command to obtain the container ID:

Containerd: Execute crictl ps |grep kube-scheduler , the output is as follows, with

the first column being the container ID.

Docker: Run docker ps |grep kube-scheduler , the output is as follows, with the first

column being the container ID.

3.

Restart the Containerd/Docker container using the container ID obtained in the previous

step.

Containerd

apiVersion: kubescheduler.config.k8s.io/v1beta2

kind: KubeSchedulerConfiguration

clientConnection:

 kubeconfig: /etc/kubernetes/scheduler.conf

extenders:

- enableHTTPS: true

 filterVerb: predicates

 managedResources:

 - ignoredByScheduler: false

 name: tencent.com/vcuda-core

 nodeCacheCapable: false

 urlPrefix: https://${kube-apiserver}/api/v1/namespaces/kube-system/serv

 tlsConfig:

 insecure: false

 certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt

 keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key

 caFile: /etc/kubernetes/pki/ca.crt

1d113ccf1c1a9 03c72176d0f15 2 seconds ago Running

30528a45a118 d8a9fef7349c "kube-scheduler --au..." 37 minutes ago

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

4.

Restart Kubelet.

On the management interface of the GPU cluster, perform the following actions:

1.

In the Catalog leftsidebar, choose "Cluster Plugins" subsidebar, click to deploy the "ACP

GPU Device Plugin" and open the "GPU-Manager" option;

2.

In the "Nodes" tab, select the nodes that need to deploy the physical GPU, then click on

"Label and Taint Manager", add a "device label" and choose "vGPU", and click OK;

3.

In the "Pods" tab, check the running status of the container group corresponding to gpu-

manager-daemonset to see if there are any abnormalities and ensure it is running on the

specified nodes.

Method 1: Check if there are available GPU resources on the GPU nodes by running the

following command on the control node of the business cluster:

crictl stop <Container ID>

systemctl restart kubelet

Deploy GPU Manager plugin on a GPU Business Cluster

Validation of results

kubectl get node ${nodeName} -o=jsonpath='{.status.allocatable}'

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Method 2: Deploy a GPU application on the platform by specifying the required amount of

GPU resources. After deployment, exec the Pod and execute the following command:.

Check whether the correct GPU information is retrieved.

nvidia-smi

Tue Sep 13 01:31:33 2022

+--

| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7

+-------------------------------+-----------------------+--------------------

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.

| | | MIG M.

|===============================+======================+=====================

| 0 Tesla T4 Off | 00000000:00:08.0 Off | 0

| N/A 55C P0 28W / 70W | 2MiB / 15360MiB | 5% Default

| | | N/A

+-------------------------------+-----------------------+--------------------

+--

| Processes:

| GPU GI CI PID Type Process name GPU Memory

| ID ID Usage

|==

| No running processes found

+--

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Introduction

Introduction

Guides

GPU Resource Monitoring

Resource Monitoring

Resource Monitoring Introduction

Advantages

Application Scenarios

Usage Limitations

Feature Overview

Core Features

Feature Advantages

Node Monitoring

Pod Monitoring

Time Range Selection

Menu

Resource Monitoring - Alauda Container Platform

Resource Monitoring Introduction

Advantages

Application Scenarios

Usage Limitations

Resource Monitoring is a critical component of the Kubernetes Hardware Accelerator Suite,

designed to provide comprehensive visibility into GPU resource utilization across your

containerized workloads. This module delivers real-time metrics and historical data analysis

for both compute utilization and GPU memory consumption at two fundamental levels:

Resource Monitoring is a critical component of the Kubernetes Hardware Accelerator Suite,

designed to provide comprehensive visibility into GPU resource utilization across your

containerized workloads. This module delivers both compute utilization and GPU memory

consumption at two fundamental levels:

Node-Level Monitoring: Track aggregate GPU resource usage across entire Kubernetes

nodes

Pod-Level Monitoring: Analyze per-workload GPU consumption with pod granularity

Integrated with the platform's core accelerator modules (pGPU/vGPU(GPU-Manager)/MPS),

this monitoring solution enables users to optimize GPU allocation, enforce resource quotas,

and troubleshoot performance bottlenecks in AI/ML workloads, real-time inference services,

etc.

Introduction

TOC

Resource Monitoring Introduction

Menu ON THIS PAGE

Introduction - Alauda Container Platform

The core advantages of Resource Monitoring are as follows:

Multi-Dimensional Observability

Simultaneously monitor both compute units (CUDA cores) and memory utilization across

physical/virtual GPUs, providing holistic insights into accelerator usage patterns.

Hierarchical Metrics Collection

Capture data at both node and pod granularity, enabling correlation between cluster-wide

resource trends and individual workload demands.

Native Integration

Seamlessly works with all accelerator modules (pGPU/vGPU/MPS) without requiring

additional agents, leveraging Kubernetes-native metrics pipelines.

Historical Analysis

Store GPU metrics with configurable retention periods (default 7 days) for capacity

planning and usage pattern analysis through integrated visualization tools.

The main application scenarios for Resource Monitoring are as follows:

Performance Optimization

Identify underutilized GPUs in training clusters and right-size resource requests for deep

learning workloads. For example, detect pods consistently using <30% of allocated GPU

memory to optimize memory allocations.

Multi-Tenant Governance

Enforce GPU quota compliance in shared environments by monitoring vGPU consumption

across teams. Track cumulative usage against allocated quotas in AI platform deployments.

Advantages

Application Scenarios

Introduction - Alauda Container Platform

Cost Attribution

Generate per-namespace GPU utilization reports for chargeback/showback models in

enterprise Kubernetes environments, correlating pod-level metrics with organizational units.

Fault Diagnosis

Investigate OOM (Out-of-Memory) incidents in GPU-accelerated workloads by analyzing

memory usage trends preceding container crashes. Cross-reference with Kubernetes

events for root cause analysis.

Capacity Planning

Analyze historical GPU utilization patterns (e.g., peak compute demand periods) to inform

infrastructure scaling decisions and budget allocations for AI infrastructure.

When using Resource Monitoring, please note the following constraints:

Module Dependencies

Requires at least one accelerator module (pGPU/vGPU/MPS) to be deployed in the

cluster

Usage Limitations

Introduction - Alauda Container Platform

GPU Resource Monitoring

Guides

Feature Overview

Core Features

Feature Advantages

Node Monitoring

Pod Monitoring

Time Range Selection

Menu

Guides - Alauda Container Platform

Feature Overview

Core Features

Feature Advantages

Node Monitoring

Access GPU Dashboards

Select Node Metrics

Interpret Metrics

Pod Monitoring

Access Pod Metrics

Configure Filters

Key Metrics

Time Range Selection

The Resource Monitoring feature enables real-time and historical tracking of GPU utilization

and memory usage across nodes and pods within the Container Platform. This functionality

helps administrators and developers:

Monitor GPU Performance: Identify bottlenecks in GPU resource allocation.

Troubleshoot Issues: Analyze GPU usage trends for debugging resource-related

problems.

Optimize Workloads: Make data-driven decisions to improve workload distribution.

GPU Resource Monitoring

TOC

Feature Overview

Menu ON THIS PAGE

GPU Resource Monitoring - Alauda Container Platform

Applicable Scenarios:

Real-time monitoring of GPU-intensive applications.

Historical analysis of GPU utilization for capacity planning.

Multi-node/pod GPU performance comparison.

Value Delivered:

Enhanced visibility into GPU resource consumption.

Improved cluster efficiency through actionable insights.

Node-Level Monitoring: Track GPU utilization and memory usage per node.

Pod-Level Monitoring: Monitor GPU metrics for individual pods.

Custom Time Ranges: Analyze data from 30 minutes up to 7 days.

Real-Time Visualization: Interactive dashboards with auto-refresh capabilities.

Multi-Dimensional Filtering: Narrow down metrics by GPU type, namespace, or pod.

Monitor GPU resources at the node level through these steps:

1. Navigate to Platform Management view

2. Go to Operations Center → Monitoring → Dashboards

Core Features

Feature Advantages

Node Monitoring

Access GPU Dashboards1

GPU Resource Monitoring - Alauda Container Platform

3. Switch to the GPU directory

1. Choose Node Monitoring dashboard

2. Select target node from dropdown

3. Pick time range:

Last 30 minutes

Last 1/6/12/24 hours

Last 2/7 days

Custom range

Metric Description

GPU Utilization Percentage of GPU computing capacity used (0-100%)

GPU Memory Usage Total memory consumed vs. available memory (in GiB)

Analyze GPU usage at the pod level with granular filtering:

1. Navigate to GPU directory dashboards

2. Choose Pod Monitoring

1. Select GPU type:

pGPU

GPU-Manager(vGPU)

MPS

Select Node Metrics2

Interpret Metrics3

Pod Monitoring

Access Pod Metrics1

Configure Filters2

GPU Resource Monitoring - Alauda Container Platform

2. Choose namespace containing GPU pods

3. Select specific pod

Metric Description

Pod GPU Utilization GPU compute usage by selected pod

Pod GPU Memory Memory allocation for selected pod

Both dashboards support flexible time windows:

Key Metrics3

Time Range Selection

Available Presets:

- Last 30 minutes

- Last 1 hour

- Last 6 hours

- Last 12 hours

- Last 24 hours

- Last 2 days

- Last 7 days

- Custom range

GPU Resource Monitoring - Alauda Container Platform

	Hardware accelerators
	Overview
	Introduction
	TOC
	Hardware accelerator Introduction
	Product Advantages
	vGPU Module
	pGPU Module
	MPS Module

	Application Scenarios
	vGPU Use Cases
	pGPU Use Cases
	MPS Use Cases

	Technical Limitations
	Privileged Required
	Hardware Device Access Requirements
	Kernel-Level Operations
	K8s Device Plugin Architecture Requirements

	vGPU Constraints
	pGPU Constraints
	MPS Constraints

	Features
	TOC
	vGPU (Based on Opensource GPU-Manager)
	pGPU (NVIDIA Device Plugin)
	MPS (NVIDIA Multi-Process Service Plugin)

	Install
	TOC
	Installing Kubernetes Hardware accelerator Toolkit
	Prerequisites
	Installing via Web Console

	Application Development
	Introduction
	TOC
	Application Development Introduction

	Guides
	CUDA Driver and Runtime Compatibility
	TOC
	Hierarchical Architecture & Core Concepts
	1. CUDA Runtime API Layer
	Technical Positioning
	Version Detection Methods

	2. CUDA Driver API Layer
	Technical Positioning
	Version Detection Methods

	Version Compatibility Matrix & Constraints
	Physical GPU Deployment - Core Compatibility Principles
	Formal Rules

	Virtualization Scenario Enhancements (HAMI/GPU-Manager)
	Version Requirements

	Deployment Best Practices
	Recommended Strategy
	Alternative Solutions for Legacy Systems
	1. Physical GPU Scheduling or GPU-Manager Whole-Card Allocation
	2. Node Labeling Strategy
	3. Runtime Version Upgrade

	Troubleshooting Handbook
	Common Error Codes

	Add Custom Devices Using ConfigMap
	TOC
	Introduction
	Features
	Advantages
	Function Module 1: ConfigMap Authoring Specifications
	Core Rules
	Parameter Specification

	Function Module 2: Resource Value Definition
	Single Key Example
	Multi-key Association
	Policy Specification

	Troubleshooting
	Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM
	TOC
	Problem Description
	Environment
	Symptoms
	Related Logs

	Root Cause
	Primary Cause
	Technical Analysis

	Troubleshooting
	Step 1: Verify GPU Compute Capability
	Step 2: Check Model Precision Requirements
	Step 3: Validate Framework Compatibility

	Solution
	Solution for Insufficient Compute Capability
	Considerations
	Prerequisites
	Steps

	Preventive Measures
	Related Content
	GPU Compute Capability Reference
	Official References

	Paddle Autogrow Memory Allocation Crash on GPU-Manager
	TOC
	Problem Description
	Symptoms

	Root Cause
	Root Cause Analysis

	Solution
	Solution Overview
	Considerations
	Implementation Steps
	Kubernetes Deployment
	Bare Metal Deployment

	Verification Methods
	Preventive Measures
	Related Content
	Memory Allocation Strategy Comparison
	References

	Configuration Management
	Introduction
	TOC
	Configuration Management Introduction

	Guides
	Configure Hardware accelerator on GPU nodes
	TOC
	Prerequisites
	 Install GPU driver
	Gets the driver download address
	Installation driver
	Installation the NVIDIA Container runtime

	Physical GPU configuration
	Deploy physical GPU plugin on a GPU Business Cluster

	NVIDIA MPS configuration (driver support cuda version must >= 11.5)
	Deploy NVIDIA MPS plugin on a GPU Business Cluster
	On the management interface of the GPU cluster, perform the following actions:

	Configure kube-scheduler (kubernetes> = 1.23)

	GPU-Manager configuration
	Configure kube-scheduler (kubernetes> = 1.23)
	Deploy GPU Manager plugin on a GPU Business Cluster

	Validation of results

	Resource Monitoring
	Introduction
	TOC
	Resource Monitoring Introduction
	Advantages
	Application Scenarios
	Usage Limitations

	Guides
	GPU Resource Monitoring
	TOC
	Feature Overview
	Core Features
	Feature Advantages
	Node Monitoring
	Access GPU Dashboards
	Select Node Metrics
	Interpret Metrics

	Pod Monitoring
	Access Pod Metrics
	Configure Filters
	Key Metrics

	Time Range Selection

