
Overview

Introduction

Concepts

Features

Quick Start

Developer

Advantages

Use Cases

Cross-Cutting Cloud-Native Principles

Building Application

Namespace Management

Application Observability

Source to Image

Registry

Node Isolation Strategy

OAM Application

Menu

Developer - Alauda Container Platform

Creating a simple application via image

Building Applications

Overview

Concepts

Guides

How To

Registry

Introduction

Important Notes

Prerequisites

Workflow Overview

Procedure

Namespace Management

Application Lifecycle Management

Kubernetes Workload Management

Developer - Alauda Container Platform

Introduction

Install

How To

Source to Image

Introduction

Install

Architecture

Principles and namespace isolation

Authentication and authorization

Advantages

Application Scenarios

Source to Image Concept

Core Features

Core Benefits

Application scenarios

Usage Limitations

Developer - Alauda Container Platform

Guides

How To

Node Isolation Strategy

Introduction

Architecture

Concepts

Guides

Permissions

FAQ

Advantages

Application Scenarios

Developer - Alauda Container Platform

FAQ
Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist or a LimitRange that is not named default in a

namespace when importing it?

Developer - Alauda Container Platform

Introduction

Introduction

Concepts

Resource Unit Description

Application Types

Workload Types

Features

Overview

Advantages

Use Cases

Cross-Cutting Cloud-Native Principles

Menu

Overview - Alauda Container Platform

Features
Building Application

Namespace Management

Application Observability

Source to Image

Registry

Node Isolation Strategy

OAM Application

Overview - Alauda Container Platform

The Developer view module empowers developers with cloud-native application orchestration

and operational capabilities. It provides a unified interface for application composition from

multiple sources while integrating built-in observability tools for production operations.

Advantages

Use Cases

Cross-Cutting Cloud-Native Principles

The Developer view module delivers the following key advantages:

1.

Unified Application Orchestration

Images: Deploy from public/private registries with image

YAML: Direct Kubernetes resource declarations with schema validation

Source to Image (S2I): Build containerized applications directly from source code

Helm Charts: Deploy packaged applications from curated Application Catalog

Implements GitOps-aligned application composition using multiple approaches

2.

Introduction

TOC

Advantages

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Holistic Lifecycle Management

Implements declarative management for workloads and namespaces:

Progressive Delivery: Canary/Blue-Green deployments via ServiceMesh

Resource Governance:

Namespace provisioning with RBAC policies

Resource allocation policies via HPA/VPA

Dynamic scaling with Cluster Autoscaler integration

Workflow Automation: CI/CD pipeline integration with Tekton

1. Enterprise-Grade Namespace Controls

Implements multi-tenant namespace management:

Complete lifecycle management

Resource Guarantees:

ResourceQuota and LimitRange configurations

Configurable overcommit ratios for CPU/Memory

1. Full-Stack Observability

Integrated monitoring stack with:

Event Correlation: Kubernetes Event and Audit log integration

Log Analytics: Log aggregation

Metrics dashboard: Monitoring and Custom alert rules

The main use cases of the Developer module include:

Use Cases

Introduction - Alauda Container Platform

Multi-Cloud Deployment

Organizations distribute workloads across multiple cloud providers (AWS, Azure, GCP) to

avoid vendor lock-in, optimize costs, and ensure resilience. Cloud-native application delivery

enables consistent deployment pipelines that abstract provider-specific implementations.

Hybrid Cloud Environments

Enterprises maintain on-premises infrastructure alongside public cloud resources. Cloud-

native delivery provides unified application deployment across hybrid environments while

managing heterogeneous infrastructure complexities.

Edge Computing Integration

As edge computing gains prominence, applications must run in centralized clouds, edge

devices, and regional edge nodes. Cloud-native delivery extends deployment capabilities to

these distributed edge environments.

Development-to-Production Pipeline

Cloud-native methodologies enable seamless promotion of applications from development

through testing/staging to production, preserving configuration consistency while

accommodating environment-specific requirements.

Global Multi-Region Deployments

For globally distributed applications, cloud-native delivery ensures consistent deployments

across geographic regions, addressing latency optimization and data locality compliance.

Disaster Recovery and Workloads Continuity

Cloud-native delivery facilitates disaster recovery environment provisioning that mirrors

production systems, enabling rapid failover and ensuring uninterrupted operations.

These scenarios leverage core cloud-native principles:

Containerization

Cross-Cutting Cloud-Native Principles

Introduction - Alauda Container Platform

Infrastructure-as-Code (IaC)

Declarative configurations

Immutable infrastructure

GitOps workflows

These ensure consistency, reliability, and automation across heterogeneous computing

environments.

Introduction - Alauda Container Platform

Resource Unit Description

Application Types

Workload Types

Concepts

Menu

Concepts - Alauda Container Platform

CPU: Optional units are: core, m (millicore). Where 1 core = 1000 m.

Memory: Optional units are: Mi (1 MiB = 2^20 bytes), Gi (1 GiB = 2^30 bytes). Where 1 Gi

= 1024 Mi.

Virtual GPU (optional): This parameter is only effective when there are GPU resources

under the cluster. The number of virtual GPU cores; 100 virtual cores equal 1 physical GPU

core. It supports positive integers.

Video Memory (optional): This parameter is only effective when there are GPU resources

under the cluster. Virtual GPU video memory; 1 unit of video memory equals 256 Mi. It

supports positive integers.

Resource Unit Description

Menu

Resource Unit Description - Alauda Container Platform

In the platform's Container Platform > Application Management, the following types of

applications can be created:

Application: A complete business application composed of one or more associated

computing components (Workloads), internal routes (Services), and other native

Kubernetes resources. It supports creation through UI editing, YAML orchestration, and

templates, and can run in development, testing, or production environments. Different types

of native applications can be created in the following ways:

Create from Image: Quickly create applications using existing container images.

Create from Catalog: Create applications using Helm Chart packages.

Create from YAML: Create applications using YAML configuration files.

Create from Code: Create applications using source code.

Operator Backed App: Based on application components (Operator backed), you can

quickly deploy a component application and leverage the capabilities of Operators to

automate the entire lifecycle management of the application.

OAM Application: Used to define the model of cloud-native applications. Compared to

container or Kubernetes orchestration logic, OAM focuses more on the "application" itself.

Based on OAM, common capabilities of applications are encapsulated into high-level

interfaces for use, throughout the entire process of application deployment, development,

and operations.

Application Types

Menu

Application Types - Alauda Container Platform

In addition to creating native applications and component applications, workloads can also be

directly created in Container Platform > Computing Components:

Deployment: The most commonly used workload controller for deploying stateless

applications. It can ensure that a specified number of Pod replicas are running in the

cluster, supporting rolling updates and rollbacks, suitable for stateless application scenarios

such as web services and API services.

DaemonSet: Ensures that each node in the cluster (or specific nodes) runs a Pod replica.

When a node joins the cluster, the Pod is automatically created; when a node is removed

from the cluster, those Pods are also reclaimed. Suitable for scenarios requiring logging,

monitoring, etc., to run on each node.

StatefulSet: A workload controller for managing stateful applications. It maintains a fixed

identity for each Pod and provides stable storage and network identity, which remains

unchanged even if the Pod is rescheduled. Suitable for stateful applications such as

databases and distributed caches.

Job: A workload for running one-time tasks. A Job creates one or more Pods and ensures

that the specified number of Pods successfully complete the task before terminating. It is

suitable for batch processing, data migration, and other one-time task scenarios.

CronJob: Used to manage Jobs scheduled to run based on time. You can set the time

expression for task execution, and the system will automatically create and run the Job at

the scheduled time. Suitable for periodic tasks such as data backup, report generation, and

periodic cleaning.

In addition to creating the above computing components through the platform's form page, the

platform also supports creating Pods and Containers through CLI tools:

Pod: The smallest deployable unit in Kubernetes, a Pod can contain one or more

containers that share storage, network, and configuration declarations. Pods are typically

managed by controllers (such as Deployments).

Workload Types

Menu

Workload Types - Alauda Container Platform

Container: A standard software unit that packages the code and all dependencies, allowing

applications to run quickly and reliably across different computing environments.

Containers run inside Pods and share the Pod's resources.

Workload Types - Alauda Container Platform

Building Application

Namespace Management

Application Observability

Source to Image

Registry

Node Isolation Strategy

OAM Application

Creating Application

Support multiple ways to create an Application, including image, yaml, codes and catalog.

Application Operation

Use Application to orchestrate and operate the workloads and their related resources.

Workloads Management

Manage the lifecycle of the workloads.

Features

TOC

Building Application

Namespace Management

Menu ON THIS PAGE

Features - Alauda Container Platform

Namespace Lifecycle Management

Manage the lifecycle of the namespace.

Resource Quota and Limit Management

Manage the resource quota and limit of the namespace.

Namespace Resource Overcommit

Allow overcommit the reousurce of the namespace.

Logs

Query the history logs or real time logs of the applications.

Events

Query the events collected from the applications.

Monitoring

Monitor the application status and firing alerts when abnormalities occur.

Build image from source

Build image from the source code of the git repository and push the image to the image

repository.

Application Observability

Source to Image

Registry

Features - Alauda Container Platform

Out-of-the-box Registry Server

Easily deploy an registry server available for the platform.

Node Isolation

Support project-level node isolation to avoid resource contention between projects.

Efficient operation and maintenance

Through OAM applications, application operation and maintenance personnel can focus on

business logic and manage applications from the application perspective rather than the

platform perspective, reducing the threshold for application operation and maintenance.

Platform operation and maintenance personnel can handle platform plugins, operation and

maintenance plugins, and other configurations uniformly, thereby improving operational

efficiency.

Portability

The OAM application model includes configurations related to application operation and

maintenance, service governance, etc. Compared with applications deployed through

Operators, Charts, and other methods, OAM applications can be repeatedly deployed

through YAML, making cross-environment migration easier. Even without Kubernetes and

specific vendors, OAM applications can run normally on various platforms.

Scalability

Several types of components pre-installed on the platform can meet most application

development needs: network services, stateful applications, and native Kubernetes

resources. In addition, the platform also provides the ability to extend components and

Node Isolation Strategy

OAM Application

Features - Alauda Container Platform

traits, making it easy for developers to use custom-designed and encapsulated

components and traits.

Features - Alauda Container Platform

Creating a simple application via image

Quick Start

Introduction

Important Notes

Prerequisites

Workflow Overview

Procedure

Menu

Quick Start - Alauda Container Platform

This technical guide demonstrates how to efficiently create, manage, and access

containerized applications in Alauda Container Platform using Kubernetes-native

methodologies.

Introduction

Use Cases

Time Commitment

Important Notes

Prerequisites

Workflow Overview

Procedure

Create namespace

Configure Image Repository

Method 1: Integrated Registry via Toolchain

Method 2: External Registry Services

Create application via Deployment

Expose Service via NodePort

Validate Application Accessibility

Creating a simple application via image

TOC

Introduction

Use Cases

Menu ON THIS PAGE

Creating a simple application via image - Alauda Container Platform

New users seeking to understand fundamental application creation workflows on

Kubernetes platforms

Practical exercise demonstrating core platform capabilities including:

Project/Namespace orchestration

Deployment creation

Service exposure patterns

Application accessibility verification

Estimated completion time: 10-15 minutes

This technical guide focuses on essential parameters - refer to comprehensive

documentation for advanced configurations

Required permissions:

Project/Namespace creation

Image repository integration

Workload deployment

Basic understanding of Kubernetes architecture and Alauda Container Platform platform

concepts

Pre-configured project following platform establishment procedures

Time Commitment

Important Notes

Prerequisites

Creating a simple application via image - Alauda Container Platform

No. Operation Description

1 Create Namespace Establish resource isolation boundary

2 Configure Image Repository Set up container image sources

3 Create application via Deployment Create Deployment workload

4 Expose Service via NodePort Configure NodePort service

5 Validate Application Accessibility Test endpoint connectivity

Namespaces provide logical isolation for resource grouping and quota management.

Prerequisites

Permissions to create, update, and delete namespaces(e.g., Administrator or Project

Administrator roles)

kubectl configured with cluster access

Creation Process

1.

Log in, and navigate to Project Management > Namespaces

2.

Select Create Namespace

3.

Workflow Overview

Procedure

Create namespace

Creating a simple application via image - Alauda Container Platform

Configure essential parameters:

** Parameter ** Description

Cluster Target cluster from project-associated clusters

Namespace Unique identifier (auto-prefixed with project name)

4.

Complete creation with default resource constraints

Alauda Container Platform supports multiple image sourcing strategies:

1.

Access Platform Management > Toolchain > Integration

2.

Initiate new integration:

Parameter Requirement

Name Unique integration identifier

API Endpoint Registry service URL (HTTP/HTTPS)

Secret Pre-existing or newly created credential

3.

Allocate registry to target platform project

Use publicly accessible registry URLs (e.g., Docker Hub)

Example: index.docker.io/library/nginx:latest

Configure Image Repository

Method 1: Integrated Registry via Toolchain

Method 2: External Registry Services

Creating a simple application via image - Alauda Container Platform

Verification Requirement

Cluster network must have egress access to registry endpoints

Deployments provide declarative updates for Pod replicasets.

Creation Process

1. From Container Platform view:

Use namespace selector to choose target isolation boundary

2. Navigate to Workloads > Deployments

3. Click Create Deployment

4. Specify image source:

Select integrated registry or

Input external image URL (e.g., index.docker.io/library/nginx:latest)

5. Configure workload identity and launch

Management Operations

Monitor replica status

View events and logs

Inspect YAML manifests

Analyze resource metrics, alerts

Services enable network accessibility to Pod groups.

Creation Process

1.

Navigate to Networking > Services

Create application via Deployment

Expose Service via NodePort

Creating a simple application via image - Alauda Container Platform

2.

Click Create Service with parameters:

Parameter Value

Type NodePort

Selector Target Deployment name

Port Mapping
Service Port: Container Port (e.g., 8080

)

3.

Confirm creation.

Critical

Cluster-visible virtual IP

NodePort allocation range (30000-32767)

Internal routes enable service discovery for workloads by providing a unified IP address or

host port for access.

1.

Click on Network > Service.

2.

Click on Create Service.

3.

Configure the Details based on the parameters below, keeping other parameters at their

defaults.

Parameter Description

Name Enter the name of the Service.

Type NodePort

Creating a simple application via image - Alauda Container Platform

Parameter Description

Workload

Name
Select the Deployment created previously.

Port

Service Port: The port number exposed by the Service within the

cluster, i.e., Port, e.g., 8080 .

Container Port: The target port number (or name) mapped by the

service port, i.e., targetPort, e.g., 80 .

4.

Click on Create. At this point, the Service is successfully created.

Verification Method

1. Obtain exposed endpoint components:

Node IP: Worker node public address

NodePort: Allocated external port

2. Construct access URL: http://<Node_IP>:<NodePort>

3. Expected result: Nginx welcome page

Validate Application Accessibility

Creating a simple application via image - Alauda Container Platform

Overview

Overview

Concepts

Understanding Parameters

Building Applications

Namespace Management

Application Lifecycle Management

Kubernetes Workload Management

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Troubleshooting Common Issues

Advanced Usage Patterns

Menu

Building Applications - Alauda Container Platform

Understanding Startup Commands

Understanding Environment Variables

Guides

Namespaces

Pre-Application-Creation Preparation

Creating Applications

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Advanced Usage Patterns

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Building Applications - Alauda Container Platform

Post-Application-Creation Configuration

Operation and Maintenance

Application Observability

Workloads

Working with Helm charts

Pod

How To

Setting Scheduled Task Trigger Rules

1. Understanding Helm

2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via UI

Time Conversion

Writing Crontab Expressions

Building Applications - Alauda Container Platform

Alauda Container Platform provides a unified interface to create, edit, delete, and manage

cloud-native applications through both a web console and CLI (Command-Line Interface).

Applications can be deployed across multiple namespaces with RBAC policies.

Namespace Management

Application Lifecycle Management

Application Creation Patterns

Application Operations

Application Observability

Kubernetes Workload Management

Namespaces provide logical isolation for Kubernetes resources. Key operations include:

Creating Namespaces: Define resource quotas and pod security admission policies.

Importing Namespaces: Importing existing Kubernetes namespaces into Alauda Container

Platform provides full platform capabilities parity with natively created namespaces.

Overview

TOC

Namespace Management

Application Lifecycle Management

Menu ON THIS PAGE

Overview - Alauda Container Platform

Alauda Container Platform supports end-to-end lifecycle management including:

In Alauda Container Platform , applications can be created in multiple ways. Here are some

common methods:

Create from Images: Create custom applications using pre-built container images. This

method supports creating complete application that include Deployments , Services ,

ConfigMaps , and other Kubernetes resources.

Create from Catalog: Alauda Container Platform provides application catalogs, allowing

users to select predefined application templates (Helm Charts or Operator Backed) for

creation.

Create from YAML: By importing a YAML file, create a custom application with all included

resources in one step.

Create from Code: Build images via Source to Image (S2I).

Updating Applications: Update an application's image version, environment variables, and

other configurations, or import existing Kubernetes resources for centralized management.

Exporting Applications: Export applications in YAML, Kustomize, or Helm Chart formats,

then import them to create new application instances in other namespaces or clusters.

Version Management: Support automatically or manually creating application versions, and

in case of issues, one-click rollback to a specific version is available for quick recovery.

Deleting Applications: Delete an application, it simultaneously deletes the application itself

and all of its directly contained Kubernetes resources. Additionally, this action severs any

association the application might have had with other Kubernetes resources that were not

directly part of its definition.

For continuous operation management, the platform provides logs, events, monitoring, etc.

Logs: Supports viewing real-time logs from the currently running Pod, and also provides

logs from previous container restarts.

Application Creation Patterns

Application Operations

Application Observability

Overview - Alauda Container Platform

Events: Supports viewing event information for all resources within a namespace.

Monitoring Dashboards: Provides namespace-level monitoring dashboards, including

dedicated views for Applications, Workloads, and Pods, and also support customizing

monitoring dashboards to suit specific operational requirements.

Support for core workload types:

Deployments: Manage stateless applications with rolling updates.

StatefulSets: Run stateful apps with stable network IDs.

DaemonSets: Deploy node-level services (e.g., log collectors).

CronJobs: Schedule batch jobs with retry policies.

Kubernetes Workload Management

Overview - Alauda Container Platform

Understanding Parameters

Understanding Startup Commands

Understanding Environment Variables

Concepts

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Troubleshooting Common Issues

Advanced Usage Patterns

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Advanced Usage Patterns

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Menu

Concepts - Alauda Container Platform

Concepts - Alauda Container Platform

Overview

Core Concepts

What are Parameters?

Relationship with Docker

Use Cases and Scenarios

1. Application Configuration

2. Environment-Specific Deployment

3. Database Connection Configuration

CLI Examples and Practical Usage

Using kubectl run

Using kubectl create

Complex Parameter Examples

Web Server with Custom Configuration

Application with Multiple Parameters

Best Practices

1. Parameter Design Principles

2. Security Considerations

3. Configuration Management

Troubleshooting Common Issues

1. Parameter Not Recognized

2. Parameter Override Not Working

3. Debugging Parameter Issues

Advanced Usage Patterns

1. Conditional Parameters with Init Containers

Understanding Parameters

TOC

Menu ON THIS PAGE

Understanding Parameters - Alauda Container Platform

2. Parameter Templating with Helm

Parameters in Kubernetes refer to command-line arguments passed to containers at runtime.

They correspond to the args field in Kubernetes Pod specifications and override the default

CMD arguments defined in container images. Parameters provide a flexible way to configure

application behavior without rebuilding images.

Parameters are runtime arguments that:

Override the default CMD instruction in Docker images

Are passed to the container's main process as command-line arguments

Allow dynamic configuration of application behavior

Enable reuse of the same image with different configurations

In Docker terminology:

ENTRYPOINT: Defines the executable (maps to Kubernetes command)

CMD: Provides default arguments (maps to Kubernetes args)

Parameters: Override CMD arguments while preserving ENTRYPOINT

Overview

Core Concepts

What are Parameters?

Relationship with Docker

Understanding Parameters - Alauda Container Platform

Pass configuration options to applications:

Dockerfile example

FROM nginx:alpine

ENTRYPOINT ["nginx"]

CMD ["-g", "daemon off;"]

Kubernetes override

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: nginx

 image: nginx:alpine

 args: ["-g", "daemon off;", "-c", "/custom/nginx.conf"]

Use Cases and Scenarios

1. Application Configuration

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web-server

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 args:

 - "--port=8080"

 - "--log-level=info"

 - "--config=/etc/app/config.yaml"

Understanding Parameters - Alauda Container Platform

Different parameters for different environments:

2. Environment-Specific Deployment

Development

args: ["--debug", "--reload", "--port=3000"]

Production

args: ["--optimize", "--port=80", "--workers=4"]

3. Database Connection Configuration

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: db-client

 image: postgres:13

 args:

 - "psql"

 - "-h"

 - "postgres.example.com"

 - "-p"

 - "5432"

 - "-U"

 - "myuser"

 - "-d"

 - "mydb"

CLI Examples and Practical Usage

Using kubectl run

Understanding Parameters - Alauda Container Platform

Basic parameter passing

kubectl run nginx --image=nginx:alpine --restart=Never -- -g "daemon off;" -c

Multiple parameters

kubectl run myapp --image=myapp:latest --restart=Never -- --port=8080 --log-l

Interactive debugging

kubectl run debug --image=ubuntu:20.04 --restart=Never -it -- /bin/bash

Using kubectl create

Create deployment with parameters

kubectl create deployment web --image=nginx:alpine --dry-run=client -o yaml >

Edit the generated YAML to add args:

spec:

template:

spec:

containers:

- name: nginx

image: nginx:alpine

args: ["-g", "daemon off;", "-c", "/custom/nginx.conf"]

kubectl apply -f deployment.yaml

Complex Parameter Examples

Web Server with Custom Configuration

Understanding Parameters - Alauda Container Platform

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-custom

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx-custom

 template:

 metadata:

 labels:

 app: nginx-custom

 spec:

 containers:

 - name: nginx

 image: nginx:1.21-alpine

 args:

 - "-g"

 - "daemon off;"

 - "-c"

 - "/etc/nginx/custom.conf"

 ports:

 - containerPort: 80

 volumeMounts:

 - name: config

 mountPath: /etc/nginx/custom.conf

 subPath: nginx.conf

 volumes:

 - name: config

 configMap:

 name: nginx-config

Application with Multiple Parameters

Understanding Parameters - Alauda Container Platform

Use meaningful parameter names: --port=8080 instead of -p 8080

Provide sensible defaults: Ensure applications work without parameters

Document all parameters: Include help text and examples

Validate input: Check parameter values and provide error messages

apiVersion: v1

kind: Pod

metadata:

 name: myapp

spec:

 containers:

 - name: app

 image: mycompany/myapp:v1.2.3

 args:

 - "--server-port=8080"

 - "--database-url=postgresql://db:5432/mydb"

 - "--log-level=info"

 - "--metrics-enabled=true"

 - "--cache-size=256MB"

 - "--worker-threads=4"

Best Practices

1. Parameter Design Principles

2. Security Considerations

Understanding Parameters - Alauda Container Platform

❌ Avoid sensitive data in parameters

args: ["--api-key=secret123", "--password=mypass"]

✅ Use environment variables for secrets

env:

- name: API_KEY

 valueFrom:

 secretKeyRef:

 name: app-secrets

 key: api-key

args: ["--config-from-env"]

3. Configuration Management

✅ Combine parameters with ConfigMaps

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 args:

 - "--config=/etc/config/app.yaml"

 - "--log-level=info"

 volumeMounts:

 - name: config

 mountPath: /etc/config

 volumes:

 - name: config

 configMap:

 name: app-config

Troubleshooting Common Issues

1. Parameter Not Recognized

Understanding Parameters - Alauda Container Platform

Check container logs

kubectl logs pod-name

Common error: unknown flag

Solution: Verify parameter syntax and application documentation

2. Parameter Override Not Working

❌ Incorrect: mixing command and args

command: ["myapp", "--port=8080"]

args: ["--log-level=debug"]

✅ Correct: use args only to override CMD

args: ["--port=8080", "--log-level=debug"]

3. Debugging Parameter Issues

Run container interactively to test parameters

kubectl run debug --image=myapp:latest -it --rm --restart=Never -- /bin/sh

Inside container, test the command manually

/app/myapp --port=8080 --log-level=debug

Advanced Usage Patterns

1. Conditional Parameters with Init Containers

Understanding Parameters - Alauda Container Platform

apiVersion: v1

kind: Pod

spec:

 initContainers:

 - name: config-generator

 image: busybox

 command: ['sh', '-c']

 args:

 - |

 if ["$ENVIRONMENT" = "production"]; then

 echo "--optimize --workers=8" > /shared/args

 else

 echo "--debug --reload" > /shared/args

 fi

 volumeMounts:

 - name: shared

 mountPath: /shared

 containers:

 - name: app

 image: myapp:latest

 command: ['sh', '-c']

 args: ['exec myapp $(cat /shared/args)']

 volumeMounts:

 - name: shared

 mountPath: /shared

 volumes:

 - name: shared

 emptyDir: {}

2. Parameter Templating with Helm

Understanding Parameters - Alauda Container Platform

Parameters provide a powerful mechanism for configuring containerized applications in

Kubernetes. By understanding how to properly use parameters, you can create flexible,

reusable, and maintainable deployments that adapt to different environments and

requirements.

values.yaml

app:

 parameters:

 port: 8080

 logLevel: info

 workers: 4

deployment.yaml template

apiVersion: apps/v1

kind: Deployment

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 args:

 - "--port={{ .Values.app.parameters.port }}"

 - "--log-level={{ .Values.app.parameters.logLevel }}"

 - "--workers={{ .Values.app.parameters.workers }}"

Understanding Parameters - Alauda Container Platform

Overview

Core Concepts

What are Startup Commands?

Relationship with Docker and Parameters

Command vs Args Interaction

Use Cases and Scenarios

1. Custom Application Startup

2. Debugging and Troubleshooting

3. Initialization Scripts

4. Multi-Purpose Images

CLI Examples and Practical Usage

Using kubectl run

Using kubectl create job

Complex Startup Command Examples

Multi-Step Initialization

Conditional Startup Logic

Best Practices

1. Signal Handling and Graceful Shutdown

2. Error Handling and Logging

3. Security Considerations

4. Resource Management

Advanced Usage Patterns

1. Init Containers with Custom Commands

2. Sidecar Containers with Different Commands

Understanding Startup Commands

TOC

Menu ON THIS PAGE

Understanding Startup Commands - Alauda Container Platform

3. Job Patterns with Custom Commands

Startup commands in Kubernetes define the primary executable that runs when a container

starts. They correspond to the command field in Kubernetes Pod specifications and override

the default ENTRYPOINT instruction defined in container images. Startup commands provide

complete control over what process runs inside your containers.

Startup commands are:

The primary executable that runs when a container starts

Override the ENTRYPOINT instruction in Docker images

Define the main process (PID 1) inside the container

Work in conjunction with parameters (args) to form the complete command line

Understanding the relationship between Docker instructions and Kubernetes fields:

Docker Kubernetes Purpose

ENTRYPOINT command Defines the executable

CMD args Provides default arguments

Overview

Core Concepts

What are Startup Commands?

Relationship with Docker and Parameters

Understanding Startup Commands - Alauda Container Platform

Scenario Docker Image Kubernetes Spec
Resulting
Command

Default
ENTRYPOINT +

CMD
(none)

ENTRYPOINT +

CMD

Override args

only

ENTRYPOINT +

CMD

args: ["new-

args"]

ENTRYPOINT +

new-args

Override

command only

ENTRYPOINT +

CMD

command: ["new-

cmd"]
new-cmd

Override both
ENTRYPOINT +

CMD

command: ["new-

cmd"]

args: ["new-

args"]

new-cmd + new-

args

Dockerfile example

FROM ubuntu:20.04

ENTRYPOINT ["/usr/bin/myapp"]

CMD ["--config=/etc/default.conf"]

Kubernetes override

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: myapp

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/custom.conf", "--debug"]

Command vs Args Interaction

Use Cases and Scenarios

Understanding Startup Commands - Alauda Container Platform

Run different applications using the same base image:

Override the default command to start a shell for debugging:

Run custom initialization before starting the main application:

1. Custom Application Startup

apiVersion: v1

kind: Pod

metadata:

 name: web-server

spec:

 containers:

 - name: nginx

 image: ubuntu:20.04

 command: ["/usr/sbin/nginx"]

 args: ["-g", "daemon off;", "-c", "/etc/nginx/nginx.conf"]

2. Debugging and Troubleshooting

apiVersion: v1

kind: Pod

metadata:

 name: debug-pod

spec:

 containers:

 - name: debug

 image: myapp:latest

 command: ["/bin/bash"]

 args: ["-c", "sleep 3600"]

3. Initialization Scripts

Understanding Startup Commands - Alauda Container Platform

Use the same image for different purposes:

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 echo "Initializing application..."

 /scripts/init.sh

 echo "Starting main application..."

 exec /usr/bin/myapp --config=/etc/app.conf

4. Multi-Purpose Images

Understanding Startup Commands - Alauda Container Platform

Web server

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web

spec:

 template:

 spec:

 containers:

 - name: web

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["server", "--port=8080"]

Background worker

apiVersion: apps/v1

kind: Deployment

metadata:

 name: worker

spec:

 template:

 spec:

 containers:

 - name: worker

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["worker", "--queue=tasks"]

Database migration

apiVersion: batch/v1

kind: Job

metadata:

 name: migrate

spec:

 template:

 spec:

 containers:

 - name: migrate

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["migrate", "--up"]

li

Understanding Startup Commands - Alauda Container Platform

 restartPolicy: Never

CLI Examples and Practical Usage

Using kubectl run

Override command completely

kubectl run debug --image=nginx:alpine --command -- /bin/sh -c "sleep 3600"

Run interactive shell

kubectl run -it debug --image=ubuntu:20.04 --restart=Never --command -- /bin/

Custom application startup

kubectl run myapp --image=myapp:latest --command -- /usr/local/bin/start.sh -

One-time task

kubectl run task --image=busybox --restart=Never --command -- /bin/sh -c "ech

Using kubectl create job

Create a job with custom command

kubectl create job backup --image=postgres:13 --dry-run=client -o yaml -- pg_

Apply the job

kubectl apply -f backup.yaml

Complex Startup Command Examples

Multi-Step Initialization

Understanding Startup Commands - Alauda Container Platform

apiVersion: v1

kind: Pod

metadata:

 name: complex-init

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 set -e

 echo "Step 1: Checking dependencies..."

 /scripts/check-deps.sh

 echo "Step 2: Setting up configuration..."

 /scripts/setup-config.sh

 echo "Step 3: Running database migrations..."

 /scripts/migrate.sh

 echo "Step 4: Starting application..."

 exec /usr/bin/myapp --config=/etc/app/config.yaml

 volumeMounts:

 - name: scripts

 mountPath: /scripts

 - name: config

 mountPath: /etc/app

 volumes:

 - name: scripts

 configMap:

 name: init-scripts

 defaultMode: 0755

 - name: config

 configMap:

 name: app-config

Conditional Startup Logic

Understanding Startup Commands - Alauda Container Platform

apiVersion: apps/v1

kind: Deployment

metadata:

 name: conditional-app

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 if ["$APP_MODE" = "worker"]; then

 exec /usr/bin/myapp worker --queue=$QUEUE_NAME

 elif ["$APP_MODE" = "scheduler"]; then

 exec /usr/bin/myapp scheduler --interval=60

 else

 exec /usr/bin/myapp server --port=8080

 fi

 env:

 - name: APP_MODE

 value: "server"

 - name: QUEUE_NAME

 value: "default"

Best Practices

1. Signal Handling and Graceful Shutdown

Understanding Startup Commands - Alauda Container Platform

✅ Proper signal handling

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 # Trap SIGTERM for graceful shutdown

 trap 'echo "Received SIGTERM, shutting down gracefully..."; kill -TERM

 # Start the main application in background

 /usr/bin/myapp --config=/etc/app.conf &

 PID=$!

 # Wait for the process

 wait $PID

2. Error Handling and Logging

Understanding Startup Commands - Alauda Container Platform

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 set -euo pipefail # Exit on error, undefined vars, pipe failures

 log() {

 echo "[$(date '+%Y-%m-%d %H:%M:%S')] $*" >&2

 }

 log "Starting application initialization..."

 if ! /scripts/health-check.sh; then

 log "ERROR: Health check failed"

 exit 1

 fi

 log "Starting main application..."

 exec /usr/bin/myapp --config=/etc/app.conf

3. Security Considerations

Understanding Startup Commands - Alauda Container Platform

✅ Run as non-root user

apiVersion: v1

kind: Pod

spec:

 securityContext:

 runAsNonRoot: true

 runAsUser: 1000

 runAsGroup: 1000

 containers:

 - name: app

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/app.conf"]

 securityContext:

 allowPrivilegeEscalation: false

 readOnlyRootFilesystem: true

 capabilities:

 drop:

 - ALL

4. Resource Management

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/app.conf"]

 resources:

 requests:

 memory: "64Mi"

 cpu: "250m"

 limits:

 memory: "128Mi"

 cpu: "500m"

Understanding Startup Commands - Alauda Container Platform

Advanced Usage Patterns

1. Init Containers with Custom Commands

apiVersion: v1

kind: Pod

spec:

 initContainers:

 - name: setup

 image: busybox

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 echo "Setting up shared data..."

 mkdir -p /shared/data

 echo "Setup complete" > /shared/data/status

 volumeMounts:

 - name: shared-data

 mountPath: /shared

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 while [! -f /shared/data/status]; do

 echo "Waiting for setup to complete..."

 sleep 1

 done

 echo "Starting application..."

 exec /usr/bin/myapp

 volumeMounts:

 - name: shared-data

 mountPath: /shared

 volumes:

 - name: shared-data

 emptyDir: {}

Understanding Startup Commands - Alauda Container Platform

2. Sidecar Containers with Different Commands

apiVersion: v1

kind: Pod

spec:

 containers:

 # Main application

 - name: app

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/app.conf"]

 # Log shipper sidecar

 - name: log-shipper

 image: fluent/fluent-bit:latest

 command: ["/fluent-bit/bin/fluent-bit"]

 args: ["--config=/fluent-bit/etc/fluent-bit.conf"]

 # Metrics exporter sidecar

 - name: metrics

 image: prom/node-exporter:latest

 command: ["/bin/node_exporter"]

 args: ["--path.rootfs=/host"]

3. Job Patterns with Custom Commands

Understanding Startup Commands - Alauda Container Platform

Startup commands provide complete control over container execution in Kubernetes. By

understanding how to properly configure and use startup commands, you can create flexible,

maintainable, and robust containerized applications that meet your specific requirements.

Backup job

apiVersion: batch/v1

kind: Job

metadata:

 name: database-backup

spec:

 template:

 spec:

 containers:

 - name: backup

 image: postgres:13

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 set -e

 echo "Starting backup at $(date)"

 pg_dump -h $DB_HOST -U $DB_USER $DB_NAME > /backup/dump-$(date +%Y%

 echo "Backup completed at $(date)"

 env:

 - name: DB_HOST

 value: "postgres.example.com"

 - name: DB_USER

 value: "backup_user"

 - name: DB_NAME

 value: "myapp"

 volumeMounts:

 - name: backup-storage

 mountPath: /backup

 restartPolicy: Never

 volumes:

 - name: backup-storage

 persistentVolumeClaim:

 claimName: backup-pvc

Understanding Startup Commands - Alauda Container Platform

Overview

Core Concepts

What are Environment Variables?

Environment Variable Sources in Kubernetes

Environment Variable Precedence

Use Cases and Scenarios

1. Application Configuration

2. Database Configuration

3. Dynamic Runtime Information

4. Environment-Specific Configuration

CLI Examples and Practical Usage

Using kubectl run

Using kubectl create

Complex Environment Variable Examples

Microservices with Service Discovery

Multi-Container Pod with Shared Configuration

Best Practices

1. Security Best Practices

2. Configuration Organization

3. Environment Variable Naming

4. Default Values and Validation

Understanding Environment Variables

TOC

Menu ON THIS PAGE

Understanding Environment Variables - Alauda Container Platform

Environment variables in Kubernetes are key-value pairs that provide configuration data to

containers at runtime. They offer a flexible and secure way to inject configuration information,

secrets, and runtime parameters into your applications without modifying container images or

application code.

Environment variables are:

Key-value pairs available to processes running inside containers

Runtime configuration mechanism that doesn't require image rebuilds

Standard way to pass configuration data to applications

Accessible through standard operating system APIs in any programming language

Kubernetes supports multiple sources for environment variables:

Source Type Description Use Case

Static Values Direct key-value pairs Simple configuration

ConfigMap
Reference to ConfigMap

keys
Non-sensitive configuration

Secret Reference to Secret keys
Sensitive data (passwords,

tokens)

Field Reference Pod/Container metadata Dynamic runtime information

Overview

Core Concepts

What are Environment Variables?

Environment Variable Sources in Kubernetes

Understanding Environment Variables - Alauda Container Platform

Source Type Description Use Case

Resource

Reference
Resource requests/limits Resource-aware configuration

Environment variables override configuration in this order:

1. Kubernetes env (highest priority)

2. Referenced ConfigMaps/Secrets

3. Dockerfile ENV instructions

4. Application default values (lowest priority)

Basic application settings:

Environment Variable Precedence

Use Cases and Scenarios

1. Application Configuration

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: web-app

 image: myapp:latest

 env:

 - name: PORT

 value: "8080"

 - name: LOG_LEVEL

 value: "info"

 - name: ENVIRONMENT

 value: "production"

 - name: MAX_CONNECTIONS

 value: "100"

Understanding Environment Variables - Alauda Container Platform

Database connection settings using ConfigMaps and Secrets:

2. Database Configuration

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1

kind: ConfigMap

metadata:

 name: db-config

data:

 DB_HOST: "postgres.example.com"

 DB_PORT: "5432"

 DB_NAME: "myapp"

 DB_POOL_SIZE: "10"

apiVersion: v1

kind: Secret

metadata:

 name: db-secret

type: Opaque

data:

 DB_USER: bXl1c2Vy # base64 encoded "myuser"

 DB_PASSWORD: bXlwYXNzd29yZA== # base64 encoded "mypassword"

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 # From ConfigMap

 - name: DB_HOST

 valueFrom:

 configMapKeyRef:

 name: db-config

 key: DB_HOST

 - name: DB_PORT

 valueFrom:

 configMapKeyRef:

 name: db-config

 key: DB_PORT

 - name: DB_NAME

 valueFrom:

 configMapKeyRef:

 name: db-config

k

Understanding Environment Variables - Alauda Container Platform

Access Pod and Node metadata:

 key: DB_NAME

 # From Secret

 - name: DB_USER

 valueFrom:

 secretKeyRef:

 name: db-secret

 key: DB_USER

 - name: DB_PASSWORD

 valueFrom:

 secretKeyRef:

 name: db-secret

 key: DB_PASSWORD

3. Dynamic Runtime Information

Understanding Environment Variables - Alauda Container Platform

Different configurations for different environments:

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 # Pod information

 - name: POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: POD_IP

 valueFrom:

 fieldRef:

 fieldPath: status.podIP

 - name: NODE_NAME

 valueFrom:

 fieldRef:

 fieldPath: spec.nodeName

 # Resource information

 - name: CPU_REQUEST

 valueFrom:

 resourceFieldRef:

 resource: requests.cpu

 - name: MEMORY_LIMIT

 valueFrom:

 resourceFieldRef:

 resource: limits.memory

4. Environment-Specific Configuration

Understanding Environment Variables - Alauda Container Platform

Development environment

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config-dev

data:

 DEBUG: "true"

 LOG_LEVEL: "debug"

 CACHE_TTL: "60"

 RATE_LIMIT: "1000"

Production environment

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config-prod

data:

 DEBUG: "false"

 LOG_LEVEL: "warn"

 CACHE_TTL: "3600"

 RATE_LIMIT: "100"

Deployment using environment-specific config

apiVersion: apps/v1

kind: Deployment

metadata:

 name: myapp

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 envFrom:

 - configMapRef:

 name: app-config-prod # Change to app-config-dev for development

Understanding Environment Variables - Alauda Container Platform

CLI Examples and Practical Usage

Using kubectl run

Set environment variables directly

kubectl run myapp --image=nginx --env="PORT=8080" --env="DEBUG=true"

Multiple environment variables

kubectl run webapp --image=myapp:latest \

 --env="DATABASE_URL=postgresql://localhost:5432/mydb" \

 --env="REDIS_URL=redis://localhost:6379" \

 --env="LOG_LEVEL=info"

Interactive pod with environment variables

kubectl run debug --image=ubuntu:20.04 -it --rm \

 --env="TEST_VAR=hello" \

 --env="ANOTHER_VAR=world" \

 -- /bin/bash

Using kubectl create

Create ConfigMap from literal values

kubectl create configmap app-config \

 --from-literal=DATABASE_HOST=postgres.example.com \

 --from-literal=DATABASE_PORT=5432 \

 --from-literal=CACHE_SIZE=256MB

Create ConfigMap from file

echo "DEBUG=true" > app.env

echo "LOG_LEVEL=debug" >> app.env

kubectl create configmap app-env --from-env-file=app.env

Create Secret for sensitive data

kubectl create secret generic db-secret \

 --from-literal=username=myuser \

 --from-literal=password=mypassword

Understanding Environment Variables - Alauda Container Platform

Complex Environment Variable Examples

Microservices with Service Discovery

apiVersion: v1

kind: ConfigMap

metadata:

 name: service-config

data:

 USER_SERVICE_URL: "http://user-service:8080"

 ORDER_SERVICE_URL: "http://order-service:8080"

 PAYMENT_SERVICE_URL: "http://payment-service:8080"

 NOTIFICATION_SERVICE_URL: "http://notification-service:8080"

apiVersion: apps/v1

kind: Deployment

metadata:

 name: api-gateway

spec:

 template:

 spec:

 containers:

 - name: gateway

 image: api-gateway:latest

 env:

 - name: PORT

 value: "8080"

 - name: ENVIRONMENT

 value: "production"

 envFrom:

 - configMapRef:

 name: service-config

 - secretRef:

 name: api-keys

Multi-Container Pod with Shared Configuration

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1

kind: Pod

metadata:

 name: multi-container-app

spec:

 containers:

 # Main application

 - name: app

 image: myapp:latest

 env:

 - name: ROLE

 value: "primary"

 - name: SHARED_SECRET

 valueFrom:

 secretKeyRef:

 name: shared-secret

 key: token

 envFrom:

 - configMapRef:

 name: shared-config

 # Sidecar container

 - name: sidecar

 image: sidecar:latest

 env:

 - name: ROLE

 value: "sidecar"

 - name: MAIN_APP_URL

 value: "http://localhost:8080"

 - name: SHARED_SECRET

 valueFrom:

 secretKeyRef:

 name: shared-secret

 key: token

 envFrom:

 - configMapRef:

 name: shared-config

Best Practices

Understanding Environment Variables - Alauda Container Platform

1. Security Best Practices

✅ Use Secrets for sensitive data

apiVersion: v1

kind: Secret

metadata:

 name: app-secrets

type: Opaque

data:

 api-key: <base64-encoded-value>

 database-password: <base64-encoded-value>

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 # ✅ Reference secrets

 - name: API_KEY

 valueFrom:

 secretKeyRef:

 name: app-secrets

 key: api-key

 # ❌ Avoid hardcoding sensitive data

 # - name: API_KEY

 # value: "secret-api-key-123"

2. Configuration Organization

Understanding Environment Variables - Alauda Container Platform

✅ Organize configuration by purpose

apiVersion: v1

kind: ConfigMap

metadata:

 name: database-config

data:

 DB_HOST: "postgres.example.com"

 DB_PORT: "5432"

 DB_POOL_SIZE: "10"

apiVersion: v1

kind: ConfigMap

metadata:

 name: cache-config

data:

 REDIS_HOST: "redis.example.com"

 REDIS_PORT: "6379"

 CACHE_TTL: "3600"

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 envFrom:

 - configMapRef:

 name: database-config

 - configMapRef:

 name: cache-config

3. Environment Variable Naming

Understanding Environment Variables - Alauda Container Platform

✅ Use consistent naming conventions

env:

- name: DATABASE_HOST # Clear, descriptive names

 value: "postgres.example.com"

- name: DATABASE_PORT # Use underscores for separation

 value: "5432"

- name: LOG_LEVEL # Use uppercase for environment variables

 value: "info"

- name: FEATURE_FLAG_NEW_UI # Prefix related variables

 value: "true"

❌ Avoid unclear or inconsistent naming

- name: db # Too short

- name: databaseHost # Inconsistent casing

- name: log-level # Inconsistent separator

4. Default Values and Validation

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 - name: PORT

 value: "8080" # Provide sensible defaults

 - name: LOG_LEVEL

 value: "info" # Default to safe values

 - name: TIMEOUT_SECONDS

 value: "30" # Include units in names

 - name: MAX_RETRIES

 value: "3" # Limit retry attempts

Understanding Environment Variables - Alauda Container Platform

Namespaces

Creating Namespaces

Importing Namespaces

Resource Quota

Limit Range

Guides

Understanding namespaces

Creating namespaces by using web console

Creating namespace by using CLI

Overview

Use Cases

Prerequisites

Procedure

Understanding Resource Requests & Limits

Quotas

Understanding Limit Range

Create Limit Range by using CLI

Menu

Guides - Alauda Container Platform

Pod Security Admission

Overcommit Ratio

Managing Namespace Members

Updating Namespaces

Deleting/Removing Namespaces

Security Modes

Security Standards

Configuration

UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Importing Members

Adding Members

Removing Members

Updating Quotas

Updating Container LimitRanges

Updating Pod Security Admission

Deleting Namespaces

Removing Namespaces

Guides - Alauda Container Platform

Pre-Application-Creation Preparation

Configuring ConfigMap

Configuring Secrets

Creating Applications

Understanding Config Maps

Config Map Restrictions

ConfigMap vs Secret

Creating a ConfigMap by using the web console

Creating a ConfigMap by using the CLI

Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

ConfigMap vs Secret

Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret

Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console

How to Use a Secret in a Pod

Follow-up Actions

Operations

Guides - Alauda Container Platform

Creating applications from Image

Creating applications from Chart

Creating applications from YAML

Creating applications from Code

Creating applications from Operator Backed

Prerequisites

Procedure 1 - Workloads

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Precautions

Prerequisites

Procedure

Status Analysis Reference

Precautions

Prerequisites

Procedure

Prerequisites

Procedure

Procedure

Troubleshooting

Guides - Alauda Container Platform

Creating applications by using CLI

Post-Application-Creation Configuration

Configuring HPA

Configuring VerticalPodAutoscaler (VPA)

Configuring CronHPA

Prerequisites

Procedure

Example

Reference

Understanding Horizontal Pod Autoscalers

Prerequisites

Creating a Horizontal Pod Autoscaler

Calculation Rules

Understanding VerticalPodAutoscalers

Prerequisites

Creating a VerticalPodAutoscaler

Follow-Up Actions

Understanding Cron Horizontal Pod Autoscalers

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Schedule Rule Explanation

Guides - Alauda Container Platform

Operation and Maintenance

Status Description

Starting and Stopping Applications

Updating Applications

Exporting Applications

Updating and deleting Chart Applications

Applications

Starting the Application

Stopping the Application

Importing Resources

Removing/Batch Removing Resources

Exporting Helm Charts

Exporting YAML to Local

Exporting YAML to Code Repository (Alpha)

Important Notes

Prerequisites

Status Analysis Description

Guides - Alauda Container Platform

Version Management for Applications

Deleting Applications

Health Checks

Application Observability

Monitoring Dashboards

Logs

Creating a Version Snapshot

Rolling Back to a Historical Version

Understanding Health Checks

YAML file example

Health Checks configuration parameters by using web console

Troubleshooting probe failures

Prerequisites

Namespace-Level Monitoring Dashboards

Workload-Level Monitoring

Procedure

Guides - Alauda Container Platform

Events

Workloads

Deployments

DaemonSets

StatefulSets

Procedure

Event records interpretation

Understanding Deployments

Creating Deployments

Managing Deployments

Troubleshooting by using CLI

Understanding DaemonSets

Creating DaemonSets

Managing DaemonSets

Understanding StatefulSets

Creating StatefulSets

Managing StatefulSets

Guides - Alauda Container Platform

CronJobs

Jobs

Working with Helm charts

Working with Helm charts

Pod

Introduction

Pod Parameters

Understanding CronJobs

Creating CronJobs

Execute Immediately

Deleting CronJobs

Understanding Jobs

YAML file example

Execution Overview

1. Understanding Helm

2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via UI

Guides - Alauda Container Platform

Deleting Pods

Container

Use Cases

Procedure

Guides - Alauda Container Platform

Creating Namespaces

Importing Namespaces

Resource Quota

Limit Range

Namespaces

Understanding namespaces

Creating namespaces by using web console

Creating namespace by using CLI

Overview

Use Cases

Prerequisites

Procedure

Understanding Resource Requests & Limits

Quotas

Understanding Limit Range

Create Limit Range by using CLI

Menu

Namespaces - Alauda Container Platform

Pod Security Admission

Overcommit Ratio

Managing Namespace Members

Updating Namespaces

Deleting/Removing Namespaces

Security Modes

Security Standards

Configuration

UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Importing Members

Adding Members

Removing Members

Updating Quotas

Updating Container LimitRanges

Updating Pod Security Admission

Deleting Namespaces

Removing Namespaces

Namespaces - Alauda Container Platform

Understanding namespaces

Creating namespaces by using web console

Creating namespace by using CLI

YAML file examples

Create via YAML file

Create via command line directly

Refer to the official Kubernetes documentation: Namespaces

In Kubernetes, namespaces provide a mechanism for isolating groups of resources within a

single cluster. Names of resources need to be unique within a namespace, but not across

namespaces. Namespace-based scoping is applicable only for namespaced objects (e.g.

Deployments, Services, etc.) and not for cluster-wide objects (e.g. StorageClass, Nodes,

PersistentVolumes, etc.).

Within the cluster associated with the project, create a new namespace aligned with the

project's available resource quotas. The new namespace operates within the resource

Creating Namespaces

TOC

Understanding namespaces

↗

Creating namespaces by using web console

Menu ON THIS PAGE

Creating Namespaces - Alauda Container Platform

https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/

quotas allocated to the project (e.g., CPU, memory), and all resources in the namespace

must reside within the associated cluster.

1.

In the Project Management view, click on the Project Name for which you want to create

a namespace.

2.

In the left navigation bar, click on Namespaces > Namespaces.

3.

Click on Create Namespace.

4.

Configure Basic Information.

Parameter Description

Cluster Select the cluster linked to the project to host the namespace.

Namespace
The namespace name must include a mandatory prefix, which is the

project name.

5.

(Optional) Configure Resource Quota.

Every time a resource limit (limits) for computational or storage resources is specified for a

container within the namespace, or each time a new Pod or PVC is added, it will consume

the quota set here.

NOTICE:

The namespace's resource quota is inherited from the project's allocated quota in the

cluster. The maximum allowable quota for a resource type cannot exceed the remaining

available quota of the project. If any resource's available quota reaches 0, namespace

creation will be blocked. Contact your platform administrator for quota adjustments.

GPU Quota Configuration Requirements:

Creating Namespaces - Alauda Container Platform

GPU quotas (vGPU or pGPU) can only be configured if GPU resources are

provisioned in the cluster.

When using vGPU, memory quotas can also be set.

GPU Unit Definitions:

vGPU Units: 100 virtual GPU units (vGPU) = 1 physical GPU core (pGPU).

Note: pGPU units are counted in whole numbers only (e.g., 1 pGPU = 1 core = 100

vGPU).

Memory Units:

1 memory unit = 256 MiB.

1 GiB = 4 memory units (1024 MiB = 4 × 256 MiB).

Default Quota Behavior:

If no quota is specified for a resource type, the default is unbounded.

This means the namespace can consume all available resources of that type

allocated to the project without explicit limits.

Quota Parameter Description

Category Quota Type
Value
and
Unit

Description

Storage

Resource

Quota All

Gi The total requested storage

capacity of all Persistent

Volume Claims (PVCs) in this

namespace cannot exceed this

value.

Storage Class The total requested storage

capacity of all Persistent

Volume Claims (PVCs)

associated with the selected

StorageClass in this

namespace cannot exceed this

value.

Creating Namespaces - Alauda Container Platform

Category Quota Type
Value
and
Unit

Description

Note: Please allocate

StorageClass to the project

that the namespace belongs to

in advance.

Extended

Resources

Obtained from the

configuration

dictionary

(ConfigMap); please

refer to Extended

Resources Quotas

description for

details.

-

This category will not be

displayed if there is no

corresponding configuration

dictionary.

Other

Quotas

Enter custom quotas;

for specific input

rules, please refer to

Other Quota

description.

-

To avoid problems of resource

duplication, the following

values are not allowed as

quota types:

limits.cpu

limits.memory

requests.cpu

requests.memory

pods

cpu

memory

6.

(Optional) Configure Container Limit Range; please refer to Limit Range for more details.

7.

Creating Namespaces - Alauda Container Platform

(Optional) Configure Pod Security Admission; please refer to Pod Security Admission for

specific details.

8.

(Optional) In the More Configuration area, add labels and annotations for the current

namespace.

Tip: You can define the attributes of the namespace through labels or supplement the

namespace with additional information through annotations; both can be used to filter and

sort namespaces.

9.

Click on Create.

Creating namespace by using CLI

YAML file examples

Creating Namespaces - Alauda Container Platform

example-namespace.yaml

apiVersion: v1

kind: Namespace

metadata:

 name: example

 labels:

 pod-security.kubernetes.io/audit: baseline # Option, to ensure security,

 pod-security.kubernetes.io/enforce: baseline

 pod-security.kubernetes.io/warn: baseline

example-resourcequota.yaml

apiVersion: v1

kind: ResourceQuota

metadata:

 name: example-resourcequota

 namespace: example

spec:

 hard:

 limits.cpu: "20"

 limits.memory: 20Gi

 pods: "500"

 requests.cpu: "2"

 requests.memory: 2Gi

example-limitrange.yaml

apiVersion: v1

kind: LimitRange

metadata:

 name: example-limitrange

 namespace: example

spec:

 limits:

 - default:

 cpu: 100m

 memory: 100Mi

 defaultRequest:

 cpu: 50m

 memory: 50Mi

 max:

 cpu: 1000m

 memory: 1000Mi

 type: Container

Creating Namespaces - Alauda Container Platform

Create via YAML file

kubectl apply -f example-namespace.yaml

kubectl apply -f example-resourcequota.yaml

kubectl apply -f example-limitrange.yaml

Create via command line directly

kubectl create namespace example

kubectl create resourcequota example-resourcequota --namespace=example --hard

kubectl create limitrange example-limitrange --namespace=example --default='c

Creating Namespaces - Alauda Container Platform

Overview

Use Cases

Prerequisites

Procedure

Namespace Lifecycle Management Capabilities:

Cross-Cluster Namespace Import: Importing Namespaces into a Project centralizes their

management across all Kubernetes Clusters provisioned by the platform. This provides

administrators with unified resource governance and monitoring capabilities across

distributed environments.

Namespace Disassociation:

The Disassociate Namespace feature enables you to unlink a Namespace from its current

Project, resetting its association for subsequent reassignment or cleanup.

Importing a Namespace into a Project grants it capabilities equivalent to those of natively

created Namespaces on the platform. This includes inherited Project-level Policies (e.g.,

Resource Quotas), unified monitoring, and centralized governance controls.

Important Notes:

A Namespace can only be associated with one Project at any given time.

Importing Namespaces

TOC

Overview

Menu ON THIS PAGE

Importing Namespaces - Alauda Container Platform

If a Namespace is already linked to a Project, it cannot be imported into or reassigned to

another Project without first disassociating it from its original Project.

Common use cases for Namespace management include:

Upon connecting a new Kubernetes cluster to the platform, you can utilize the Import

Namespace feature to associate its existing Kubernetes Namespaces with a Project.

Simply select the target Project and Cluster to initiate the import. This action grants the

project governance over these namespace, encompassing Resource Quotas,

monitoring, and policy enforcement.

Create/Import
Clusters

Create Project

YESNO

Add Cluster

Create / Import
Namespace

Whether to
associate with

existing projects

A namespace that has been disassociated from one project can be seamlessly re-

associated with another project via the Import Namespace feature for continued

centralized governance.

Namespaces not currently managed by any project (e.g., those created via cluster-level

scripts) must be linked to a target project using the Import Namespace feature to enable

platform-level governance, including visibility and centralized management.

Use Cases

Importing Namespaces - Alauda Container Platform

The Namespace is not currently managed by any existing Project within the platform.

Namespaces can only be imported into a Project that is already associated with their target

Kubernetes Cluster. If no such Project exists, you must first provision a Project linked to

that Cluster.

1. Project Management, click on the Project name where the namespace is to be

imported.

2. Navigate to Namespaces > Namespaces.

3. Click on the Dropdown button next to Create Namespace, then select Import

Namespace.

4. Refer to the Creating Namespaces documentation for parameter configuration details.

5. Click Import.

Prerequisites

Procedure

Importing Namespaces - Alauda Container Platform

Refer to the official Kubernetes documentation: Resource Quotas

Understanding Resource Requests & Limits

Quotas

Resource Quotas

YAML file example

Create resouce quota by using CLI

Storage Quotas

Extended Resources Quotas

Other Quotas

Used to restrict resources available to a specific namespace. The total resource usage by all

Pods in the namespace (excluding those in a Terminating state) must not exceed the

quota.

Resource Requests: Define the minimum resources (e.g., CPU, memory) required by a

container, guiding the Kubernetes Scheduler to place the Pod on a node with sufficient

capacity.

Resource Limits: Define the maximum resources a container can consume, preventing

resource exhaustion and ensuring cluster stability.

Resource Quota

↗

TOC

Understanding Resource Requests & Limits

Menu ON THIS PAGE

Resource Quota - Alauda Container Platform

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/

If a resource is marked as Unlimited , no explicit quota is enforced, but usage cannot

exceed the cluster’s available capacity.

Resource Quotas track the cumulative resource consumption (e.g., container limits, new

Pods, or PVCs) within a namespace.

Supported Quota Types

Field Description

Resource Requests

Total requested resources for all Pods in the namespace:

CPU

Memory

Resource Limits

Total limit resources for all Pods in the namespace:

CPU

Memory

Number of Pods Maximum number of Pods allowed in the namespace.

Note:

Namespace quotas are derived from the project’s allocated cluster resources. If any

resource’s available quota is 0, namespace creation will fail. Contact the administrator.

Unlimited implies the namespace can consume the project’s remaining cluster resources

for that resource type.

Quotas

Resource Quotas

YAML file example

Resource Quota - Alauda Container Platform

Create via YAML file

Create via command line directly

Quota Type:

All: Total PVC storage capacity in the namespace.

Storage Class: Total PVC storage capacity for a specific storage class.

Note: Ensure the storage class is pre-assigned to the project containing the namespace.

example-resourcequota.yaml

apiVersion: v1

kind: ResourceQuota

metadata:

 name: example-resourcequota

 namespace: <example>

spec:

 hard:

 limits.cpu: "20"

 limits.memory: 20Gi

 pods: "500"

 requests.cpu: "2"

 requests.memory: 2Gi

Create resouce quota by using CLI

kubectl apply -f example-resourcequota.yaml

kubectl create resourcequota example-resourcequota --namespace=<example> --ha

Storage Quotas

Extended Resources Quotas

Resource Quota - Alauda Container Platform

Extended resource quotas are defined via ConfigMap. If the ConfigMap is missing, the

resource category will not appear.

ConfigMap Field Descriptions

Field Description

data.dataType Data type (e.g., vGPU).

data.defaultValue Default value (empty = no default).

data.descriptionEn
English tooltip text (displayed when hovering over the

field).

data.descriptionZh
Chinese tooltip text (displayed when hovering over the

field).

data.excludeResources Mutually exclusive resources (comma-separated).

data.group Resource group (e.g., MPS).

data.groupI18n Group name in English/Chinese for UI dropdowns.

data.key
Specifies the value of the key. A configuration dictionary

can only describe one key.

data.labelEn/data.labelZh

The English/Chinese name of the resource, which can be

viewed and selected in the drop-down options

corresponding to the quota types. This field serves the

same function as the data.groupI18n field but is only

applicable when the same resource has a single value,

ensuring compatibility with the old version of the

configuration dictionary (ConfigMap).

data.limits

Indicates whether to configure limits for the resources.

Valid values include: disabled indicates limits cannot be

configured for the resource, required indicates it must be

input, and optional indicates it is optional input.

data.requests Indicates whether to configure requests for the

resources. Valid values include: disabled indicates

requests cannot be configured for the resource, required

Resource Quota - Alauda Container Platform

Field Description

indicates it must be input, optional indicates it is optional

input, and fromLimits indicates it will use the same

configuration as limits.

data.relatedResources
Associated resources. This field is reserved and currently

cannot be used.

data.resourceUnit
Resource unit (e.g., cores , GiB). Not support input in

Chinese.

data.runtimeClassName Runtime class (default: nvidia for GPU).

metadata.labels

Mandatory labels:

features.cpaas.io/type:

CustomResourceLimitation

features.cpaas.io/group: <groupName>

features.cpaas.io/enabled : true or false , the

label is mandatory and indicates whether it is enabled,

default is true.

Resource Quota - Alauda Container Platform

Field Description

metadata.name

The format is cf-crl-<*groupName*>-<*name*> , where

cf-crl is a fixed field and cannot be changed.

groupName is the name of the corresponding resource

group, e.g., gpu-manager, galaxy, etc.

name is the resource name:

Resource name can be standard resource type

names, e.g., cpu, memory, pods, etc. The standard

resource names must comply with Kubernetes'

qualified name rules and must exist within the

defined standard resource types in Kubernetes.

Resource names can also be special resource

types starting with specific prefixes, such as:

hugepages- or requests.hugepages-.

metadata.namespace Must be kube-public

The format for custom quota names must comply with the following specifications:

If the custom quota name does not contain a slash (/): It must start and end with a letter or

number, and can contain letters, numbers, hyphens (-), underscores (_), or periods (.),

forming a qualified name with a maximum length of 63 characters.

If the custom quota name contains a slash (/): The name is divided into two parts: prefix

and name, in the form of: prefix/name. The prefix must be a valid DNS subdomain, while

the name must comply with the rules for a qualified name.

DNS Subdomain:

Label: Must start and end with lowercase letters or numbers, may contain hyphens (-),

but cannot be exclusively composed of hyphens, with a maximum length of 63

characters.

Other Quotas

Resource Quota - Alauda Container Platform

Subdomain: Extends the rules of the label, allowing multiple labels to be connected by

periods (.) to form a subdomain, with a maximum length of 253 characters.

Resource Quota - Alauda Container Platform

Understanding Limit Range

Create Limit Range by using CLI

YAML file examples

Create via YAML file

Create via command line directly

Refer to the official Kubernetes documentation: Limit Ranges

Using Kubernetes LimitRange as an admission controller is resource limitations at the

container or Pod level. It sets default request values, limit values, and maximum values for

containers or Pods created after the LimitRange is created or updated, while continuously

monitoring container usage to ensure that no resources exceed the defined maximum values

within the namespace.

The resource request of a container is the ratio between resource limits and cluster

overcommitment. Resource request values serve as a reference and criterion for the

scheduler when scheduling containers. The scheduler will check the available resources for

each node (total resources - sum of resource requests of containers within Pods scheduled

on the node). If the total resource requests of the new Pod container exceed the remaining

available resources of the node, that Pod will not be scheduled on that node.

LimitRange is an admission controller:

Limit Range

TOC

Understanding Limit Range

↗

Menu ON THIS PAGE

Limit Range - Alauda Container Platform

https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/

It applies default request and limit values for all Containers that do not set compute

resource requirements.

It tracks usage to ensure it does not exceed resource maximum and ratio defined in any

LimitRange present in the namespace.

Includes the following configurations

Resource Field

CPU

Default Request

Limit

Max

Memory

Default Request

Limit

Max

Create Limit Range by using CLI

YAML file examples

Limit Range - Alauda Container Platform

example-limitrange.yaml

apiVersion: v1

kind: LimitRange

metadata:

 name: example-limitrange

 namespace: example

spec:

 limits:

 - default:

 cpu: 100m

 memory: 100Mi

 defaultRequest:

 cpu: 50m

 memory: 50Mi

 max:

 cpu: 1000m

 memory: 1000Mi

 type: Container

Create via YAML file

kubectl apply -f example-limitrange.yaml

Create via command line directly

kubectl create limitrange example-limitrange --namespace=example --default='c

Limit Range - Alauda Container Platform

Refer to the official Kubernetes documentation: Pod Security Admission

Pod Security Admission (PSA) is a Kubernetes admission controller that enforces security

policies at the namespace level by validating Pod specifications against predefined standards.

Security Modes

Security Standards

Configuration

Namespace Labels

Exemptions

PSA defines three modes to control how policy violations are handled:

Mode Behavior Use Case

Enforce
Denies creation/modification of non-

compliant Pods.

Production environments requiring

strict security enforcement.

Audit
Allows Pod creation but logs

violations in audit logs.

Monitoring and analyzing security

incidents without blocking

workloads.

Pod Security Admission

↗

TOC

Security Modes

Menu ON THIS PAGE

Pod Security Admission - Alauda Container Platform

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/

Mode Behavior Use Case

Warn
Allows Pod creation but returns

client warnings for violations.

Testing environments or transitional

phases for policy adjustments.

Key Notes:

Enforce acts on Pods only (e.g., rejects Pods but allows non-Pod resources like

Deployments).

Audit and Warn apply to both Pods and their controllers (e.g., Deployments).

PSA defines three security standards to restrict Pod privileges:

Standard Description Key Restrictions

Privileged

Unrestricted access.

Suitable for trusted

workloads (e.g., system

components).

No validation of securityContext

fields.

Baseline

Minimal restrictions to

prevent known privilege

escalations.

Blocks hostNetwork , hostPID ,

privileged containers, and unrestricted

hostPath volumes.

Restricted
Strictest policy enforcing

security best practices.

Requires:

- runAsNonRoot: true

- seccompProfile.type:

RuntimeDefault

- Dropped Linux capabilities.

Security Standards

Configuration

Pod Security Admission - Alauda Container Platform

Apply labels to namespaces to define PSA policies.

YAML file example

CLI command

Exempt specific users, namespaces, or runtime classes from PSA checks.

Example Configuration:

Namespace Labels

apiVersion: v1

kind: Namespace

metadata:

 name: example-namespace

 labels:

 pod-security.kubernetes.io/enforce: restricted

 pod-security.kubernetes.io/audit: baseline

 pod-security.kubernetes.io/warn: baseline

Step 1: Update Pod Admission labels

kubectl label namespace <namespace-name> \

 pod-security.kubernetes.io/enforce=baseline \

 pod-security.kubernetes.io/audit=restricted \

 --overwrite

Step 2: Verify labels

kubectl get namespace <namespace-name> --show-labels

Exemptions

apiVersion: pod-security.admission.config.k8s.io/v1

kind: PodSecurityConfiguration

exemptions:

 usernames: ["admin"]

 runtimeClasses: ["nvidia"]

 namespaces: ["kube-system"]

Pod Security Admission - Alauda Container Platform

UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Precautions

Procedure

Alauda Container Platform allows you to set a resource overcommit ratio (CPU and memory)

per namespace. This manages the relationship between container limits (maximum usage)

and requests (guaranteed minimum) within that namespace, optimizing resource utilization.

By configuring this ratio, you ensure user-defined container limits and requests remain within

reasonable bounds, improving overall cluster resource efficiency.

Key Concepts

Limits: The maximum resource a container can use. Exceeding limits can lead to throttling

(CPU) or termination (memory).

Requests: The guaranteed minimum resource a container needs. Kubernetes schedules

containers based on these requests.

Overcommit Ratio: Limits / Requests. This setting defines the acceptable range for this

ratio within the namespace, balancing resource guarantees and preventing over-

consumption.

Overcommit Ratio

TOC

UnderStanding Namespace Resource Overcommit Ratio

Menu ON THIS PAGE

Overcommit Ratio - Alauda Container Platform

Core Capabilities

Enhance resource density and application stability within the namespace by setting an

appropriate overcommit ratio to manage the balance between resource limits and requests.

Example

Assuming the namespace overcommit ratio is set to 2, when creating an application and

specifies a CPU limit of 4c, the corresponding CPU request value is calculated as:

CPU Request = CPU Limit / Overcommit ratio. Thus, the CPU request becomes 4c / 2 = 2c.

CRD Define

example-namespace-overcommit.yaml

apiVersion: resource.alauda.io/v1

kind: NamespaceResourceRatio

metadata:

 namespace: example

 name: example-namespace-overcommit

spec:

 cpu: 3 # Absence of this field indicates inheritance of the cluster overcom

 memory: 4 # Absence of this field indicates inheritance of the cluster over

status:

 clusterCPU: 2 # Cluster Overcommit Ratio

 clusterMemory: 3

Creating overcommit ratio by using CLI

kubectl apply -f example-namespace-overcommit.yaml

Overcommit Ratio - Alauda Container Platform

Allows adjusting the overcommit ratio for a namespace to manage the ratio between

resource limits and requests. This ensures container's resource allocations remain within

defined bounds, improving cluster resource utilization.

If the cluster uses node virtualization (e.g., virtual nodes), disable oversubscription at the

cluster/namespace level before configuring it for virtual machines.

1.

Enter the Project Management and navigation to Namespaces > Namespace List.

2.

Click the target Namespace name.

3.

Click Actions > Update Overcommit.

4.

Select the appropriate overcommit ratio configuration method to set the CPU or memory

overcommit ratio for the namespace.

Parameter Description

Inherit from

Cluster
Namespace inherits the cluster’s oversubscription ratio.

Example: If cluster CPU/memory ratio is 4, namespace

defaults to 4.

Container requests = limit / cluster ratio.

Creating/Updating Overcommit Ratio by using web
console

Precautions

Procedure

Overcommit Ratio - Alauda Container Platform

Parameter Description

If no limit is set, use the namespace’s default container quota.

Custom

Set a namespace-specific ratio (integer > 1).

Example: Cluster ratio = 4, namespace ratio = 2 → requests =

limit / 2.

Leave empty to disable oversubscription for the namespace.

1. Click Update.

Note: Changes apply only to newly created Pods. Existing Pods retain their original requests

until rebuilt.

Overcommit Ratio - Alauda Container Platform

Importing Members

Constraints and Limitations

Prerequisites

Procedure

Adding Members

Procedure

Removing Members

Procedure

The platform supports bulk importing members into a namespace and assigning roles such as

Namespace Administrator or Developer to grant corresponding permissions.

Members can only be imported into the namespace from the Project Members of the

namespace’s project.

The platform does not support importing default system-created admin users or the active

user.

Managing Namespace Members

TOC

Importing Members

Constraints and Limitations

Prerequisites

Menu ON THIS PAGE

Managing Namespace Members - Alauda Container Platform

To import users as namespace members, they must first be added to the namespace’s

project.

1.

Project Management, click on Project Name where the members to be imported are

located.

2.

Navigation to Namespaces > Namespaces.

3.

Click on Namespace Name of the members to be imported.

4.

In the Namespace Members tab, click Import Members.

5.

Follow the procedures below to import all or some users from the list into the namespace.

TIP

You can select a user group using the dropdown box at the top right of the dialog and perform a

fuzzy search by entering the username in the username search box.

Import all users in the list as namespace members and assign roles to users in bulk.

5.1.

Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign.

5.2.

Click Import All.

Procedure

Managing Namespace Members - Alauda Container Platform

Import one or more users from the list as namespace members.

5.1.

Click the checkbox in front of the username/display name to select one or more

users.

5.2.

Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign to the selected users.

5.3.

Click Import.

When the platform has added an OICD type IDP, OIDC users can be added as namespace

members.

You can add valid OIDC accounts that meet the input requirements as namespace roles and

assign the corresponding namespace roles to the user.

Note: When adding members, the system does not verify the validity of the accounts. Please

ensure that the accounts you add are valid; otherwise, these accounts will not be able to log in

to the platform successfully.

Valid OIDC accounts include: Valid accounts in the OIDC identity authentication service

configured via IDP for the platform, including those that have successfully logged in to the

platform and those that have not logged in to the platform.

Prerequisites

The platform has added an OICD type IDP.

1.

Adding Members

Procedure

Managing Namespace Members - Alauda Container Platform

Project Management, click on Project Name where the member to be added is located.

2.

Navigation to Namespaces > Namespaces.

3.

Click on Namespace Name of the member to be added.

4.

In the Namespace Members tab, click Add Member.

5.

In the Username input box, enter a username for an existing third-party platform account

supported by the platform.

Note: Please confirm that the entered username corresponds to an existing account on the

third-party platform; otherwise, that account will not be able to log in to this platform

successfully.

6.

In the Role dropdown, select the role name to configure for this user.

7.

Click Add.

After a successful addition, you can view the member in the namespace member list.

At the same time, in the user list (Platform Management > User Management), you can

view that user. Before the user successfully logs in or is synchronized to this platform, the

source will be - , and it can be deleted; when the account successfully logs in or

synchronizes to the platform, the platform will record the account's source information and

display it in the user list.

Removing Members

Managing Namespace Members - Alauda Container Platform

Remove specified namespace members and delete their associated roles to revoke their

namespace permissions.

1.

Project Management, click on Project Name where the member to be removed is located.

2.

Navigation to Namespaces > Namespaces.

3.

Click on Namespace Name of the member to be removed.

4.

In the Namespace Members tab, click ⋮ on the right side of the record of the member to be

removed > Remove.

5.

Click Remove.

Procedure

Managing Namespace Members - Alauda Container Platform

Updating Quotas

Updating a Resource Quota by using web console

Updating a Resource Quota by using CLI

Updating Container LimitRanges

Updating a LimitRange by using web console

Updating a LimitRange by using CLI

Updating Pod Security Admission

Updating a Pod Security Admission by using web console

Updating a Pod Security Admission by using CLI

Resource Quota

1.

Project Management, and navigate to Namespaces > Namespace List in the left sidebar.

2.

Click the target namespace name.

3.

Updating Namespaces

TOC

Updating Quotas

Updating a Resource Quota by using web console

Menu ON THIS PAGE

Updating Namespaces - Alauda Container Platform

Click Actions > Update Quota.

4.

Adjust resource quotas (CPU, Memory, Pods, etc.) and click Update.

Resource Quota YAML file example

Limit Range

1.

Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.

2.

Click the target namespace name.

3.

Click Actions > Update Container LimitRange.

4.

Adjust container limit range (defaultRequest , default , max) and click Update.

Updating a Resource Quota by using CLI

Step 1: Edit the namespace quota

kubectl edit resourcequota <quota-name> -n <namespace-name>

Step 2: Verify changes

kubectl get resourcequota <quota-name> -n <namespace-name> -o yaml

Updating Container LimitRanges

Updating a LimitRange by using web console

Updating Namespaces - Alauda Container Platform

Limit Range YAML file example

Pod Security Admission

1.

Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.

2.

Click the target namespace name.

3.

Click Actions > Update Pod Security Admission.

4.

Adjust security standard (enforce , audit , warn) and click Update.

Update Pod Security Admission CLI command

Updating a LimitRange by using CLI

Step 1: Edit the LimitRange

kubectl edit limitrange <limitrange-name> -n <namespace-name>

Step 2: Verify changes

kubectl get limitrange <limitrange-name> -n <namespace-name> -o yaml

Updating Pod Security Admission

Updating a Pod Security Admission by using web console

Updating a Pod Security Admission by using CLI

Updating Namespaces - Alauda Container Platform

Updating Namespaces - Alauda Container Platform

You can either delete a namespace permanently or remove it from the current project.

Deleting Namespaces

Removing Namespaces

Delete Namespace: Permanently deletes a namespace and all resources within it (e.g.,

Pods, Services, ConfigMaps). This action cannot be undone and releases allocated resource

quotas.

Remove Namespace: Removing a namespace from the current project without deleting its

resources. The namespace remains in the cluster and can be imported into other projects via

Import Namespace.

Note

This feature is exclusive to the Alauda Container Platform .

Deleting/Removing Namespaces

TOC

Deleting Namespaces

kubectl delete namespace <namespace-name>

Removing Namespaces

Menu ON THIS PAGE

Deleting/Removing Namespaces - Alauda Container Platform

Kubernetes does not natively support "removing" namespaces from projects.

kubectl label namespace <namespace-name> cpaas.io/project- --overwrite

Deleting/Removing Namespaces - Alauda Container Platform

Configuring ConfigMap

Configuring Secrets

Pre-Application-Creation Preparation

Understanding Config Maps

Config Map Restrictions

ConfigMap vs Secret

Creating a ConfigMap by using the web console

Creating a ConfigMap by using the CLI

Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

ConfigMap vs Secret

Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret

Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console

How to Use a Secret in a Pod

Follow-up Actions

Operations

Menu

Pre-Application-Creation Preparation - Alauda Container Platform

Config maps allow you to decouple configuration artifacts from image content to keep

containerized applications portable. The following sections define config maps and how to

create and use them.

Understanding Config Maps

Config Map Restrictions

ConfigMap vs Secret

Creating a ConfigMap by using the web console

Creating a ConfigMap by using the CLI

Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

As Environment Variables

As Files in a Volume

As Individual Environment Variables

ConfigMap vs Secret

Many applications require configuration by using some combination of configuration files,

command-line arguments, and environment variables. In OpenShift Container Platform, these

configuration artifacts are decoupled from image content to keep containerized applications

portable.

Configuring ConfigMap

TOC

Understanding Config Maps

Menu ON THIS PAGE

Configuring ConfigMap - Alauda Container Platform

The ConfigMap object provides mechanisms to inject containers with configuration data

while keeping containers agnostic of OpenShift Container Platform. A config map can be used

to store fine-grained information like individual properties or coarse-grained information like

entire configuration files or JSON blobs.

The ConfigMap object holds key-value pairs of configuration data that can be consumed in

pods or used to store configuration data for system components such as controllers. For

example:

Note: You can use the binaryData field when you create a config map from a binary file,

such as an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used

to:

Populate environment variable values in containers

Set command-line arguments in a container

Populate configuration files in a volume

Users and system components can store configuration data in a config map. A config map is

similar to a secret, but designed to more conveniently support working with strings that do not

my-app-config.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-app-config

 namespace: default

data:

 app_mode: "development"

 feature_flags: "true"

 database.properties: |-

 jdbc.url=jdbc:mysql://localhost:3306/mydb

 jdbc.username=user

 jdbc.password=password

 log_settings.json: |-

 {

 "level": "INFO",

 "format": "json"

 }

Configuring ConfigMap - Alauda Container Platform

contain sensitive information.

A config map must be created before its contents can be consumed in pods.

Controllers can be written to tolerate missing configuration data. Consult individual

components configured by using config maps on a case-by-case basis.

ConfigMap objects reside in a project.

They can only be referenced by pods in the same project.

The Kubectl only supports the use of a config map for pods it gets from the API server. This

includes any pods created by using the CLI, or indirectly from a replication controller. It

does not include pods created by using the OpenShift Container Platform node’s --

manifest-url flag, its --config flag, or its REST API because these are not common

ways to create pods.

Feature ConfigMap Secret

Data Type Non-sensitive Sensitive (e.g., passwords)

Encoding Plaintext Base64-encoded

Use Cases Configs, flags Passwords, tokens

1.

Go to Container Platform.

Config Map Restrictions

ConfigMap vs Secret

Creating a ConfigMap by using the web console

Configuring ConfigMap - Alauda Container Platform

2.

In the left sidebar, click Configuration > ConfigMap.

3.

Click Create ConfigMap.

4.

Refer to the instructions below to configure the relevant parameters.

Parameter Description

Entries

Refers to key:value pairs, supporting both Add and Import

methods.

Add: You can add configuration items one by one, or you can

paste one or multiple lines of key=value pairs in the Key input

area to bulk add configuration items.

Import: Import a text file not larger than 1M. The file name will be

used as the key, and the file content will be used as the value,

filled into a configuration item.

Binary

Entries

Refers to binary files not larger than 1M. The file name will be used

as the key, and the file content will be used as the value, filled into a

configuration item.

Note: After creating a ConfigMap, the imported files cannot be

modified.

Example of Bulk Add Format:

5.

One key=value pair per line, multiple pairs must be on separate lines, ot

key1=value1

key2=value2

key3=value3

Configuring ConfigMap - Alauda Container Platform

Click Create.

Or from a file:

You can click the (⋮) on the right side of the list page or click Actions in the upper right corner

of the detail page to update or delete the ConfigMap as needed.

Changes to the ConfigMap will affect the workloads that reference the configuration, so please

read the operation instructions in advance.

Operations Description

Update

After adding or updating a ConfigMap, any workloads that have

referenced this ConfigMap (or its configuration items) through

environment variables need to rebuild their Pods for the new

configuration to take effect.

For imported binary configuration items, only key updates are

supported, not value updates.

Delete After deleting a ConfigMap, workloads that have referenced this

ConfigMap (or its configuration items) through environment variables

Creating a ConfigMap by using the CLI

kubectl create configmap app-config \

 --from-literal=APP_ENV=production \

 --from-literal=LOG_LEVEL=debug

kubectl apply -f app-config.yaml -n k-1

Operations

Configuring ConfigMap - Alauda Container Platform

Operations Description

may be adversely affected during Pod creation if they are rebuilt and

cannot find the reference source.

Each key becomes an environment variable in the container.

View, Edit and Delete by using the CLI

kubectl get configmap app-config -n k-1 -o yaml

kubectl edit configmap app-config -n k-1

kubectl delete configmap app-config -n k-1

Ways to Use a ConfigMap in a Pod

As Environment Variables

envFrom:

 - configMapRef:

 name: app-config

As Files in a Volume

Configuring ConfigMap - Alauda Container Platform

Each key is a file under /etc/config , and the file content is the value.

Feature ConfigMap Secret

Data Type Non-sensitive Sensitive (e.g., passwords)

Encoding Plaintext Base64-encoded

Use Cases Configs, flags Passwords, tokens

volumes:

 - name: config-volume

 configMap:

 name: app-config

volumeMounts:

 - name: config-volume

 mountPath: /etc/config

As Individual Environment Variables

env:

 - name: APP_ENV

 valueFrom:

 configMapKeyRef:

 name: app-config

 key: APP_ENV

ConfigMap vs Secret

Configuring ConfigMap - Alauda Container Platform

Understanding Secrets

Usage Characteristics

Supported Types

Usage Methods

Creating an Opaque type Secret

Creating a Docker registry type Secret

Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console

How to Use a Secret in a Pod

As Environment Variables

As Mounted Files (Volume)

Follow-up Actions

Operations

In Kubernetes (k8s), a Secret is a fundamental object designed to store and manage sensitive

information, such as passwords, OAuth tokens, SSH keys, TLS certificates, and API keys. Its

primary purpose is to prevent sensitive data from being directly embedded in Pod definitions

or container images, thereby enhancing security and portability.

Configuring Secrets

TOC

Understanding Secrets

Menu ON THIS PAGE

Configuring Secrets - Alauda Container Platform

Secrets are similar to ConfigMaps but are specifically intended for confidential data. They are

typically base64-encoded for storage and can be consumed by pods in various ways,

including being mounted as volumes or exposed as environment variables.

Enhanced Security: Compared to plaintext configuration maps (Kubernetes ConfigMap),

Secrets offer better security by storing sensitive information using Base64 encoding. This

mechanism, combined with Kubernetes' ability to control access, significantly reduces the

risk of data exposure.

Flexibility and Management: Using Secrets provides a more secure and flexible approach

than hardcoding sensitive information directly into Pod definition files or container images.

This separation simplifies the management and modification of sensitive data without

requiring changes to application code or container images.

Kubernetes supports various types of Secrets, each tailored for specific use cases. The

platform typically supports the following types:

Opaque: A general-purpose Secret type used to store arbitrary key-value pairs of sensitive

data, such as passwords or API keys.

TLS: Specifically designed to store TLS (Transport Layer Security) protocol certificate and

private key information, commonly used for HTTPS communication and secure ingress.

SSH Key: Used to store SSH private keys, often for secure access to Git repositories or

other SSH-enabled services.

SSH Authentication (kubernetes.io/ssh-auth): Stores authentication information for data

transmitted over the SSH protocol.

Username/Password (kubernetes.io/basic-auth): Used to store basic authentication

credentials (username and password).

Image Pull Secret (kubernetes.io/dockerconfigjson): Stores the JSON authentication

string required for pulling container images from private image repositories (Docker

Registry).

Usage Characteristics

Supported Types

Configuring Secrets - Alauda Container Platform

Secrets can be consumed by applications within pods through different methods:

As Environment Variables: Sensitive data from a Secret can be injected directly into a

container's environment variables.

As Mounted Files (Volume): Secrets can be mounted as files within a pod's volume,

allowing applications to read sensitive data from a specified file path.

Note: Pod instances in workloads can only reference Secrets within the same namespace.

For advanced usage and YAML configurations, refer to the Kubernetes official documentation

.

YAML

You can decode them like:

Usage Methods

↗

Creating an Opaque type Secret

kubectl create secret generic my-secret \

 --from-literal=username=admin \

 --from-literal=password=Pa$$w0rd

apiVersion: v1

kind: Secret

metadata:

 name: my-secret

type: Opaque

data:

 username: YWRtaW4= # base64 of "admin"

 password: UGEkJHcwcmQ= # base64 of "Pa$$w0rd"

echo YWRtaW4= | base64 --decode # output: admin

Configuring Secrets - Alauda Container Platform

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

YAML

K8s automatically converts your username, password, email, and server information into the

Docker standard login format:

This JSON is then base64 encoded and used as the data field value of the Secret.

Use it in a Pod:

Creating a Docker registry type Secret

kubectl create secret docker-registry my-docker-creds \

 --docker-username=myuser \

 --docker-password=mypass \

 --docker-server=https://index.docker.io/v1/ \

 --docker-email=my@example.com

apiVersion: v1

kind: Secret

metadata:

 name: my-docker-creds

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: eyJhdXRocyI6eyJodHRwczovL2luZGV4LmRvY2tlci5pby92MS8iOnsi

{

 "auths": {

 "https://index.docker.io/v1/": {

 "username": "myuser",

 "password": "mypass",

 "email": "my@example.com",

 "auth": "bXl1c2VyOm15cGFzcw==" # base64(username:password)

 }

 }

}

Configuring Secrets - Alauda Container Platform

Use Case: Store SSH private keys (e.g., for Git access).

imagePullSecrets:

 - name: my-docker-creds

Creating a Basic Auth type Secret

apiVersion: v1

kind: Secret

metadata:

 name: basic-auth-secret

type: kubernetes.io/basic-auth

stringData:

 username: myuser

 password: mypass

Creating a SSH-Auth type Secret

apiVersion: v1

kind: Secret

metadata:

 name: ssh-key-secret

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: |

 -----BEGIN OPENSSH PRIVATE KEY-----

 ...

 -----END OPENSSH PRIVATE KEY-----

Configuring Secrets - Alauda Container Platform

Use Case: TLS certs (used by Ingress, webhooks, etc.)

YAML

1.

Go to Container Platform.

2.

In the left navigation bar, click Configuration > Secrets.

3.

Click Create Secret.

4.

Configure the parameters.

Creating a TLS type Secret

kubectl create secret tls tls-secret \

--cert=path/to/tls.crt \

--key=path/to/tls.key

apiVersion: v1

kind: Secret

metadata:

 name: tls-secret

type: kubernetes.io/tls

data:

 tls.crt: <base64>

 tls.key: <base64>

Creating a Secret by using the web console

Configuring Secrets - Alauda Container Platform

Note: In the form view, sensitive data such as the input username and password will

automatically be encoded in Base64 format before being stored in the Secret. The

converted data can be previewed in the YAML view.

5.

Click Create.

From the secret named my-secret , take the value with the key username and assign it to

the environment variable DB_USERNAME .

How to Use a Secret in a Pod

As Environment Variables

env:

 - name: DB_USERNAME

 valueFrom:

 secretKeyRef:

 name: my-secret

 key: username

As Mounted Files (Volume)

volumes:

 - name: secret-volume

 secret:

 secretName: my-secret

volumeMounts:

 - name: secret-volume

 mountPath: "/etc/secret"

Configuring Secrets - Alauda Container Platform

When creating workloads for native applications in the same namespace, you can reference

the Secrets that have already been created.

You can click the (⋮) on the right side of the list page or click Actions in the upper right corner

of the details page to update or delete the Secret as needed.

Operation Description

Update

After adding or updating a Secret, workloads that have referenced this

Secret (or its configuration items) via environment variables need to have

their Pods rebuilt for the new configuration to take effect.

Delete

After deleting a Secret, workloads that have referenced this Secret (or

its configuration items) via environment variables may be impacted due

to the inability to find the reference source when rebuilding Pods.

Please do not delete the Secrets automatically generated by the

platform, as this may prevent the platform from functioning properly.

For example: Secrets of type service-account-token that contain

authentication information for namespace resources and Secrets in

system namespaces (such as kube-system).

Follow-up Actions

Operations

Configuring Secrets - Alauda Container Platform

Creating applications from Image

Creating applications from Chart

Creating applications from YAML

Creating Applications

Prerequisites

Procedure 1 - Workloads

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Precautions

Prerequisites

Procedure

Status Analysis Reference

Precautions

Prerequisites

Procedure

Menu

Creating Applications - Alauda Container Platform

Creating applications from Code

Creating applications from Operator Backed

Creating applications by using CLI

Prerequisites

Procedure

Procedure

Troubleshooting

Prerequisites

Procedure

Example

Reference

Creating Applications - Alauda Container Platform

Prerequisites

Procedure 1 - Workloads

Workload 1 - Configure Basic Info

Workload 2 - Configure Pod

Workload 3 - Configure Containers

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Storage Volume Mounting Instructions

Health Check Parameters

Common Parameters

Protocol-Specific Parameters

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

Creating applications from Image

TOC

Prerequisites

Menu ON THIS PAGE

Creating applications from Image - Alauda Container Platform

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

1.

Container Platform, navigate to Applications > Applications in the left sidebar.

2.

Click Create.

3.

Choose Create from Image as the creation approach.

4.

Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

1. Refer to the following instructions to configure the related parameters.

In the Workload > Basic Info section, configure declarative parameters for workloads

Parameters Description

Model Select a workload as needed:

Procedure 1 - Workloads

Workload 1 - Configure Basic Info

Creating applications from Image - Alauda Container Platform

Parameters Description

Deployment: For detailed parameter descriptions, please refer

to Creating Deployment.

DaemonSet: For detailed parameter descriptions, please refer

to Creating DaemonSet.

StatefulSet: For detailed parameter descriptions, please refer to

Creating StatefulSet.

Replicas
Defines the desired number of Pod replicas in the Deployment

(default: 1). Adjust based on workload requirements.

More > Update

Strategy

Configures the rollingUpdate strategy for zero-downtime

deployments:

Max surge (maxSurge):

Maximum number of Pods that can exceed the desired replica

count during an update.

Accepts absolute values (e.g., 2) or percentages (e.g., 20%).

Percentage calculation: ceil(current_replicas ×

percentage) .

Example: 4.1 → 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

Maximum number of Pods that can be temporarily unavailable

during an update.

Percentage values cannot exceed 100% .

Percentage calculation: floor(current_replicas ×

percentage) .

Example: 4.9 → 4 when calculated from 10 replicas.

Notes:

1. Default values: maxSurge=1 , maxUnavailable=1 if not

explicitly set.

2. Non-running Pods (e.g., in Pending / CrashLoopBackOff

Creating applications from Image - Alauda Container Platform

Parameters Description

states) are considered unavailable.

3. Simultaneous constraints:

maxSurge and maxUnavailable cannot both be 0 or 0% .

If percentage values resolve to 0 for both parameters,

Kubernetes forces maxUnavailable=1 to ensure update

progress.

Example:

For a Deployment with 10 replicas:

maxSurge=2 → Total Pods during update: 10 + 2 = 12 .

maxUnavailable=3 → Minimum available Pods: 10 - 3 = 7 .

This ensures availability while allowing controlled rollout.

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper

Node Affinity Rules are configured for Pod scheduling.

1.

Pod section, configure container runtime parameters and lifecycle management:

Parameters Description

Volumes

Mount persistent volumes to containers. Supported volume types

include PVC , ConfigMap , Secret , emptyDir , hostPath ,

and so on. For implementation details, see Storage Volume

Mounting Instructions.

Image

Credential

Required only when pulling images from third-party registries (via

manual image URL input).

Note: Images from the platform's integrated registry automatically

inherit associated secrets.

Workload 2 - Configure Pod

Creating applications from Image - Alauda Container Platform

Parameters Description

More > Close

Grace Period

Duration (default: 30s) allowed for a Pod to complete graceful

shutdown after receiving termination signal.

- During this period, the Pod completes inflight requests and

releases resources.

- Setting 0 forces immediate deletion (SIGKILL), which may

cause request interruptions.

1. Node Affinity Rules

Parameters Description

More >

Node

Selector

Constrain Pods to nodes with specific labels (e.g., kubernetes.io/os:

linux).

More >

Affinity

Define fine-grained scheduling rules based on existing Pods.

Pod Affinity Types:

Inter-Pod Affinity: Schedule new Pods to nodes hosting specific

Pods (same topology domain).

Inter-Pod Anti-affinity: Prevent co-location of new Pods with

specific Pods.

Enforcement Modes:

RequiredDuringSchedulingIgnoredDuringExecution: Pods are

scheduled only if rules are satisfied.

PreferredDuringSchedulingIgnoredDuringExecution: Prioritize

nodes meeting rules, but allow exceptions.

Configuration Fields:

topologyKey : Node label defining topology domains (default:

kubernetes.io/hostname).

Creating applications from Image - Alauda Container Platform

Parameters Description

labelSelector : Filters target Pods using label queries.

1. Network Configuration

Kube-OVN

Parameters Description

Bandwidth

Limits

Enforce QoS for Pod network traffic:

Egress rate limit: Maximum outbound traffic rate (e.g.,

10Mbps).

Ingress rate limit: Maximum inbound traffic rate.

Subnet
Assign IPs from a predefined subnet pool. If unspecified, uses

the namespace's default subnet.

Static IP

Address

Bind persistent IP addresses to Pods:

Multiple Pods across Deployments can claim the same IP,

but only one Pod can use it concurrently.

Critical: Number of static IPs must ≥ Pod replica count.

Calico

Parameters Description

Static IP Address

Assign fixed IPs with strict uniqueness:

Each IP can be bound to only one Pod in the cluster.

Critical: Static IP count must ≥ Pod replica count.

1.

Workload 3 - Configure Containers

Creating applications from Image - Alauda Container Platform

Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource

Requests & Limits

Requests: Minimum CPU/memory required for container

operation.

Limits: Maximum CPU/memory allowed during container

execution. For unit definitions, see Resource Units.

Namespace overcommit ratio:

Without overcommit ratio:

If namespace resource quotas exist: Container

requests/limits inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

With overcommit ratio:

Requests auto-calculated as Limits / Overcommit

ratio (immutable).

Constraints:

Request ≤ Limit ≤ Namespace quota maximum.

Overcommit ratio changes require pod recreation to take

effect.

Overcommit ratio disables manual request configuration.

No namespace quotas → no container resource

constraints.

Extended

Resources

Configure cluster-available extended resources (e.g., vGPU,

pGPU).

Volume Mount Persistent storage configuration. See Storage Volume

Mounting Instructions.

Operations:

Existing pod volumes: Click Add

No pod volumes: Click Add & Mount

Creating applications from Image - Alauda Container Platform

Parameters Description

Parameters:

mountPath : Container filesystem path (e.g., /data)

subPath : Relative file/directory path within volume.

For ConfigMap / Secret : Select specific key

readOnly : Mount as read-only (default: read-write)

See Kubernetes Volumes .

Port

Expose container ports.

Example: Expose TCP port 6379 with name redis .

Fields:

protocol : TCP/UDP

Port : Exposed port (e.g., 6379)

name : DNS-compliant identifier (e.g., redis)

Startup

Commands &

Arguments

Override default ENTRYPOINT/CMD:

Example 1: Execute top -b

- Command: ["top", "-b"]

- OR Command: ["top"] , Args: ["-b"]

Example 2: Output $MESSAGE :

/bin/sh -c "while true; do echo $(MESSAGE); sleep

10; done"

See Defining Commands .

More >

Environment

Variables

Static values: Direct key-value pairs

Dynamic values: Reference ConfigMap/Secret keys, pod

fields (fieldRef), resource metrics

(resourceFieldRef)

Note: Env variables override image/configuration file settings.

More > Referenced

ConfigMap

Inject entire ConfigMap/Secret as env variables. Supported

Secret types: Opaque , kubernetes.io/basic-auth .

↗

↗

Creating applications from Image - Alauda Container Platform

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Parameters Description

More > Health

Checks

Liveness Probe: Detect container health (restart if failing)

Readiness Probe: Detect service availability (remove

from endpoints if failing)

See Health Check Parameters.

More > Log File

Configure log paths:

- Default: Collect stdout

- File patterns: e.g., /var/log/*.log

Requirements:

Storage driver overlay2 : Supported by default

devicemapper : Manually mount EmptyDir to log directory

Windows nodes: Ensure parent directory is mounted (e.g.,

c:/a for c:/a/b/c/*.log)

More > Exclude

Log File

Exclude specific logs from collection (e.g.,

/var/log/aaa.log).

More > Execute

before Stopping

Execute commands before container termination.

Example: echo "stop"

Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2.

Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

2.1. Start before app containers (sequential execution).

2.2. Release resources after completion.

2.3. Deletion allowed when:

Pod has >1 app container AND ≥1 init container.

Not allowed for single-app-container pods.

↗

Creating applications from Image - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

3.

Click Create.

Parameters Description

Service

Kubernetes Service, expose an application running in your cluster

behind a single outward-facing endpoint, even when the workload is

split across multiple backends.. For specific parameter explanations,

please refer to Creating Services.

Note The default name prefix for the internal routing created under the

application is the name of the compute component. If the compute

component type (deployment mode) is StatefulSet, it is advisable not to

change the default name of the internal routing (the name of the

workload); otherwise, it may lead to accessibility issues for the

workload.

Parameters Description

Ingress Kubernetes Ingress, make your HTTP (or HTTPS) network service

available using a protocol-aware configuration mechanism, that

understands web concepts like URIs, hostnames, paths, and more. The

Ingress concept lets you map traffic to different backends based on

rules you define via the Kubernetes API. For detailed parameter

descriptions, please refer to Creating Ingresses.

Note: The Service used when creating Ingress under the application

must be resources created under the current application. However,

Procedure 2 - Services

Procedure 3 - Ingress

Creating applications from Image - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_service.html
http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

Parameters Description

ensure that the Service is associated with the workload under the

application; otherwise, service discovery and access for workload will

fail.

1. Click Create.

To modify application configurations, use one of the following methods:

1. Click the vertical ellipsis (⋮) on the right side of the application list.

2. Select Actions from the upper-right corner of the application details page.

Operation Description

Update
Update: Modifies only the target workload using its defined update

strategy (Deployment strategy shown as example). Preserves existing

replica count and rollout configuration.

Force Update: Triggers full application rollout using each component's

update strategy.

1. Use cases:

Batch configuration changes requiring immediate cluster-wide

propagation (e.g., ConfigMap/Secret updates referenced as

environment variables).

Coordinated component restarts for critical security.

2. Warning Caution:

May cause temporary service degradation during mass restarts.

Not recommended for production environments without business

continuity validation.

Network Implications:

Application Management Operations

Creating applications from Image - Alauda Container Platform

Operation Description

Ingress Rule Deletion: External access remains available via

LB_IP:NodePort if:

1) LoadBalancer Service uses default ports.

2) Surviving routing rules reference application components.

Full external access termination requires Service deletion.

Service Deletion: Irreversible loss of network connectivity to

application components. Associated Ingress rules become non-

functional despite API object persistence.

Delete

Cascading Deletion:

1. Removes all child resources including Deployments, Services, and

Ingress rules.

2. Persistent Volume Claims (PVCs) follow retention policy defined in

StorageClass

Pre-deletion Checklist:

1. Verify no active traffic through associated Services.

2. Confirm data backup completion for stateful components.

3. Check dependent resource relationships using kubectl describe

ownerReferences .

Type Purpose

Persistent

Volume Claim

Binds an existing PVC to request persistent storage.

Note: Only bound PVCs (with associated PV) are selectable.

Unbound PVCs will cause pod creation failures.

Reference Information

Storage Volume Mounting Instructions

Creating applications from Image - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html

Type Purpose

ConfigMap

Mounts full/partial ConfigMap data as files:

Full ConfigMap: Creates files named after keys under mount

path

Subpath selection: Mount specific key (e.g., my.cnf)

Secret

Mounts full/partial Secret data as files:

Full Secret: Creates files named after keys under mount path

Subpath selection: Mount specific key (e.g., tls.crt)

Ephemeral

Volumes

Cluster-provisioned temporary volume with features:

Dynamic provisioning

Lifecycle tied to pod

Supports declarative configuration

Use Case: Temporary data storage. See Ephemeral Volumes

Empty Directory

Ephemeral storage sharing between containers in same pod:

- Created on node when pod starts

- Deleted with pod removal

Use Case: Inter-container file sharing, temporary data storage.

See EmptyDir

Host Path
Mounts host machine directory (must start with / , e.g.,

/volumepath).

Health Check Parameters

Common Parameters

Creating applications from Image - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Parameters Description

Initial Delay Grace period (seconds) before starting probes. Default: 300 .

Period Probe interval (1-120s). Default: 60 .

Timeout Probe timeout duration (1-300s). Default: 30 .

Success Threshold Minimum consecutive successes to mark healthy. Default: 0 .

Failure Threshold

Maximum consecutive failures to trigger action:

- 0 : Disables failure-based actions

- Default: 5 failures → container restart.

Parameter
Applicable
Protocols

Description

Protocol HTTP/HTTPS Health check protocol

Port HTTP/HTTPS/TCP Target container port for probing.

Path HTTP/HTTPS Endpoint path (e.g., /healthz).

HTTP

Headers
HTTP/HTTPS Custom headers (Add key-value pairs).

Command EXEC

Container-executable check command (e.g.,

sh -c "curl -I localhost:8080 | grep

OK").

Note: Escape special characters and test

command viability.

Protocol-Specific Parameters

Creating applications from Image - Alauda Container Platform

Based on Helm Chart represents a native application deployment pattern. A Helm Chart is a

collection of files that define Kubernetes resources, designed to package applications and

facilitate application distribution with version control capabilities. This enables seamless

environment transitions, such as migrations from development to production environments.

Precautions

Prerequisites

Procedure

Status Analysis Reference

When a cluster contains both Linux and Windows nodes, explicit node selection MUST be

configured to prevent scheduling conflicts. Example:

Creating applications from Chart

TOC

Precautions

spec:

 spec:

 nodeSelector:

 kubernetes.io/os: linux

Prerequisites

Menu ON THIS PAGE

Creating applications from Chart - Alauda Container Platform

If the template is from a application and references relevant resources (e.g., secret

dictionaries), ensure the to-be-referenced resources already exist in the current namespace

before application deployment.

1.

Container Platform, navigate to Applications > Applications in the left sidebar.

2.

Click Create.

3.

Choose Create from Catalog as the creation approach.

4.

Select a Chart and configure parameters, pick a Chart and configure the required

parameters, such as resources.requests , resources.limits , and other parameters

that are closely related to the chart.

5.

Click Create.

The web console will redirect you to the Application > [Native Applications] details page.

The process will take some time, so please be patient. In case of operation failure, follow the

interface prompts to complete the operation.

Click on Application Name to display detailed status analysis of the Chart in the details

information.

Procedure

Status Analysis Reference

Creating applications from Chart - Alauda Container Platform

Type Reason

Initialized

Indicates the status of Chart template download.

True: It indicates that the Chart template has been successfully

downloaded.

False: It indicates that the Chart template download has failed; you can

check the specific failure reason in the message column.

ChartLoadFailed : Chart template download failed.

InitializeFailed : There was an exception in the initialization

process before the Chart was downloaded.

Validated

Indicates the status of user permissions, dependencies, and other

validations for the Chart template.

True: It indicates that all validation checks have passed.

False: It indicates that there are validation checks that have not

passed; you can check the specific failure reason in the message

column.

DependenciesCheckFailed : Chart dependency check failed.

PermissionCheckFailed : The current user lacks permission to

perform operations on certain resources.

ConsistentNamespaceCheckFailed : When deploying applications

through templates in native applications, the Chart contains

resources that require cross-namespace deployment.

Synced

Indicates the deployment status of the Chart template.

True: It indicates that the Chart template has been successfully

deployed.

False: It indicates that the Chart template deployment has failed; the

reason column shows ChartSyncFailed , and you can check the

specific failure reason in the message column.

Creating applications from Chart - Alauda Container Platform

WARNING

If the template references cross - namespace resources, contact the Administrator for help with

creation. Afterward, you can normally Updating and deleting Chart Applications on web console.

If the template references cluster - level resources (e.g., StorageClasses), it's recommended to

contact the Administrator for assistance with creation.

Creating applications from Chart - Alauda Container Platform

If you are proficient in YAML syntax and prefer to define configurations outside of forms or pre-

defined templates, you can choose the one-click YAML creation method. This approach offers

more flexible configuration of basic information and resources for your cloud-native

application.

Precautions

Prerequisites

Procedure

When both Linux and Windows nodes exist in the cluster, to prevent scheduling the

application on incompatible nodes, you must configure node selection. For example:

Creating applications from YAML

TOC

Precautions

spec:

 spec:

 nodeSelector:

 kubernetes.io/os: linux

Prerequisites

Menu ON THIS PAGE

Creating applications from YAML - Alauda Container Platform

Ensure the images defined in the YAML can be pulled within the current cluster. You can verify

this using the docker pull command.

1.

Container Platform, and navigate to Application > Applications.

2.

Click Create.

3.

Select the Create from YAML.

4.

Complete the configuration and click Create.

5.

The corresponding Deployment can be viewed on the Details page.

Procedure

Creating applications from YAML - Alauda Container Platform

webapp-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp

 labels:

 app: webapp

 env: prod

spec:

 replicas: 3

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 tier: frontend

 spec:

 containers:

 - name: webapp

 image: nginx:1.25-alpine

 ports:

 - containerPort: 80

 resources:

 requests:

 cpu: "100m"

 memory: "128Mi"

 limits:

 cpu: "250m"

 memory: "256Mi"

webapp-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: webapp-service

spec:

 selector:

 app: webapp

 ports:

 - protocol: TCP

 port: 80

Creating applications from YAML - Alauda Container Platform

 targetPort: 80

 type: ClusterIP

Creating applications from YAML - Alauda Container Platform

Creating application from code is implemented using Source to Image(S2I) technology. S2I is

an automated framework for building container images directly from source code. This

approach standardizes and automates the application build process, allowing developers to

focus on source code development without worrying about containerization details.

Prerequisites

Procedure

Complete the installation of Alauda Container Platform Builds

1.

Container Platform, and navigate to Application > Applications.

2.

Click Create.

3.

Creating applications from Code

TOC

Prerequisites

Procedure

Menu ON THIS PAGE

Creating applications from Code - Alauda Container Platform

Select the Create from Code.

4.

For detailed parameter descriptions, please refer to Managing applications created from

Code

5.

After completing the parameter input, click Create.

6.

The corresponding deployment can be viewed on the Detail Information page.

Creating applications from Code - Alauda Container Platform

Operator backed applications are collections of resources provided by the Operator. Based on

these Operator backed applications, you can quickly deploy a component application and

leverage the capabilities of the Operator to automate the entire lifecycle management of the

application.

Procedure

Troubleshooting

1.

Container Platform, navigate to Applications > Applications in the left sidebar.

2.

Click Create.

3.

Choose Create from Catalog as the creation approach.

4.

Select an Operator-Backed Instance and Configure Custom Resource Parameters.

Select an Operator-managed application instance and configure its Custom Resource (CR)

specifications in the CR manifest, including:

Creating applications from Operator Backed

TOC

Procedure

Menu ON THIS PAGE

Creating applications from Operator Backed - Alauda Container Platform

spec.resources.limits (container-level resource constraints).

spec.resourceQuota (Operator-defined quota policies). Other CR-specific parameters

such as spec.replicas , spec.storage.className , etc.

5.

Click Create.

The web console will navigate to Applications > Operator Backed Apps page.

INFO

Note: The Kubernetes resource creation process requires asynchronous reconciliation. Completion

may take several minutes depending on cluster conditions.

If resource creation fails:

1. Inspect controller reconciliation errors:

2. Verify API resource availability:

3. Retry creation after verifying CRD/Operator readiness:

Troubleshooting

kubectl get events --field-selector involvedObject.kind=<Your-Custom-Resour

kubectl api-resources | grep <Your-Resource-Type>

kubectl apply -f your-resource-manifest.yaml

Creating applications from Operator Backed - Alauda Container Platform

kubectl is the primary command-line interface (CLI) for interacting with Kubernetes clusters.

It functions as a client for the Kubernetes API Server - a RESTful HTTP API that serves as the

control plane's programmatic interface. All Kubernetes operations are exposed through API

endpoints, and kubectl essentially translates CLI commands into corresponding API

requests to manage cluster resources and application workloads (Deployments, StatefulSets,

etc.).

The CLI tools facilitates application deployment by intelligently interpreting input artifacts

(images, or Chart, etc.) and generating corresponding Kubernetes API objects. The generated

resources vary based on input types:

Image: Directly creates Deployment.

Chart: Instantiates all objects defined in the Helm Chart.

Prerequisites

Procedure

Example

YAML

kubectl commands

Reference

Creating applications by using CLI

TOC

Prerequisites

Menu ON THIS PAGE

Creating applications by using CLI - Alauda Container Platform

The Alauda Container Platform Web Terminal plugin is installed, and the web-cli switch is

enabled.

1.

Contianer Platform, click the terminal icon in the lower-right corner.

2.

Wait for session initialization (1-3 sec).

3.

Execute kubectl commands in the interactive shell:

1. View real-time command output

Procedure

 kubectl get pods -n ${CURRENT_NAMESPACE}

Example

YAML

Creating applications by using CLI - Alauda Container Platform

webapp.yaml

apiVersion: app.k8s.io/v1beta1

kind: Application

metadata:

 name: webapp

spec:

 componentKinds:

 - group: apps

 kind: Deployment

 - group: ""

 kind: Service

 descriptor: {}

webapp-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp

 labels:

 app: webapp

 env: prod

spec:

 replicas: 3

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 tier: frontend

 spec:

 containers:

 - name: webapp

 image: nginx:1.25-alpine

 ports:

 - containerPort: 80

 resources:

 requests:

 cpu: "100m"

 memory: "128Mi"

 limits:

 cpu: "250m"

" i"

Creating applications by using CLI - Alauda Container Platform

Conceptual Guide: kubectl Overview

Syntax Reference: kubectl Cheat Sheet

Command Manual: kubectl Commands

 memory: "256Mi"

webapp-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: webapp-service

spec:

 selector:

 app: webapp

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

 type: ClusterIP

kubectl commands

kubectl apply -f webapp.yaml -n {CURRENT_NAMESPACE}

kubectl apply -f webapp-deployment.yaml -n {CURRENT_NAMESPACE}

kubectl apply -f webapp-service.yaml -n {CURRENT_NAMESPACE}

Reference

↗

↗

↗

Creating applications by using CLI - Alauda Container Platform

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Configuring HPA

Configuring VerticalPodAutoscaler (VPA)

Configuring CronHPA

Post-Application-Creation Configuration

Understanding Horizontal Pod Autoscalers

Prerequisites

Creating a Horizontal Pod Autoscaler

Calculation Rules

Understanding VerticalPodAutoscalers

Prerequisites

Creating a VerticalPodAutoscaler

Follow-Up Actions

Understanding Cron Horizontal Pod Autoscalers

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Schedule Rule Explanation

Menu

Post-Application-Creation Configuration - Alauda Container Platform

HPA (Horizontal Pod Autoscaler) automatically scales the number of pods up or down based

on preset policies and metrics, enabling applications to handle sudden spikes in business load

while optimizing resource utilization during low-traffic periods.

Understanding Horizontal Pod Autoscalers

How Does the HPA Work?

Supported Metrics

Prerequisites

Creating a Horizontal Pod Autoscaler

Using the CLI

Using the Web Console

Using Custom Metrics for HPA

Requirements

Traditional (Core Metrics) HPA

Custom Metrics HPA

Trigger Condition Definition

Custom Metrics HPA Compatibility

Updates in autoscaling/v2beta2

Calculation Rules

Configuring HPA

TOC

Understanding Horizontal Pod Autoscalers

Menu ON THIS PAGE

Configuring HPA - Alauda Container Platform

You can create a horizontal pod autoscaler to specify the minimum and maximum number of

pods you want to run, as well as the CPU utilization or memory utilization your pods should

target.

After you create a horizontal pod autoscaler, the platform begins to query the CPU and/or

memory resource metrics on the pods. When these metrics are available, the horizontal pod

autoscaler computes the ratio of the current metric utilization with the desired metric

utilization, and scales up or down accordingly. The query and scaling occurs at a regular

interval, but can take one to two minutes before metrics become available.

For replication controllers, this scaling corresponds directly to the replicas of the replication

controller. For deployment configurations, scaling corresponds directly to the replica count of

the deployment configuration. Note that autoscaling applies only to the latest deployment in

the Complete phase.

The platform automatically accounts for resources and prevents unnecessary autoscaling

during resource spikes, such as during start up. Pods in the unready state have 0 CPU usage

when scaling up and the autoscaler ignores the pods when scaling down. Pods without known

metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows

for more stability during the HPA decision. To use this feature, you must configure readiness

checks to determine if a new pod is ready for use.

The horizontal pod autoscaler (HPA) extends the concept of pod auto-scaling. The HPA lets

you create and manage a group of load-balanced nodes. The HPA automatically increases or

decreases the number of pods when a given CPU or memory threshold is crossed.

The HPA works as a control loop with a default of 15 seconds for the sync period. During this

period, the controller manager queries the CPU, memory utilization, or both, against what is

defined in the configuration for the HPA. The controller manager obtains the utilization metrics

from the resource metrics API for per-pod resource metrics like CPU or memory, for each pod

that is targeted by the HPA.

If a utilization value target is set, the controller calculates the utilization value as a percentage

of the equivalent resource request on the containers in each pod. The controller then takes

the average of utilization across all targeted pods and produces a ratio that is used to scale

the number of desired replicas.

How Does the HPA Work?

Configuring HPA - Alauda Container Platform

The following metrics are supported by horizontal pod autoscalers:

Metric Description

CPU Utilization
Number of CPU cores used. Can be used to calculate a

percentage of the pod's requested CPU.

Memory Utilization
Amount of memory used. Can be used to calculate a

percentage of the pod's requested memory.

Network Inbound

Traffic

Amount of network traffic coming into the pod, measured in

KiB/s.

Network Outbound

Traffic

Amount of network traffic going out from the pod, measured in

KiB/s.

Storage Read

Traffic
Amount of data read from storage, measured in KiB/s.

Storage Write

Traffic
Amount of data written to storage, measured in KiB/s.

Important: For memory-based autoscaling, memory usage must increase and decrease

proportionally to the replica count. On average:

An increase in replica count must lead to an overall decrease in memory (working set)

usage per-pod.

A decrease in replica count must lead to an overall increase in per-pod memory usage.

Use the platform to check the memory behavior of your application and ensure that your

application meets these requirements before using memory-based autoscaling.

Please ensure that the monitoring components are deployed in the current cluster and are

functioning properly. You can check the deployment and health status of the monitoring

Supported Metrics

Prerequisites

Configuring HPA - Alauda Container Platform

components by clicking on the top right corner of the platform > Platform Health Status..

You can create a horizontal pod autoscaler using the command line interface by defining a

YAML file and using the kubectl create command. The following example shows

autoscaling for a Deployment object. The initial deployment requires 3 pods. The HPA object

increases the minimum to 5. If CPU usage on the pods reaches 75%, the pods increase to 7:

1. Create a YAML file named hpa.yaml with the following content:

1 Use the autoscaling/v2 API.

2 The name of the HPA resource.

3 The name of the deployment to scale.

4 The maximum number of replicas to scale up to.

5 The minimum number of replicas to maintain.

6 Specify the API version of the object to scale.

7 Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.

Creating a Horizontal Pod Autoscaler

Using the CLI

apiVersion: autoscaling/v2 1

kind: HorizontalPodAutoscaler 2

metadata:

 name: hpa-demo 3

 namespace: default

spec:

 maxReplicas: 7 4

 minReplicas: 3 5

 scaleTargetRef:

 apiVersion: apps/v1 6

 kind: Deployment 7

 name: deployment-demo 8

 targetCPUUtilizationPercentage: 75 9

Configuring HPA - Alauda Container Platform

8 The target resource to which the HPA applies.

9 The target CPU utilization percentage that triggers scaling.

1. Apply the YAML file to create the HPA:

Example output:

1. After you create the HPA, you can view the new state of the deployment by running the

following command:

Example output:

1. You can also check the status of your HPA:

Example output:

1.

$ kubectl create -f hpa.yaml

horizontalpodautoscaler.autoscaling/hpa-demo created

$ kubectl get deployment deployment-demo

NAME READY UP-TO-DATE AVAILABLE AGE

deployment-demo 5/5 5 5 3m

$ kubectl get hpa hpa-demo

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICA

hpa-demo Deployment/deployment-demo 0%/75% 3 7 3

Using the Web Console

Configuring HPA - Alauda Container Platform

Enter Container Platform.

2.

In the left navigation bar, click Workloads > Deployments.

3.

Click on Deployment Name.

4.

Scroll down to the Elastic Scaling area and click on Update on the right.

5.

Select Horizontal Scaling and complete the policy configuration.

Parameter Description

Pod Count

After a deployment is successfully created, you need to evaluate the

Minimum Pod Count corresponding to known and regular business

volume changes, as well as the Maximum Pod Count that can be

supported by the namespace quota under high business pressure.

The maximum or minimum pod counts can be changed after setting,

and it is recommended to first derive a more accurate value through

performance testing and to continuously adjust during usage to meet

business needs.

Trigger

Policy

List the Metrics that are sensitive to business changes and their

Target Thresholds to trigger scale-up or scale-down actions.

For example, if you set CPU Utilization = 60%, once the CPU

utilization deviates from 60%, the platform will start to automatically

adjust the number of pods based on the current deployment's

insufficient or excessive resource allocation.

Note: Metric types include built-in metrics and custom metrics.

Custom metrics only apply to deployments in native applications,

and you must first add custom metrics .

Scale

Up/Down

For businesses with specific scaling rate requirements, you can

gradually adapt to changes in business volume by specifying Scale-

Up Step or Scale-Down Step.

Configuring HPA - Alauda Container Platform

http://localhost:4173/container_platform/index.html

Parameter Description

Step

(Alpha)

For the scale-down step, you can customize the Stability Window,

which defaults to 300 seconds, meaning that you must wait 300

seconds before executing scale-down actions.

6.

Click Update.

Custom metrics HPA extends the original HorizontalPodAutoscaler by supporting additional

metrics beyond CPU and memory utilization.

kube-controller-manager: horizontal-pod-autoscaler-use-rest-clients=true

Pre-installed metrics-server

Prometheus

custom-metrics-api

Traditional HPA supports CPU utilization and memory metrics to dynamically adjust the

number of Pod instances, as shown in the example below:

Using Custom Metrics for HPA

Requirements

Traditional (Core Metrics) HPA

Configuring HPA - Alauda Container Platform

In this YAML, scaleTargetRef specifies the workload object for scaling, and

targetCPUUtilizationPercentage specifies the CPU utilization trigger metric.

To use custom metrics, you need to install prometheus-operator and custom-metrics-api. After

installation, custom-metrics-api provides a large number of custom metric resources:

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

 name: nginx-app-nginx

 namespace: test-namespace

spec:

 maxReplicas: 1

 minReplicas: 1

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: nginx-app-nginx

 targetCPUUtilizationPercentage: 50

Custom Metrics HPA

Configuring HPA - Alauda Container Platform

These resources are all sub-resources under MetricValueList. You can create rules through

Prometheus to create or maintain sub-resources. The HPA YAML format for custom metrics

differs from traditional HPA:

{

 "kind": "APIResourceList",

 "apiVersion": "v1",

 "groupVersion": "custom.metrics.k8s.io/v1beta1",

 "resources": [

 {

 "name": "namespaces/go_memstats_heap_sys_bytes",

 "singularName": "",

 "namespaced": false,

 "kind": "MetricValueList",

 "verbs": ["get"]

 },

 {

 "name": "jobs.batch/go_memstats_last_gc_time_seconds",

 "singularName": "",

 "namespaced": true,

 "kind": "MetricValueList",

 "verbs": ["get"]

 },

 {

 "name": "pods/go_memstats_frees",

 "singularName": "",

 "namespaced": true,

 "kind": "MetricValueList",

 "verbs": ["get"]

 }

]

}

Configuring HPA - Alauda Container Platform

In this example, scaleTargetRef specifies the workload.

metrics is an array type, supporting multiple metrics

metric type can be: Object (describing k8s resources), Pods (describing metrics for

each Pod), Resources (built-in k8s metrics: CPU, memory), or External (typically metrics

external to the cluster)

If the custom metric is not provided by Prometheus, you need to create a new metric

through a series of operations such as creating rules in Prometheus

The main structure of a metric is as follows:

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: demo

spec:

 scaleTargetRef:

 apiVersion: extensions/v1beta1

 kind: Deployment

 name: demo

 minReplicas: 2

 maxReplicas: 10

 metrics:

 - type: Pods

 pods:

 metricName: metric-demo

 targetAverageValue: 10

Trigger Condition Definition

Configuring HPA - Alauda Container Platform

This metric data is collected and updated by Prometheus.

Custom metrics HPA YAML is actually compatible with the original core metrics (CPU). Here's

how to write it:

{

 "describedObject": { # Described object (Pod)

 "kind": "Pod",

 "namespace": "monitoring",

 "name": "nginx-788f78d959-fd6n9",

 "apiVersion": "/v1"

 },

 "metricName": "metric-demo",

 "timestamp": "2020-02-5T04:26:01Z",

 "value": "50"

}

Custom Metrics HPA Compatibility

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: nginx

spec:

 scaleTargetRef:

 apiVersion: extensions/v1beta1

 kind: Deployment

 name: nginx

 minReplicas: 2

 maxReplicas: 10

 metrics:

 - type: Resource

 resource:

 name: cpu

 targetAverageUtilization: 80

 - type: Resource

 resource:

 name: memory

 targetAverageValue: 200Mi

Configuring HPA - Alauda Container Platform

targetAverageValue is the average value obtained for each Pod

targetAverageUtilization is the utilization calculated from the direct value

The algorithm reference is:

autoscaling/v2beta2 supports memory utilization:

Changes: targetAverageUtilization and targetAverageValue have been changed to

target and converted to a combination of xxxValue and type :

replicas = ceil(sum(CurrentPodsCPUUtilization) / Target)

Updates in autoscaling/v2beta2

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

 name: nginx

 namespace: default

spec:

 minReplicas: 1

 maxReplicas: 3

 metrics:

 - resource:

 name: cpu

 target:

 averageUtilization: 70

 type: Utilization

 type: Resource

 - resource:

 name: memory

 target:

 averageUtilization:

 type: Utilization

 type: Resource

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: nginx

Configuring HPA - Alauda Container Platform

xxxValue : AverageValue (average value), AverageUtilization (average utilization), Value

(direct value)

type : Utilization (utilization), AverageValue (average value)

Notes:

For CPU Utilization and Memory Utilization metrics, auto-scaling will only be triggered

when the actual value fluctuates outside the range of ±10% of the target threshold.

Scale-down may impact ongoing business operations; please proceed with caution.

When business metrics change, the platform will automatically calculate the target pod count

that matches the business volume according to the following rules and adjust accordingly. If

the business metrics continue to fluctuate, the value will be adjusted to the set Minimum Pod

Count or Maximum Pod Count.

Single Policy Target Pod Count: ceil[(sum(actual metric values)/metric threshold)] . This

means that the sum of the actual metric values of all pods divided by the metric threshold,

rounded up to the smallest integer that is greater than or equal to the result. For example: If

there are currently 3 pods with CPU utilizations of 80%, 80%, and 90%, and the set CPU

utilization threshold is 60%. According to the formula, the number of pods will be

automatically adjusted to: ceil[(80%+80%+90%)/60%] = ceil 4.1 = 5 pods.

Note:

If the calculated target pod count exceeds the set Maximum Pod Count (for example

4), the platform will only scale up to 4 pods. If after changing the maximum pod count

the metrics remain persistently high, you may need to use alternate scaling methods,

such as increasing the namespace pod quota or adding hardware resources.

If the calculated target pod count (in the previous example 5) is less than the pod count

adjusted according to the Scale-Up Step (for example 10), the platform will only scale

up to 5 pods.

Multiple Policy Target Pod Count: Take the maximum value among the results of each

policy calculation.

Calculation Rules

Configuring HPA - Alauda Container Platform

For both stateless and stateful applications, VerticalPodAutoscaler (VPA) automatically

recommends and optionally applies more appropriate CPU and memory resource limits based

on your business needs, ensuring that pods have sufficient resources while improving cluster

resource utilization.

Understanding VerticalPodAutoscalers

How Does the VPA Work?

Supported Features

Prerequisites

Installing the Vertical Pod Autoscaler Plugin

Creating a VerticalPodAutoscaler

Using the CLI

Using the Web Console

Advanced VPA Configuration

Update Policy Options

Container Policy Options

Follow-Up Actions

You can create a VerticalPodAutoscaler to recommend or automatically update the CPU and

memory resource requests and limits for your pods based on their historical usage patterns.

Configuring VerticalPodAutoscaler (VPA)

TOC

Understanding VerticalPodAutoscalers

Menu ON THIS PAGE

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

After you create a VerticalPodAutoscaler, the platform begins to monitor the CPU and memory

resource usage of the pods. When sufficient data is available, the VerticalPodAutoscaler

calculates recommended resource values based on the observed usage patterns. Depending

on the configured update mode, VPA can either automatically apply these recommendations

or simply make them available for manual application.

The VPA works by analyzing the resource usage of your pods over time and making

recommendations based on this analysis. It can help ensure that your pods have the

resources they need without over-provisioning, which can lead to more efficient resource

utilization across your cluster.

The VerticalPodAutoscaler (VPA) extends the concept of pod resource optimization. The VPA

monitors the resource usage of your pods and provides recommendations for CPU and

memory requests based on the observed usage patterns.

The VPA works by continuously monitoring the resource usage of your pods and updating its

recommendations as new data becomes available. The VPA can operate in the following

modes:

Off: VPA only provides recommendations without automatically applying them.

Manual Adjustment: You can manually adjust resource configurations based on VPA

recommendations.

Important: Elastic scaling can achieve horizontal or vertical scaling of Pods. When

sufficient resources are available, elastic scaling can bring good results, but when cluster

resources are insufficient, it may cause Pods to be in a Pending state. Therefore, please

ensure that the cluster has sufficient resources or reasonable quotas, or you can configure

alerts to monitor scaling conditions.

The VerticalPodAutoscaler provides resource recommendations based on historical usage

patterns, allowing you to optimize your pod's CPU and memory configurations.

Important: When manually applying VPA recommendations, pod recreation will occur,

which can cause temporary disruption to your application. Consider applying

How Does the VPA Work?

Supported Features

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

recommendations during maintenance windows for production workloads.

Please ensure that the monitoring components are deployed in the current cluster and are

functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform

> Platform Health Status..

The Alauda Container Platform Vertical Pod Autoscaler cluster plugin must be installed in

your cluster.

Before using VPA, you need to install the Vertical Pod Autoscaler cluster plugin:

1.

Log in and navigate to the Administrators page.

2.

Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3.

Locate the Alauda Container Platform Vertical Pod Autoscaler cluster plugin, click Install,

then proceed to the installation page.

You can create a VerticalPodAutoscaler using the command line interface by defining a YAML

file and using the kubectl create command. The following example shows vertical pod

Prerequisites

Installing the Vertical Pod Autoscaler Plugin

Creating a VerticalPodAutoscaler

Using the CLI

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

autoscaling for a Deployment object:

1. Create a YAML file named vpa.yaml with the following content:

1 Use the autoscaling.k8s.io/v1 API.

2 The name of the VPA

3 Specify the target workload object. VPA uses the workload's selector to find pods that

need resource adjustment. Supported workload types include DaemonSet, Deployment,

ReplicaSet, StatefulSet, ReplicationController, Job, and CronJob.

4 Specify the API version of the object to scale.

5 Specify the type of object.

6 The target resource to which the VPA applies

7 Update policy that defines how VPA applies recommendations. The updateMode can be:

Auto: Automatically sets resource requests when creating pods and updates current

pods to recommended resource requests. Currently equivalent to "Recreate". This mode

may cause application downtime. Once in-place pod resource updates are supported,

"Auto" mode will adopt this update mechanism.

Recreate: Automatically sets resource requests when creating pods and evicts current

pods to update to recommended resource requests. Will not use in-place updates.

apiVersion: autoscaling.k8s.io/v1 1

kind: VerticalPodAutoscaler 2

metadata:

 name: my-deployment-vpa 3

 namespace: default

spec:

 targetRef:

 apiVersion: apps/v1 4

 kind: Deployment 5

 name: my-deployment 6

 updatePolicy:

 updateMode: "Off" 7

 resourcePolicy: 8

 containerPolicies:

 - containerName: "*" 9

 mode: "Auto" 10

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Initial: Only sets resource requests when creating pods, no modifications afterward.

Off: Does not automatically modify pod resource requests, only provides

recommendations in the VPA object.

8 Resource policy that can set specific strategies for different containers. For example,

setting a container's mode to "Auto" means it will calculate recommendations for that

container, while "Off" means it won't calculate recommendations.

9 Apply policy to all containers in the pod.

10 Set the mode to Auto or Off. Auto means recommendations will be generated for this

container, Off means no recommendations will be generated.

1. Apply the YAML file to create the VPA:

Example output:

1. After you create the VPA, you can view the recommendations by running the following

command:

Example output (partial):

$ kubectl create -f vpa.yaml

verticalpodautoscaler.autoscaling.k8s.io/my-deployment-vpa created

$ kubectl describe vpa my-deployment-vpa

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

1.

Enter Container Platform.

2.

In the left navigation bar, click Workloads > Deployments.

3.

Click on Deployment Name.

4.

Scroll down to the Elastic Scaling area and click Update on the right.

5.

Select Vertical Scaling and configure the scaling rules.

Parameter Description

Scaling

Mode

Currently supports Manual Scaling mode, which provides

recommended resource configurations by analyzing past resource

usage. You can manually adjust according to the recommended

values. Adjustments will cause pods to be recreated and restarted, so

Status:

 Recommendation:

 Container Recommendations:

 Container Name: my-container

 Lower Bound:

 Cpu: 100m

 Memory: 262144k

 Target:

 Cpu: 200m

 Memory: 524288k

 Upper Bound:

 Cpu: 300m

 Memory: 786432k

Using the Web Console

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Parameter Description

please choose an appropriate time to avoid impacting running

applications.

Typically, after pods have been running for more than 8 days, the

recommended values will become accurate.

Note that when cluster resources are insufficient, scaling may cause

Pods to be in a Pending state. Please ensure that the cluster has

sufficient resources or reasonable quotas, or configure alerts to

monitor scaling conditions.

Target

Container

Defaults to the first container of the workload. You can choose to

enable resource limit recommendations for one or more containers as

needed.

6.

Click Update.

updateMode: "Off" - VPA only provides recommendations without automatically applying

them. You can manually apply these recommendations as needed.

updateMode: "Auto" - Automatically sets resource requests when creating pods and

updates current pods to recommended values. Currently equivalent to "Recreate".

updateMode: "Recreate" - Automatically sets resource requests when creating pods and

evicts current pods to update to recommended values.

updateMode: "Initial" - Only sets resource requests when creating pods, no

modifications afterward.

minReplicas: <number> - Minimum number of replicas. Ensures this minimum number of

pods remain available when the Updater evicts pods. Must be greater than 0.

containerName: "*" - Apply policy to all containers in the pod.

Advanced VPA Configuration

Update Policy Options

Container Policy Options

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

mode: "Auto" - Automatically generate recommendations for the container.

mode: "Off" - Do not generate recommendations for the container.

Notes:

VPA recommendations are based on historical usage data, so it may take several days of

pod operation before recommendations become accurate.

Pod recreation will occur when VPA recommendations are applied in Auto mode, which can

cause temporary disruption to your application.

After configuring VPA, the recommended values for CPU and memory resource limits of the

target container can be viewed in the Elastic Scaling area. In the Containers area, select the

target container tab and click the icon on the right side of Resource Limits to update the

resource limits according to the recommended values.

Follow-Up Actions

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

For stateless applications with periodic fluctuations in business usage, CronHPA (Cron

Horizontal Pod Autoscaler) supports adjusting the number of pods based on the time policies

you set, allowing you to optimize resource usage according to predictable business patterns.

Understanding Cron Horizontal Pod Autoscalers

How Does the CronHPA Work?

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Using the CLI

Using the Web Console

Schedule Rule Explanation

You can create a cron horizontal pod autoscaler to specify the number of pods you want to run

at specific times according to a schedule, allowing you to prepare for predictable traffic

patterns or reduce resource usage during off-peak hours.

After you create a cron horizontal pod autoscaler, the platform begins to monitor the schedule

and automatically adjusts the number of pods at the specified times. This time-based scaling

occurs independently of resource utilization metrics, making it ideal for applications with

known usage patterns.

Configuring CronHPA

TOC

Understanding Cron Horizontal Pod Autoscalers

Menu ON THIS PAGE

Configuring CronHPA - Alauda Container Platform

The CronHPA works by defining one or more schedule rules, each specifying a time (using

crontab format) and a target number of replicas. When a scheduled time is reached, the

CronHPA adjusts the pod count to match the specified target, regardless of the current

resource utilization.

The cron horizontal pod autoscaler (CronHPA) extends the concept of pod auto-scaling with

time-based controls. The CronHPA lets you define specific times when the number of pods

should change, allowing you to prepare for predictable traffic patterns or reduce resource

usage during off-peak hours.

The CronHPA works by continuously checking the current time against the defined schedules.

When a scheduled time is reached, the controller adjusts the number of pods to match the

target replica count specified for that schedule. If multiple schedules trigger at the same time,

the platform will use the rule with higher priority (the one defined earlier in the configuration).

Please ensure that the monitoring components are deployed in the current cluster and are

functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform > Platform Health Status..

You can create a cron horizontal pod autoscaler using the command line interface by defining

a YAML file and using the kubectl create command. The following example shows

scheduled scaling for a Deployment object:

1. Create a YAML file named cronhpa.yaml with the following content:

How Does the CronHPA Work?

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Using the CLI

Configuring CronHPA - Alauda Container Platform

1 Use the tkestack.io/v1 API.

2 The name of the CronHPA resource.

3 The name of the deployment to scale.

4 Specify the API version of the object to scale.

5 Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.

6 The target resource to which the CronHPA applies.

7 The cron schedule in standard crontab format (minute hour day month weekday).

8 The target number of replicas to scale to when the schedule is triggered.

This example configures the deployment to:

Scale down to 0 replicas at midnight every day

Scale up to 3 replicas at 8

AM on weekdays (Monday-Friday)

Scale down to 1 replica at 6

PM on weekdays

1. Apply the YAML file to create the CronHPA:

apiVersion: tkestack.io/v1 1

kind: CronHPA 2

metadata:

 name: my-deployment-cronhpa 3

 namespace: default

spec:

 scaleTargetRef:

 apiVersion: apps/v1 4

 kind: Deployment 5

 name: my-deployment 6

 crons:

 - schedule: "0 0 * * *" 7

 targetReplicas: 0 8

 - schedule: "0 8 * * 1-5" 9

 targetReplicas: 3 10

 - schedule: "0 18 * * 1-5" 11

 targetReplicas: 1 12

Configuring CronHPA - Alauda Container Platform

1.

Enter Container Platform.

2.

In the left navigation bar, click Workloads > Deployments.

3.

Click on Deployment Name.

4.

Scroll down to the Elastic Scaling section and click Update on the right.

5.

Select Scheduled Scaling, and configure the scaling rules. When the type is Custom, you

must provide a Crontab expression for the trigger condition, formatted as minute hour

day month week . For detailed introduction, please refer to Writing Crontab Expressions.

6.

Click Update.

$ kubectl create -f cronhpa.yaml

Using the Web Console

Schedule Rule Explanation

Configuring CronHPA - Alauda Container Platform

1. Indicates that starting from 01

AM every Monday, only 1 pod will be retained.

2. Indicates that starting from 02

AM every Tuesday, only 2 pods will be retained.

3. Indicates that starting from 02

AM every Tuesday, only 3 pods will be retained.

Important Notes:

When multiple rules have the same trigger time (Examples 2 and 3), the platform will

execute automatic scaling based only on the rule that is higher in priority (Example 2).

CronHPA operates independently of HPA. If both are configured for the same workload,

they may conflict with each other. Consider your scaling strategy carefully.

The schedule uses the crontab format (minute hour day month week) and follows the

same rules as Kubernetes CronJobs.

Time is based on the cluster's timezone setting.

For workloads with critical availability requirements, ensure that your scheduled scaling

doesn't unexpectedly reduce capacity during high-traffic periods.

Configuring CronHPA - Alauda Container Platform

Status Description

Starting and Stopping Applications

Updating Applications

Exporting Applications

Updating and deleting Chart Applications

Operation and Maintenance

Applications

Starting the Application

Stopping the Application

Importing Resources

Removing/Batch Removing Resources

Exporting Helm Charts

Exporting YAML to Local

Exporting YAML to Code Repository (Alpha)

Important Notes

Prerequisites

Status Analysis Description

Menu

Operation and Maintenance - Alauda Container Platform

Version Management for Applications

Deleting Applications

Health Checks

Creating a Version Snapshot

Rolling Back to a Historical Version

Understanding Health Checks

YAML file example

Health Checks configuration parameters by using web console

Troubleshooting probe failures

Operation and Maintenance - Alauda Container Platform

Applications

The status of native applications and their corresponding meanings are as follows. The

numbers following the status indicate the number of computing components.

Status Meaning

Running All computing components are in normal operation.

Partially Running
Some computing components are running, while others

have stopped.

Stopped All computing components have stopped.

Processing At least one computing component is in a pending state.

No Computing

Components

There are no computing components under the

application.

Failed Deployment has failed.

Note: Similarly, the numbers in the computing component status indicate the number of

container groups.

Status Description

TOC

Applications

Deployment

Menu ON THIS PAGE

Status Description - Alauda Container Platform

Running: All Pods are in normal operation.

Processing: There are Pods that are not in a running state.

Stopped: All Pods have stopped.

Failed: Deployment has failed.

Status Description - Alauda Container Platform

Starting the Application

Stopping the Application

1.

Access the Container Platform.

2.

In the left navigation bar, click Application > Applications.

3.

Click on the application name.

4.

Click Start.

1.

Access the Container Platform.

Starting and Stopping Applications

TOC

Starting the Application

Stopping the Application

Menu ON THIS PAGE

Starting and Stopping Applications - Alauda Container Platform

2.

In the left navigation bar, click Application > Applications.

3.

Click on the application name.

4.

Click Stop.

5.

Read the prompt message, and after confirming that everything is correct, click Stop.

Starting and Stopping Applications - Alauda Container Platform

Custom Applications greatly facilitate the unified management of workloads, networks,

storage, and configurations, but not all resources belong to the application.

Resources added during the application creation process, or added through application

updates, are by default associated with the application and do not require additional

importing.

Resources created outside the application do not belong to the application and cannot be

found in the application's details. However, as long as the resource definitions meet

business requirements, the business can operate normally. In this case, it is recommended

that you import the resources into the application for unified management.

Image Management

Rollout new container images with tag/patch version control

Configure imagePullPolicy (Always/IfNotPresent/Never)

Runtime Configuration

Modify environment variables via ConfigMaps/Secrets

Update resource requests/limits (CPU/Memory)

Resource Orchestration

Import existing Kubernetes resources (Deployments/Services/Ingresses)

Synchronize configurations across namespaces using kubectl apply -f

Resources imported into the application can benefit from the following features:

Feature Description

Version

Snapshot

When creating a version snapshot for the application, a snapshot will

also be generated for the resources within the application.

Updating Applications

Menu ON THIS PAGE

Updating Applications - Alauda Container Platform

Feature Description

If the application is rolled back, the resources will also roll back to

the state in the snapshot.

If a specific version of the application is distributed, the platform

will automatically create the resources recorded in the snapshot

upon redeploying the application.

Deleted with

Application

If an application is no longer needed, deleting the application will

automatically remove all resources associated with the application,

including computing components, internal routes, and inbound rules.

Easier to Find

In the application detail information, you can quickly view the

resources associated with the application.

For example: External traffic can access Deployment D through

Service S, which belongs to Application A, but the corresponding

access address can only be quickly found in the application details if

Service S also belongs to Application A.

Importing Resources

Removing/Batch Removing Resources

Batch import related resources under the namespace where the application resides; a

resource can belong to only one application.

1.

Enter Container Platform.

TOC

Importing Resources

Updating Applications - Alauda Container Platform

2.

In the left navigation bar, click Application Management > Native Applications.

3.

Click on Application Name.

4.

Click Actions > Manage Resources.

5.

In the Resource Type at the bottom, select the type of resources to be imported.

Note: Common resource types include Deployment, DaemonSet, StatefulSet, Job,

CronJob, Service, Ingress, PVC, ConfigMap, Secret, and HorizontalPodAutoscaler, which

are displayed at the top; other resources are arranged in alphabetical order, and you can

quickly query specific resource types by searching keywords.

6.

In the Resources section, select the resources to be imported.

Attention: For Job type resources, only tasks created through YAML are supported for

import.

7.

Click Import Resources.

Removing / batch removing resources from an application only disassociates the

application from the resources and does not delete the resources.

If there are interconnections between resources under an application, removing any resource

from the application will not change the associations between the resources. For example,

Removing/Batch Removing Resources

Updating Applications - Alauda Container Platform

even if Service S is removed from Application A, external traffic can still access Deployment D

through Service S.

1.

Enter Container Platform.

2.

In the left navigation bar, click Application Management > Native Applications.

3.

Click on Application Name.

4.

Click Actions > Manage Resources.

5.

Click Remove on the right side of a resource to remove it; or select multiple resources at

once, and click Remove at the top of the table to batch remove resources.

Updating Applications - Alauda Container Platform

To standardize the export process of applications between development, testing, and

production environments, and to facilitate the rapid migration of business to new

environments, you can export native applications as application templates (Charts) or export

simplified YAML files that can be used directly for deployment. This allows the native

application to run in different environments or namespaces. You can also export YAML files to

a code repository to deploy applications across clusters quickly using GitOps functionality.

Exporting Helm Charts

Procedure

Follow-Up Actions

Exporting YAML to Local

Steps

Method 1

Method 2

Follow-Up Actions

Exporting YAML to Code Repository (Alpha)

Precautions

Steps

Follow-Up Actions

Exporting Applications

TOC

Exporting Helm Charts

Menu ON THIS PAGE

Exporting Applications - Alauda Container Platform

1.

Access the Container Platform.

2.

In the left navigation bar, click on Application Management > Native Applications.

3.

Click on the application name of the type Custom Application .

4.

Click on Actions > Export; you can also export a specific version from the application

detail page.

5.

Choose one export method as needed and refer to the following instructions to configure

the relevant information.

Exporting Helm Charts to a template repository with management permissions

Note: The template repository is added by the platform administrator. Please contact the

platform administrator to obtain a valid template repository of type Chart or OCI Chart

with Management permissions.

Parameter Description

Target

Location

Select Template Repository to directly sync the template to a

template repository of type Chart or OCI Chart with

Management permissions. The project owner assigned to this

Template Repository can directly use the template.

Procedure

Exporting Applications - Alauda Container Platform

Parameter Description

Template

Directory

When the selected template repository type is OCI Chart, you

need to select or manually input the directory for storing the

Helm Chart.

Note: When manually entering a new template directory, the

platform will create this directory in the template repository, but

there is a risk of the creation failing.

Version

The version number of the application template.

The format should be v<Major>.<Minor>.<Patch> . The default

value is the current application version or the current snapshot

version.

Icon
Supports JPG, PNG, and GIF image formats, with a file size of

no more than 500KB. Suggested dimensions are 80*60 pixels.

Description
The description will be displayed in the list of application

templates within the application directory.

README
Description file. Supports editing in Markdown format and will be

displayed on the details page of the application template.

NOTES

Template help file. Supports standard plaintext editing; after the

deployment template is completed, it will be displayed on the

template application details page.

Exporting Helm Charts to local for manual upload to the template repository: Select

Local as the target location and choose Helm Chart as the file format to generate a

Helm Chart package which will be downloaded locally for offline transmission.

6.

Click Export.

If you export the Helm Chart to local, you will need to add the template to a template

repository with management permissions.

Follow-Up Actions

Exporting Applications - Alauda Container Platform

Regardless of the export method chosen, you can refer to Creating Native Applications -

Template Method to create a Template Application type of native application in a non-

current namespace.

1.

Access the Container Platform.

2.

In the left navigation bar, click on Application Management > Native Applications.

3.

Click on application name.

4.

Click on Actions > Export; you can also export a specific version from the application

detail page.

5.

Select Local as the target location and YAML as the file format, at which point you can

export a simplified YAML file that can be deployed directly in other environments.

6.

Click Export.

1.

Exporting YAML to Local

Steps

Method 1

Method 2

Exporting Applications - Alauda Container Platform

Access the Container Platform.

2.

In the left navigation bar, click on Application Management > Native Applications.

3.

Click on application name.

4.

Click on the YAML tab, configure settings as needed, and preview the YAML file.

Type Description

Full YAML

By default, Preview Simplified YAML is not selected, displaying the

YAML file with the managedFields fields hidden. You can preview it

and export directly; you may also uncheck Hide managedFields

fields to export the full YAML file.

Note: Full YAML is primarily used for operations and troubleshooting

and cannot be used to quickly create native applications on the

platform.

Simplified

YAML

Check Preview Simplified YAML, at which point you can preview

and export a simplified YAML file that can be deployed directly in

other environments.

5.

Click Export.

After exporting the simplified YAML, you can refer to Creating Native Applications - YAML

Method to create a Custom Application type of native application in a non-current

namespace.

Follow-Up Actions

Exporting Applications - Alauda Container Platform

Only platform administrators and project administrators can directly export native

application YAML files to the code repository.

Template Applications do not support exporting Kustomize formatted application

configuration files or directly exporting YAML files to the code repository; you can first

detach from the template and convert it to a Custom Application .

1.

Access the Container Platform.

2.

In the left navigation bar, click on Application Management > Native Applications.

3.

Click on the application name of type Custom .

4.

Click on Actions > Export; you can also export a specific version from the application

detail page.

5.

Choose one export method as needed and refer to the following instructions to configure

the relevant information.

Exporting YAML to a code repository:

Exporting YAML to Code Repository (Alpha)

Precautions

Steps

Exporting Applications - Alauda Container Platform

Parameter Description

Target

Location

Select Code Repository to directly sync the YAML file to the

specified Git code repository. The project owner assigned to

this Code Repository can directly use the YAML file.

Integration

Project Name

The name of the integration tool project assigned or associated

with your project by the platform administrator.

Repository

Address

The repository address assigned for your use under the

integrated tool project.

Export

Method

Existing Branch: Export the application YAML to the

selected branch.

New Branch: Create a new branch based on the selected

Branch/Tag/Commit ID and export the application YAML to

the new branch.

If Submit PR (Pull Request) is checked, the platform will

create a new branch and submit a Pull Request.

If Automatically delete source branch after merging

PR is checked, the source branch will be automatically

deleted after you merge the PR in the Git code repository.

File Path

The specific location where the file should be saved in the code

repository; you can also input a file path, and the platform will

create a new path in the code repository based on the input.

Commit

Message

Fill in commit information to identify the content of this

submission.

Preview

Preview the YAML file to be submitted and compare differences

with the existing YAML in the code repository, displayed with

color differentiation.

Exporting Kustomize-type files to local for manual upload to the code repository: Select

Local as the target location and choose Kustomize as the file format to export the

Exporting Applications - Alauda Container Platform

Kustomize-type application configuration file locally. This file supports differentiated

configurations and is suitable for cross-cluster application deployments.

6.

Click Export.

After exporting the YAML to a Git code repository, you can refer to Creating GitOps

Applications to create a Custom Application type of GitOps application across clusters.

Follow-Up Actions

Exporting Applications - Alauda Container Platform

http://localhost:4173/container_platform/gitops/functions/create_argocd_application/create_application_via_platform.html
http://localhost:4173/container_platform/gitops/functions/create_argocd_application/create_application_via_platform.html

Due to overlapping functionality between the current template applications and native

applications, and the enhanced operational capabilities available under native applications,

independent management of template applications will no longer be offered in future versions.

Please upgrade your currently successfully deployed template applications to native

applications as soon as possible.

Important Notes

Prerequisites

Status Analysis Description

This feature is going to be discontinued. Please upgrade your currently successfully

deployed template applications to native applications as soon as possible.

Please contact the platform administrator to enable template application-related features.

Updating and deleting Chart Applications

TOC

Important Notes

Prerequisites

Menu ON THIS PAGE

Updating and deleting Chart Applications - Alauda Container Platform

Click on Template Application Name to display detailed deployment status analysis of the

Chart in the detail information.

Type Reason

Initialized

Indicates the state of the Chart template download.

When the status is True, it indicates that the Chart template download

was successful.

When the status is False, it indicates that the Chart template download

has failed, and the reason for failure can be viewed in the message

column.

ChartLoadFailed: Chart template download failed.

InitializeFailed: An exception occurred during initialization before

downloading the Chart.

Validated

Indicates the state of user permissions and dependencies verification for

the Chart template.

When the status is True, it indicates that all validation checks have

passed.

When the status is False, it indicates that there are validation checks

that have failed, and the reason for failure can be viewed in the

message column.

DependenciesCheckFailed: Chart dependency check failed.

PermissionCheckFailed: The current user lacks permissions for

certain resource operations.

ConsistentNamespaceCheckFailed: When deploying the template

application as a native application, the Chart contains resources that

require cross-namespace deployment.

Status Analysis Description

Updating and deleting Chart Applications - Alauda Container Platform

Type Reason

Synced

Indicates the state of the Chart template deployment.

When the status is True, it indicates that the Chart template deployment

was successful.

When the status is False, it indicates that the Chart template

deployment has failed, with the reason displayed as ChartSyncFailed,

and the specific reason for failure can be viewed in the message

column.

Updating and deleting Chart Applications - Alauda Container Platform

After updating the application through the platform interface, a historical version record is

automatically generated. For application updates triggered by non-interface operations, such

as updating the application via API calls, you can manually create a version snapshot to

record the changes.

Note: When the number of version snapshot entries exceeds 6, the platform retains only the

latest 6 entries and automatically deletes the others, prioritizing the removal of the oldest

version snapshot entries.

Creating a Version Snapshot

Procedure

Rolling Back to a Historical Version

Procedure

1.

Access Container Platform.

2.

In the left navigation bar, click Application Management > Native Applications.

Version Management for Applications

TOC

Creating a Version Snapshot

Procedure

Menu ON THIS PAGE

Version Management for Applications - Alauda Container Platform

3.

Click on Application Name.

4.

In the Version Snapshot tab, click Create Version Snapshot.

5.

Configure the information and click Confirm.

Note: You can also Distribute the Application, which allows you to distribute the version

snapshot of the application as a Chart, facilitating the rapid deployment of the same

application across multiple clusters and namespaces on the platform.

Roll back the current application's configuration to a historical version.

1.

Access Container Platform.

2.

In the left navigation bar, click Application Management > Native Applications.

3.

Click on Application Name.

4.

In the Historical Versions tab, click on Version Number.

5.

Click ⋮ > Roll Back to This Version.

Rolling Back to a Historical Version

Procedure

Version Management for Applications - Alauda Container Platform

6.

Click Roll Back.

Version Management for Applications - Alauda Container Platform

Delete an application, it simultaneously deletes the application itself and all of its directly

contained Kubernetes resources. Additionally, this action severs any association the

application might have had with other Kubernetes resources that were not directly part of its

definition.

Deleting Applications

Menu

Deleting Applications - Alauda Container Platform

Understanding Health Checks

Probe Types

HTTP GET Action

exec Action

TCP Socket Action

Best Practices

YAML file example

Health Checks configuration parameters by using web console

Common parameters

Protocol specific parameters

Troubleshooting probe failures

Check pod events

View container logs

Test probe endpoint manually

Review probe configuration

Check application code

Resource constraints

Network issues

Refer to the official Kubernetes documentation:

Health Checks

TOC

Understanding Health Checks

Menu ON THIS PAGE

Health Checks - Alauda Container Platform

Liveness, Readiness, and Startup Probes

Configure Liveness, Readiness and Startup Probes

In Kubernetes, health checks, also known as probes, are a critical mechanism to ensure

the high availability and resilience of your applications. Kubernetes uses these probes to

determine the health and readiness of your Pods, allowing the system to take appropriate

actions, such as restarting containers or routing traffic. Without proper health checks,

Kubernetes cannot reliably manage your application's lifecycle, potentially leading to

service degradation or outages.

Kubernetes offers three types of probes:

livenessProbe : Detects if the container is still running. If a liveness probe fails,

Kubernetes will terminate the Pod and restart it according to its restart policy.

readinessProbe : Detects if the container is ready to serve traffic. If a readiness probe

fails, the Endpoint Controller removes the Pod from the Service's Endpoint list until the

probe succeeds.

startupProbe : Specifically checks if the application has successfully started. Liveness

and readiness probes will not execute until the startup probe succeeds. This is very useful

for applications with long startup times.

Properly configuring these probes is essential for building robust and self-healing applications

on Kubernetes.

Kubernetes supports three mechanisms for implementing probes:

Executes an HTTP GET request against the Pod's IP address on a specified port and path.

The probe is considered successful if the response code is between 200 and 399.

Use Cases: Web servers, REST APIs, or any application exposing an HTTP endpoint.

Example:

↗

↗

Probe Types

HTTP GET Action

Health Checks - Alauda Container Platform

https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Executes a specified command inside the container. The probe is successful if the

command exits with status code 0.

Use Cases: Applications without HTTP endpoints, checking internal application state, or

performing complex health checks that require specific tools.

Example:

Attempts to open a TCP socket on the container's IP address and a specified port. The

probe is successful if the TCP connection can be established.

Use Cases: Databases, message queues, or any application that communicates over a

TCP port but might not have an HTTP endpoint.

Example:

livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 15

 periodSeconds: 20

exec Action

readinessProbe:

 exec:

 command:

 - cat

 - /tmp/healthy

 initialDelaySeconds: 5

 periodSeconds: 5

TCP Socket Action

Health Checks - Alauda Container Platform

Liveness vs. Readiness:

Liveness: If your application is unresponsive, it's better to restart it. If it fails, Kubernetes

will restart it.

Readiness: If your application is temporarily unable to serve traffic (e.g., connecting to a

database), but might recover without a restart, use a Readiness Probe. This prevents

traffic from being routed to an unhealthy instance.

Startup Probes for Slow Applications: Use Startup Probes for applications that take a

significant amount of time to initialize. This prevents premature restarts due to Liveness

Probe failures or traffic routing issues due to Readiness Probe failures during startup.

Lightweight Probes: Ensure your probe endpoints are lightweight and perform quickly.

They should not involve heavy computation or external dependencies (like database calls)

that could make the probe itself unreliable.

Meaningful Checks: Probe checks should genuinely reflect the health and readiness of

your application, not just whether the process is running. For example, for a web server,

check if it can serve a basic page, not just if the port is open.

Adjust initialDelaySeconds: Set initialDelaySeconds appropriately to give your

application enough time to start before the first probe.

Tune periodSeconds and failureThreshold: Balance the need for quick detection of

failures with avoiding false positives. Too frequent probes or too low a failureThreshold can

lead to unnecessary restarts or unready states.

Logs for Debugging: Ensure your application logs clear messages related to health check

endpoint calls and internal state to aid in debugging probe failures.

Combine Probes: Often, all three probes (Liveness, Readiness, Startup) are used

together to manage application lifecycle effectively.

startupProbe:

 tcpSocket:

 port: 3306

 initialDelaySeconds: 5

 periodSeconds: 10

 failureThreshold: 30

Best Practices

Health Checks - Alauda Container Platform

YAML file example

spec:

 template:

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2 # Container image

 ports:

 - containerPort: 80 # Container exposed port

 startupProbe:

 httpGet:

 path: /startup-check

 port: 8080

 initialDelaySeconds: 0 # Usually 0 for startup probes, or very smal

 periodSeconds: 5

 failureThreshold: 60 # Allows 60 * 5 = 300 seconds (5 minutes) for

 livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 5 # Delay 5 seconds after Pod starts before c

 periodSeconds: 10 # Check every 10 seconds

 timeoutSeconds: 5 # Timeout after 5 seconds

 failureThreshold: 3 # Consider unhealthy after 3 consecutive fa

 readinessProbe:

 httpGet:

 path: /ready

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 10

 timeoutSeconds: 5

 failureThreshold: 3

Health Checks - Alauda Container Platform

Parameters Description

Initial Delay
initialDelaySeconds : Grace period (seconds) before starting

probes. Default: 300 .

Period periodSeconds : Probe interval (1-120s). Default: 60 .

Timeout timeoutSeconds : Probe timeout duration (1-300s). Default: 30 .

Success

Threshold

successThreshold : Minimum consecutive successes to mark

healthy. Default: 0 .

Failure

Threshold

failureThreshold : Maximum consecutive failures to trigger

action:

- 0 : Disables failure-based actions

- Default: 5 failures → container restart.

Parameter
Applicable
Protocols

Description

Protocol HTTP/HTTPS Health check protocol

Port HTTP/HTTPS/TCP Target container port for probing.

Path HTTP/HTTPS Endpoint path (e.g., /healthz).

HTTP

Headers
HTTP/HTTPS Custom headers (Add key-value pairs).

Health Checks configuration parameters by using web
console

Common parameters

Protocol specific parameters

Health Checks - Alauda Container Platform

Parameter
Applicable
Protocols

Description

Command EXEC

Container-executable check command (e.g.,

sh -c "curl -I localhost:8080 | grep

OK").

Note: Escape special characters and test

command viability.

When a Pod's status indicates issues related to probes, here's how to troubleshoot:

Look for events related to LivenessProbe failed, ReadinessProbe failed, or StartupProbe

failed. These events often provide specific error messages (e.g., connection refused, HTTP

500 error, command exit code).

Examine application logs to see if there are errors or warnings around the time the probe

failed. Your application might be logging why its health endpoint isn't responding correctly.

HTTP: If possible, kubectl exec -it <pod-name> -- curl <probe-path>:<probe-

port> or wget from within the container to see the actual response.

Troubleshooting probe failures

Check pod events

kubectl describe pod <pod-name>

View container logs

kubectl logs <pod-name> -c <container-name>

Test probe endpoint manually

Health Checks - Alauda Container Platform

Exec: Run the probe command manually: kubectl exec -it <pod-name> -- <command-

from-probe> and check its exit code and output.

TCP: Use nc (netcat) or telnet from another Pod in the same network or from the host

if allowed, to test TCP connectivity: kubectl exec -it <another-pod> -- nc -vz <pod-

ip> <probe-port> .

Double-check the probe parameters (path, port, command, delays, thresholds) in your

Deployment/Pod YAML. A common mistake is an incorrect port or path.

Ensure your application's health check endpoint is correctly implemented and truly reflects

the application's readiness/liveness. Sometimes, the endpoint might return success even

when the application itself is broken.

Insufficient CPU or memory resources could cause your application to become

unresponsive, leading to probe failures. Check Pod resource usage (kubectl top pod

<pod-name>) and consider adjusting resources limits/requests.

In rare cases, network policies or CNI issues might prevent probes from reaching the

container. Verify network connectivity within the cluster.

Review probe configuration

Check application code

Resource constraints

Network issues

Health Checks - Alauda Container Platform

Monitoring Dashboards

Logs

Events

Application Observability

Prerequisites

Namespace-Level Monitoring Dashboards

Workload-Level Monitoring

Procedure

Procedure

Event records interpretation

Menu

Application Observability - Alauda Container Platform

Supports viewing resource monitoring data for workload components on the platform for

the past 7 days (with configurable monitoring data retention period). Includes statistics for

applications, workloads, pods, and trends/rankings of CPU/memory usage.

Supports Namespace-Level monitoring.

Supported Workload-Level Monitoring: Applications, Deployments, DaemonSets,

StatefulSets, and Pods

Prerequisites

Namespace-Level Monitoring Dashboards

Procedure

Creating Namespace-Level Monitoring Dashboard

Workload-Level Monitoring

Default Monitoring Dashboard

Procedure

Metric interpretation

Custom Monitoring Dashboard

Installation of Monitoring Plugins

Monitoring Dashboards

TOC

Prerequisites

Menu ON THIS PAGE

Monitoring Dashboards - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/install_monitor.html

1.

Container Platform, click Observe > Dashboards.

2.

View monitoring data under the namespace. Three dashboards are provided: Applications

Overview, Workloads Overview, and Pods Overview.

3.

Switch between dashboards to monitor target Overview.

1. Platform Management, create a dedicated monitoring dashboard by referring to

Creating Monitoring Dashboard to create a dedicated monitoring dashboard.

2. Configure the following labels to display the Namespace-Level Monitoring dashboard on

the Container Platform:

cpaas.io/dashboard.folder: container-platform

cpaas.io/dashboard.tag.overview: "true"

This procedure demonstrates how to view pod monitoring through the Deployment

interface.

Namespace-Level Monitoring Dashboards

Procedure

Creating Namespace-Level Monitoring Dashboard

Workload-Level Monitoring

Default Monitoring Dashboard

Monitoring Dashboards - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html#%EF%BD%9B

1.

Container Platform, click Workloads > Deployments.

2.

Click a Deployment name from the list.

3.

Navigate to the Monitoring tab to view default monitoring metrics.

Monitoring
Resource

Metric Granularity Technical Definition

CPU Utilization/Usage

Utilization = Usage/Limit (limits)

Assess container limit configuration.

High utilization indicates insufficient

limits.

Usage represents actual resource

consumption.

Memory Utilization/Usage

Utilization = Usage/Limit (limits)

Evaluation method same as CPU. High

rate may cause component instability.

Network

Traffic

Inflow Rate/Outflow

Rate

Network traffic (bytes/sec) flowing

into/out of pods.

Network

Packet

Receiving

Rate/Transmit Rate

Network packets (count/sec)

received/sent by pods.

Disk Rate Read/Write
Read/write throughput (bytes/sec) of

mounted volumes per workload.

Disk IOPS Read/Write

Input/Output Operations Per Second

(IOPS) of mounted volumes per

workload.

Procedure

Metric interpretation

Monitoring Dashboards - Alauda Container Platform

1. Click the Toggle Icon to switch to custom dashboards. Refer to Add Pannel in Custom

Dashboard to create dedicated Workload-Level monitoring dashboard.

INFO

Hover over chart curves to view per-pod metrics and PromQL expressions at specific timestamps. If

exceeding 15 pods, only top 15 entries sorted in descending order are displayed.

Custom Monitoring Dashboard

Monitoring Dashboards - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html
http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html

Aggregate container runtime logs with visual query capabilities. When applications, workloads,

or other resources exhibit abnormal behavior, log analysis helps diagnose root causes.

Procedure

This procedure demonstrates how to view container runtime logs through the Deployment

interface.

1.

Container Platform, click Workloads > Deployments.

2.

Click a Deployment name from the list.

3.

Navigate to the Logs tab to view detailed records.

Operation Description

Pod/Container
Switch between Pods and Containers using the dropdown

selector to view the corresponding logs.

Logs

TOC

Procedure

Menu ON THIS PAGE

Logs - Alauda Container Platform

Operation Description

Previous

Logs

View logs from terminated containers (available when container

restartCount > 0).

Lines Configure display log buffer size: 1K/10K/100K lines.

Wrap Line Toggle line wrapping for long log entries (enabled by default).

Find Full-text search with highlight matching and Enter-to-navigate.

Raw
Unprocessed log streams directly captured from container runtime

interfaces (CRI) without formatting, filtering, or truncation.

Export Download raw logs.

Full Screen Click truncated line to view full content in modal dialog.

WARNING

Truncation Handling: Log entries exceeding 2000 characters will be truncated with an ellipsis

...

Trimmed portions cannot be matched by the page's find function.

Click the ellipsis ... marker in truncated lines to view full content in a modal dialog.

Copy Reliability: Avoid direct copying from rendered log viewer when seeing truncation

markers (...) or ANSI color codes. Always use Export, Raw function for complete logs.

Retention Policy: Live logs follow Kubernetes log rotation configuration. For historical analysis,

use Logs under Observe.

Logs - Alauda Container Platform

http://localhost:4173/container_platform/observability/log/functions/log.html

Event information generated by Kubernetes resource state changes and operational status

updates, with integrated visual query interface.When applications, workloads, or other

resources encounter exceptions, real-time event analysis helps troubleshoot root causes.

Procedure

Event records interpretation

This procedure demonstrates how to view container runtime evens through the Deployment

interface.

1.

Container Platform, click Workloads > Deployments.

2.

Click a Deployment name from the list.

3.

Navigate to the Events tab to view detailed records.

Events

TOC

Procedure

Menu ON THIS PAGE

Events - Alauda Container Platform

Resource event records: Below the event summary panel, all matching events within the

specified time range are listed. Click event cards to view complete event details. Each card

displays:

Resource Type: Kubernetes resource type represented by icon abbreviations:

P = Pod

RS = ReplicaSet

D = Deployment

SVC = Service

Resource Name: Target resource named.

Event Reason: Kubernetes-reported reason (e.g., FailedScheduling).

Event Level: Event severity.

Normal : Informational

Warning : Requires immediate attention

Time: Last Occurrence time, Occurrence Count.

INFO

Kubernetes allows administrators to configure event retention periods through the Event TTL

controller with a default retention period of 1 hour. Expired events are automatically purged by the

system. For comprehensive historical records, access the All Events.

Event records interpretation

Events - Alauda Container Platform

http://localhost:4173/container_platform/observability/event/event.html

Deployments

DaemonSets

StatefulSets

CronJobs

Workloads

Understanding Deployments

Creating Deployments

Managing Deployments

Troubleshooting by using CLI

Understanding DaemonSets

Creating DaemonSets

Managing DaemonSets

Understanding StatefulSets

Creating StatefulSets

Managing StatefulSets

Understanding CronJobs

Creating CronJobs

Execute Immediately

Deleting CronJobs

Menu

Workloads - Alauda Container Platform

Jobs
Understanding Jobs

YAML file example

Execution Overview

Workloads - Alauda Container Platform

Understanding Deployments

Creating Deployments

Creating a Deployment by using CLI

Prerequisites

YAML file example

Creating a Deployment via YAML

Creating a Deployment by using web console

Prerequisites

Procedure - Configure Basic Info

Procedure - Configure Pod

Procedure - Configure Containers

Reference Information

Heath Checks

Managing Deployments

Managing a Deployment by using CLI

Viewing a Deployment

Updating a Deployment

Scaling a Deployment

Rolling Back a Deployment

Deleting a Deployment

Managing a Deployment by using web console

Viewing a Deployment

Updating a Deployment

Deleting a Deployment

Deployments

TOC

Menu ON THIS PAGE

Deployments - Alauda Container Platform

Troubleshooting by using CLI

Check Deployment status

Check ReplicaSet status

Check Pod status

View Logs

Enter Pod for debugging

Check Health configuration

Check Resource Limits

Refer to the official Kubernetes documentation: Deployments

Deployment is a Kubernetes higher-level workload resource used to declaratively manage

and update Pod replicas for your applications. It provides a robust and flexible way to

define how your application should run, including how many replicas to maintain and how to

safely perform rolling updates.

A Deployment is an object in the Kubernetes API that manages Pods and ReplicaSets. When

you create a Deployment, Kubernetes automatically creates a ReplicaSet, which is then

responsible for maintaining the specified number of Pod replicas.

By using Deployments, you can:

Declarative Management: Define the desired state of your application, and Kubernetes

automatically ensures the cluster's actual state matches the desired state.

Version Control and Rollback: Track each revision of a Deployment and easily roll back to a

previous stable version if issues arise.

Zero-Downtime Updates: Gradually update your application using a rolling update strategy

without service interruption.

Self-Healing: Deployments automatically replace Pod instances if they crash, are

terminated, or are removed from a node, ensuring the specified number of Pods are always

available.

Understanding Deployments

↗

Deployments - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

How it works:

1. You define the desired state of your application through a Deployment (e.g., which image

to use, how many replicas to run).

2. The Deployment creates a ReplicaSet to ensure the specified number of Pods are

running.

3. The ReplicaSet creates and manages the actual Pod instances.

4. When you update a Deployment (e.g., change the image version), the Deployment

creates a new ReplicaSet and gradually replaces the old Pods with new ones according to

the predefined rolling update strategy until all new Pods are running, then it removes the

old ReplicaSet.

Ensure you have kubectl configured and connected to your cluster.

Creating Deployments

Creating a Deployment by using CLI

Prerequisites

YAML file example

Deployments - Alauda Container Platform

example-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment # Name of the Deployment

 labels:

 app: nginx # Labels for identification and selection

spec:

 replicas: 3 # Desired number of Pod replicas

 selector:

 matchLabels:

 app: nginx # Selector to match Pods managed by this Deployment

 template:

 metadata:

 labels:

 app: nginx # Pod's labels, must match selector.matchLabels

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2 # Container image

 ports:

 - containerPort: 80 # Container exposed port

 resources: # Resource limits and requests

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 200m

 memory: 256Mi

Creating a Deployment via YAML

Step 1: Create Deployment via yaml

kubectl apply -f example-deployment.yaml

Step 2: Check the Deployment status

kubectl get deployment nginx-deployment # View Deployment

kubectl get pod -l app=nginx # View Pods created by this Deployment

Deployments - Alauda Container Platform

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

1.

Container Platform, navigate to Workloads > Deployments in the left sidebar.

2.

Click on Create Deployment.

3.

Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

1.

In the Basic Info section, configure declarative parameters for Deployment workloads:

Creating a Deployment by using web console

Prerequisites

Procedure - Configure Basic Info

Deployments - Alauda Container Platform

Parameters Description

Replicas
Defines the desired number of Pod replicas in the Deployment

(default: 1). Adjust based on workload requirements.

More > Update

Strategy

Configures the rollingUpdate strategy for zero-downtime

deployments:

Max surge (maxSurge):

Maximum number of Pods that can exceed the desired replica

count during an update.

Accepts absolute values (e.g., 2) or percentages (e.g.,

20%).

Percentage calculation: ceil(current_replicas ×

percentage) .

Example: 4.1 → 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

Maximum number of Pods that can be temporarily unavailable

during an update.

Percentage values cannot exceed 100% .

Percentage calculation: floor(current_replicas ×

percentage) .

Example: 4.9 → 4 when calculated from 10 replicas.

Notes:

1. Default values: maxSurge=1 , maxUnavailable=1 if not

explicitly set.

2. Non-running Pods (e.g., in Pending / CrashLoopBackOff

states) are considered unavailable.

3. Simultaneous constraints:

maxSurge and maxUnavailable cannot both be 0 or 0% .

If percentage values resolve to 0 for both parameters,

Kubernetes forces maxUnavailable=1 to ensure update

progress.

Deployments - Alauda Container Platform

Parameters Description

Example:

For a Deployment with 10 replicas:

maxSurge=2 → Total Pods during update: 10 + 2 = 12 .

maxUnavailable=3 → Minimum available Pods: 10 - 3 =

7 .

This ensures availability while allowing controlled rollout.

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper

Node Affinity Rules are configured for Pod scheduling.

1.

Pod section, configure container runtime parameters and lifecycle management:

Parameters Description

Volumes

Mount persistent volumes to containers. Supported volume types

include PVC , ConfigMap , Secret , emptyDir , hostPath , and

so on. For implementation details, see Volume Mounting Guide.

Pull Secret

Required only when pulling images from third-party registries (via

manual image URL input).

Note: Secret for authentication when pulling image from a secured

registry.

Close Grace

Period

Duration (default: 30s) allowed for a Pod to complete graceful

shutdown after receiving termination signal.

- During this period, the Pod completes inflight requests and

releases resources.

- Setting 0 forces immediate deletion (SIGKILL), which may

cause request interruptions.

1. Node Affinity Rules

Procedure - Configure Pod

Deployments - Alauda Container Platform

Parameters Description

More >

Node

Selector

Constrain Pods to nodes with specific labels (e.g. kubernetes.io/os:

linux).

More >

Affinity

Define fine-grained scheduling rules based on existing.

Affinity Types:

Pod Affinity: Schedule new Pods to nodes hosting specific

Pods(same topology domain).

Pod Anti-affinity: Prevent co-location of new Pods with specific

Pods.

Enforcement Modes:

requiredDuringSchedulingIgnoredDuringExecution : Pods are

scheduled only if rules are satisfied.

preferredDuringSchedulingIgnoredDuringExecution : Prioritize

nodes meeting rules, but allow exceptions.

Configuration Fields:

topologyKey : Node label defining topology domains

(default: kubernetes.io/hostname).

labelSelector : Filters target Pods using label queries.

1.

Network Configuration

Kube-OVN

Parameters Description

Bandwidth

Limits

Enforce QoS for Pod network traffic:

Egress rate limit: Maximum outbound traffic rate (e.g.,

10Mbps).

Deployments - Alauda Container Platform

Parameters Description

Ingress rate limit: Maximum inbound traffic rate.

Subnet
Assign IPs from a predefined subnet pool. If unspecified, uses

the namespace's default subnet.

Static IP

Address

Bind persistent IP addresses to Pods:

Multiple Pods across Deployments can claim the same IP,

but only one Pod can use it concurrently.

Critical: Number of static IPs must ≥ Pod replica count.

Calico

Parameters Description

Static IP Address

Assign fixed IPs with strict uniqueness:

Each IP can be bound to only one Pod in the cluster.

Critical: Static IP count must ≥ Pod replica count.

1.

Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource

Requests & Limits
Requests: Minimum CPU/memory required for container

operation.

Limits: Maximum CPU/memory allowed during container

execution. For unit definitions, see Resource Units.

Namespace overcommit ratio:

Procedure - Configure Containers

Deployments - Alauda Container Platform

Parameters Description

Without overcommit ratio:

If namespace resource quotas exist: Container

requests/limits inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

With overcommit ratio:

Requests auto-calculated as Limits / Overcommit

ratio (immutable).

Constraints:

Request ≤ Limit ≤ Namespace quota maximum.

Overcommit ratio changes require pod recreation to take

effect.

Overcommit ratio disables manual request configuration.

No namespace quotas → no container resource

constraints.

Extended

Resources

Configure cluster-available extended resources (e.g., vGPU,

pGPU).

Volume Mounts

Persistent storage configuration. See Storage Volume

Mounting Instructions.

Operations:

Existing pod volumes: Click Add

No pod volumes: Click Add & Mount

Parameters:

mountPath : Container filesystem path (e.g., /data)

subPath : Relative file/directory path within volume.

For ConfigMap / Secret : Select specific key

readOnly : Mount as read-only (default: read-write)

See Kubernetes Volumes .↗

Deployments - Alauda Container Platform

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

Parameters Description

Ports

Expose container ports.

Example: Expose TCP port 6379 with name redis .

Fields:

protocol : TCP/UDP

Port : Exposed port (e.g., 6379)

name : DNS-compliant identifier (e.g., redis)

Startup

Commands &

Arguments

Override default ENTRYPOINT/CMD:

Example 1: Execute top -b

- Command: ["top", "-b"]

- OR Command: ["top"] , Args: ["-b"]

Example 2: Output $MESSAGE :

/bin/sh -c "while true; do echo $(MESSAGE); sleep

10; done"

See Defining Commands .

More >

Environment

Variables

Static values: Direct key-value pairs

Dynamic values: Reference ConfigMap/Secret keys, pod

fields (fieldRef), resource metrics

(resourceFieldRef)

Note: Env variables override image/configuration file settings.

More > Referenced

ConfigMaps

Inject entire ConfigMap/Secret as env variables. Supported

Secret types: Opaque , kubernetes.io/basic-auth .

More > Health

Checks

Liveness Probe: Detect container health (restart if failing)

Readiness Probe: Detect service availability (remove

from endpoints if failing)

See Health Check Parameters.

More > Log Files Configure log paths:

- Default: Collect stdout

↗

Deployments - Alauda Container Platform

https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Parameters Description

- File patterns: e.g., /var/log/*.log

Requirements:

Storage driver overlay2 : Supported by default

devicemapper : Manually mount EmptyDir to log directory

Windows nodes: Ensure parent directory is mounted (e.g.,

c:/a for c:/a/b/c/*.log)

More > Exclude

Log Files

Exclude specific logs from collection (e.g.,

/var/log/aaa.log).

More > Execute

before Stopping

Execute commands before container termination.

Example: echo "stop"

Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2.

Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

2.1. Start before app containers (sequential execution).

2.2. Release resources after completion.

2.3. Deletion allowed when:

Pod has >1 app container AND ≥1 init container.

Not allowed for single-app-container pods.

3.

Click Create.

↗

Reference Information
Storage Volume Mounting instructions

Deployments - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Type Purpose

Persistent

Volume Claim

Binds an existing PVC to request persistent storage.

Note: Only bound PVCs (with associated PV) are selectable.

Unbound PVCs will cause pod creation failures.

ConfigMap

Mounts full/partial ConfigMap data as files:

Full ConfigMap: Creates files named after keys under mount

path

Subpath selection: Mount specific key (e.g., my.cnf)

Secret

Mounts full/partial Secret data as files:

Full Secret: Creates files named after keys under mount path

Subpath selection: Mount specific key (e.g., tls.crt)

Ephemeral

Volumes

Cluster-provisioned temporary volume with features:

Dynamic provisioning

Lifecycle tied to pod

Supports declarative configuration

Use Case: Temporary data storage. See Ephemeral Volumes

Empty Directory

Ephemeral storage sharing between containers in same pod:

- Created on node when pod starts

- Deleted with pod removal

Use Case: Inter-container file sharing, temporary data storage.

See EmptyDir

Host Path
Mounts host machine directory (must start with / , e.g.,

/volumepath).

Heath Checks

Deployments - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html
http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Health checks YAML file example

Health checks configuration parameters in web console

Check the Deployment was created.

Get details of your Deployment.

Follow the steps given below to update your Deployment:

1. Let's update the nginx Pods to use the nginx

.16.1 image.

or use the following command:

Alternatively, you can edit the Deployment and change

.spec.template.spec.containers[0].image from nginx:1.14.2 to nginx:1.16.1 :

Managing Deployments

Managing a Deployment by using CLI

Viewing a Deployment

 kubectl get deployments

kubectl describe deployments

Updating a Deployment

kubectl set image deployment.v1.apps/nginx-deployment nginx=nginx:1.16.1

kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1

Deployments - Alauda Container Platform

1. To see the rollout status, run:

Run kubectl get rs to see that the Deployment updated the Pods by creating a new

ReplicaSet and scaling it up to 3 replicas, as well as scaling down the old ReplicaSet to 0

replicas.

Running get pods should now show only the new Pods:

You can scale a Deployment by using the following command:

Suppose that you made a typo while updating the Deployment, by putting the image name

as nginx:1.161 instead of nginx:1.16.1 :

The rollout gets stuck. You can verify it by checking the rollout status:

kubectl edit deployment/nginx-deployment

kubectl rollout status deployment/nginx-deployment

kubectl get rs

kubectl get pods

Scaling a Deployment

kubectl scale deployment/nginx-deployment --replicas=10

Rolling Back a Deployment

kubectl set image deployment/nginx-deployment nginx=nginx:1.161

kubectl rollout status deployment/nginx-deployment

Deployments - Alauda Container Platform

Deleting a Deployment will also delete its managed ReplicaSet and all associated Pods.

You can view a deployment to get information of your application.

1. Container Platform, and navigate to Workloads > Deployments.

2. Locate the Deployment you wish to view.

3. Click the deployment name to see the Details, Topology, Logs, Events, Monitoring,

etc.

1. Container Platform, and navigate to Workloads > Deployments.

2. Locate the Deployment you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit Deployment page.

1. Container Platform, and navigate to Workloads > Deployments.

2. Locate the Deployment you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

When a Deployment encounters issues, here are some common troubleshooting methods.

Deleting a Deployment

kubectl delete deployment <deployment-name>

Managing a Deployment by using web console

Viewing a Deployment

Updating a Deployment

Deleting a Deployment

Troubleshooting by using CLI

Deployments - Alauda Container Platform

Ensure livenessProbe and readinessProbe are correctly configured, and your application's

health check endpoints are responding properly. Troubleshooting probe failures

Check Deployment status

kubectl get deployment nginx-deployment

kubectl describe deployment nginx-deployment # View detailed events and statu

Check ReplicaSet status

kubectl get rs -l app=nginx

kubectl describe rs <replicaset-name>

Check Pod status

kubectl get pods -l app=nginx

kubectl describe pod <pod-name>

View Logs

kubectl logs <pod-name> -c <container-name> # View logs for a specific contai

kubectl logs <pod-name> --previous # View logs for the previously ter

Enter Pod for debugging

kubectl exec -it <pod-name> -- /bin/bash # Enter the container shell

Check Health configuration

Check Resource Limits

Deployments - Alauda Container Platform

Ensure container resource requests and limits are reasonable and that containers are not

being killed due to insufficient resources.

Deployments - Alauda Container Platform

Understanding DaemonSets

Creating DaemonSets

Creating a DaemonSet by using CLI

Prerequisites

YAML file example

Creating a DaemonSet via YAML

Creating a DaemonSet by using web console

Prerequisites

Procedure - Configure Basic Info

Procedure - Configure Pod

Procedure - Configure Containers

Procedure - Create

Managing DaemonSets

Managing a DaemonSet by using CLI

Viewing a DaemonSet

Updating a DaemonSet

Deleting a DaemonSet

Managing a DaemonSet by using web console

Viewing a DaemonSet

Updating a DaemonSet

Deleting a DaemonSet

DaemonSets

TOC

Menu ON THIS PAGE

DaemonSets - Alauda Container Platform

Refer to the official Kubernetes documentation: DaemonSets

A DaemonSet is a Kubernetes controller that ensures all (or a subset of) cluster nodes run

exactly one replica of a specified Pod. Unlike Deployments, DaemonSets are node-centric

rather than application-centric, making them ideal for deploying cluster-wide infrastructure

services such as log collectors, monitoring agents, or storage daemons.

WARNING

DaemonSet Operational Notes

1.

Behavior Characteristics

Pod Distribution: A DaemonSet deploys exactly one Pod replica per schedulable Node that

matches its criteria:

Deploys exactly one Pod replica per schedulable node matching:

Matches nodeSelector or nodeAffinity criteria (if specified).

Is not in the NotReady state.

Does not have NoSchedule or NoExecute Taints unless corresponding

Tolerations are configured in the Pod Template.

Pod Count Formula: The number of Pods managed by a DaemonSet equals the number

of qualified Nodes.

Dual-Role Node Handling: Nodes serving both Control Plane and Worker Node roles will

only run one Pod instance of the DaemonSet, regardless of their role labels, provided they

are schedulable.

2.

Key Constraints (Excluded Nodes)

Nodes explicitly marked Unschedulable: true (e.g., via kubectl cordon).

Nodes with a NotReady status.

Understanding DaemonSets

↗

DaemonSets - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Nodes having incompatible Taints without matching Tolerations configured in the

DaemonSet's Pod Template.

Ensure you have kubectl configured and connected to your cluster.

Creating DaemonSets

Creating a DaemonSet by using CLI

Prerequisites

YAML file example

DaemonSets - Alauda Container Platform

example-daemonSet.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: fluentd-elasticsearch

 namespace: kube-system

 labels:

 k8s-app: fluentd-logging

spec:

 selector: # defines how the DaemonSet identifies its managed Pods. Must mat

 matchLabels:

 name: fluentd-elasticsearch

 updateStrategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 template: # defines the Pod Template for the DaemonSet. Each Pod created by

 metadata:

 labels:

 name: fluentd-elasticsearch

 spec:

 tolerations: # these tolerations are to have the daemonset runnable on

 - key: node-role.kubernetes.io/control-plane

 operator: Exists

 effect: NoSchedule

 - key: node-role.kubernetes.io/master

 operator: Exists

 effect: NoSchedule

 containers:

 - name: fluentd-elasticsearch

 image: quay.io/fluentd_elasticsearch/fluentd:v2.5.2

 resources:

 limits:

 memory: 200Mi

 requests:

 cpu: 100m

 memory: 200Mi

 volumeMounts:

 - name: varlog

 mountPath: /var/log

 # it may be desirable to set a high priority class to ensure that a Dae

 # preempts running Pods

 # priorityClassName: important

i i i d d

DaemonSets - Alauda Container Platform

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

1.

Container Platform, navigate to Workloads > DaemonSets in the left sidebar.

2.

Click Create DaemonSet.

 terminationGracePeriodSeconds: 30

 volumes:

 - name: varlog

 hostPath:

 path: /var/log

Creating a DaemonSet via YAML

Step 1: To create the DaemonSet defined in *example-daemonSet.yaml*, execut

kubectl apply -f example-daemonSet.yaml

Step 2: To verify the creation and status of your DaemonSet and its associa

kubectl get daemonset fluentd-elasticsearch # View DaemonSet

kubectl get pods -l name=fluentd-elasticsearch -o wide # Check Pods managed b

Creating a DaemonSet by using web console

Prerequisites

Procedure - Configure Basic Info

DaemonSets - Alauda Container Platform

3.

Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

In the Basic Info section, configure declarative parameters for DaemonSet workloads:

Parameters Description

More >

Update

Strategy

Configures the rollingUpdate strategy for zero-downtime updates

of DaemonSet Pods.

Max unavailable (maxUnavailable): The maximum number of

Pods that can be temporarily unavailable during an update. Accepts

absolute values (e.g., 1) or percentages (e.g., 10%).

Example: If there are 10 nodes and maxUnavailable is 10%, then

floor(10 * 0.1) = 1 Pod can be unavailable.

Notes:

Default Values: If not explicitly set, maxSurge defaults to 0 and

maxUnavailable defaults to 1 (or 10% if maxUnavailable is

specified as a percentage).

Non-running Pods: Pods in states like Pending or

CrashLoopBackOff are considered unavailable.

Simultaneous Constraints: maxSurge and maxUnavailable

cannot both be 0 or 0%. If percentage values resolve to 0 for both

parameters, Kubernetes forces maxUnavailable=1 to ensure

update progress.

Procedure - Configure Pod

DaemonSets - Alauda Container Platform

Pod section, please refer to Deployment - Configure Pod

Containers section, please refer to Deployment - Configure Containers

Click Create.

After clicking Create, the DaemonSet will:

✅ Automatically deploy Pod replicas to all eligible Nodes meeting:

nodeSelector criteria (if defined).

tolerations configuration (allowing scheduling on tainted nodes).

Node is in Ready state and Schedulable: true .

❌ Excluded Nodes:

Nodes with a NoSchedule taint (unless explicitly tolerated).

Manually cordoned Nodes (kubectl cordon).

Nodes in NotReady or Unschedulable states.

To get a summary of all DaemonSets in a namespace.

Procedure - Configure Containers

Procedure - Create

Managing DaemonSets

Managing a DaemonSet by using CLI

Viewing a DaemonSet

kubectl get daemonsets -n <namespace>

DaemonSets - Alauda Container Platform

To get detailed information about a specific DaemonSet, including its events and Pod

status

When you modify the Pod Template of a DaemonSet (e.g., changing the container image or

adding a volume mount), Kubernetes automatically performs a rolling update by default (if

updateStrategy.type is RollingUpdate , which is the default).

First, edit the YAML file (e.g., example-daemonset.yaml) with the desired changes, then

apply it:

You can monitor the progress of the rolling update:

To delete a DaemonSet and all the Pods it manages:

1. Container Platform, and navigate to Workloads > DaemonSets.

2. Locate the DaemonSet you wish to view.

3. Click the DaemonSet name to see the Details, Topology, Logs, Events, Monitoring,

etc.

kubectl describe daemonset <daemonset-name>

Updating a DaemonSet

kubectl apply -f example-daemonset.yaml

kubectl rollout status daemonset/<daemonset-name>

Deleting a DaemonSet

kubectl delete daemonset <daemonset-name>

Managing a DaemonSet by using web console

Viewing a DaemonSet

DaemonSets - Alauda Container Platform

1. Container Platform, and navigate to Workloads > DaemonSets.

2. Locate the DaemonSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit DaemonSet page, you

can update Replicas , image , updateStrategy , etc.

1. Container Platform, and navigate to Workloads > DaemonSets.

2. Locate the DaemonSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

Updating a DaemonSet

Deleting a DaemonSet

DaemonSets - Alauda Container Platform

Understanding StatefulSets

Creating StatefulSets

Creating a StatefulSet by using CLI

Prerequisites

YAML file example

Creating a StatefulSet via YAML

Creating a StatefulSet by using web console

Prerequisites

Procedure - Configure Basic Info

Procedure - Configure Pod

Procedure - Configure Containers

Procedure - Create

Heath Checks

Managing StatefulSets

Managing a StatefulSet by using CLI

Viewing a StatefulSet

Scaling a StatefulSet

Updating a StatefulSet (Rolling Update)

Deleting a StatefulSet

Managing a StatefulSet by using web console

Viewing a StatefulSet

Updating a StatefulSet

Deleting a StatefulSet

StatefulSets

TOC

Menu ON THIS PAGE

StatefulSets - Alauda Container Platform

Refer to the official Kubernetes documentation: StatefulSets

StatefulSet is a Kubernetes workload API object designed to manage stateful applications by

providing:

Stable network identity: DNS hostname <statefulset-name>-<ordinal>.<service-

name>.ns.svc.cluster.local .

Stable persistent storage: via volumeClaimTemplates .

Ordered deployment/scaling: sequential Pod creation/deletion: Pod-0 → Pod-1 → Pod-N.

Ordered rolling updates: reverse-ordinal Pod updates: Pod-N → Pod-0.

In distributed systems, multiple StatefulSets can be deployed as discrete components to

deliver specialized stateful services (e.g., Kafka brokers, MongoDB shards).

Ensure you have kubectl configured and connected to your cluster.

Understanding StatefulSets

↗

Creating StatefulSets

Creating a StatefulSet by using CLI

Prerequisites

YAML file example

StatefulSets - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

example-statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: web

spec:

 selector:

 matchLabels:

 app: nginx # has to match .spec.template.metadata.labels

 serviceName: "nginx" # this headless Service is responsible for the network

 replicas: 3 # defines the desired number of Pod replicas (default: 1)

 minReadySeconds: 10 # by default is 0

 template: # defines the Pod template for the StatefulSet

 metadata:

 labels:

 app: nginx # has to match .spec.selector.matchLabels

 spec:

 terminationGracePeriodSeconds: 10

 containers:

 - name: nginx

 image: registry.k8s.io/nginx-slim:0.24

 ports:

 - containerPort: 80

 name: web

 volumeMounts:

 - name: www

 mountPath: /usr/share/nginx/html

 volumeClaimTemplates: # defines PersistentVolumeClaim (PVC) templates. Each

 - metadata:

 name: www

 spec:

 accessModes: ["ReadWriteOnce"]

 storageClassName: "my-storage-class"

 resources:

 requests:

 storage: 1Gi

example-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: nginx

 labels:

i

StatefulSets - Alauda Container Platform

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

1.

Container Platform, navigate to Workloads > StatefulSets in the left sidebar.

 app: nginx

spec:

 ports:

 - port: 80

 name: web

 clusterIP: None

 selector:

 app: nginx

Creating a StatefulSet via YAML

Step 1: To create the StatefulSet defined in *example-statefulset.yaml*, ex

kubectl apply -f example-statefulset.yaml

Step 2: To verify the creation and status of your StatefulSet and its assoc

kubectl get statefulset web # View StatefulSet

kubectl get pods -l app=nginx # Check Pods managed by this StatefulSet

kubectl get pvc -l app=nginx # Check PVCs created by volumeClaimTemplates

Creating a StatefulSet by using web console

Prerequisites

Procedure - Configure Basic Info

StatefulSets - Alauda Container Platform

2.

Click Create StatefulSet.

3.

Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

In the Basic Info section, configure declarative parameters for StatefulSet workloads:

Parameters Description

Replicas

Defines the desired number of Pod replicas in the StatefulSet (default:

1). Adjust based on workload requirements and expected request

volume.

Update

Strategy

Controls phased updates during StatefulSet rolling updates. The

RollingUpdate strategy is default and recommended.

Partition value: Ordinal threshold for Pod updates.

Pods with index ≥ partition update immediately.

Pods with index < partition retain previous spec.

Example:

Replicas=5 (Pods: web-0 ~ web-4)

Partition=3 (Updates web-3 & web-4 only)

Volume

Claim

Templates

volumeClaimTemplates is a critical feature of StatefulSets that

enables dynamic per-Pod persistent storage provisioning. Each Pod

replica in a StatefulSet automatically gets its own dedicated

PersistentVolumeClaim (PVC) based on predefined templates.

StatefulSets - Alauda Container Platform

Parameters Description

1. Dynamic PVC Creation: Automatically creates unique PVCs for

each Pod with a naming pattern: <statefulset-name>-<claim-

template-name>-<pod-ordinal> . Example: web-www-web-0 ,

web-www-web-1 .

2. Access Modes: Supports all Kubernetes access modes.

ReadWriteOnce (RWO - single-node read/write)

ReadOnlyMany (ROX - multi-node read-only)

ReadWriteMany (RWX - multi-node read/write).

3. Storage Class: Specify the storage backend via

storageClassName. It uses the cluster's default StorageClass if

unspecified. Supports various cloud/on-prem storage types (e.g.,

SSD, HDD).

4. Capacity: Configure storage capacity through

resources.requests.storage. Example: 1Gi. Supports dynamic

volume expansion if enabled by the StorageClass.

Pod section, please refer to Deployment - Configure Pod

Containers section, please refer to Deployment - Configure Containers

Click Create.

Health checks YAML file example

Health checks configuration parameters in web console

Procedure - Configure Pod

Procedure - Configure Containers

Procedure - Create

Heath Checks

StatefulSets - Alauda Container Platform

You can view a StatefulSet to get information of your application.

Check the StatefulSet was created.

Get details of your StatefulSet.

To change the number of replicas for an existing StatefulSet:

Example:

When you modify the Pod template of a StatefulSet (e.g., changing the container image),

Kubernetes performs a rolling update by default (if updateStrategy is set to RollingUpdate,

which is the default).

First, edit the YAML file (e.g., example-statefulset.yaml) with the desired changes, then

apply it:

Managing StatefulSets

Managing a StatefulSet by using CLI

Viewing a StatefulSet

 kubectl get statefulsets

kubectl describe statefulsets

Scaling a StatefulSet

kubectl scale statefulset <statefulset-name> --replicas=<new-replica-count>

kubectl scale statefulset web --replicas=5

Updating a StatefulSet (Rolling Update)

StatefulSets - Alauda Container Platform

Then, you can monitor the progress of the rolling update:

To delete a StatefulSet and its associated Pods:

By default, deleting a StatefulSet does not delete its associated PersistentVolumeClaims

(PVCs) or PersistentVolumes (PVs) to prevent data loss. To also delete the PVCs, you must

do so explicitly:

Alternatively, if your volumeClaimTemplates use a StorageClass with a reclaimPolicy

of Delete , the PVs and underlying storage will be deleted automatically when the PVCs are

deleted.

1. Container Platform, and navigate to Workloads > StatefulSets.

2. Locate the StatefulSet you wish to view.

3. Click the statefulSet name to see the Details, Topology, Logs, Events, Monitoring,

etc.

1. Container Platform, and navigate to Workloads > StatefulSets.

kubectl apply -f example-statefulset.yaml

kubectl rollout status statefulset/<statefulset-name>

Deleting a StatefulSet

kubectl delete statefulset <statefulset-name>

kubectl delete pvc -l app=<label-selector-for-your-statefulset> # Example: ku

Managing a StatefulSet by using web console

Viewing a StatefulSet

Updating a StatefulSet

StatefulSets - Alauda Container Platform

2. Locate the StatefulSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit StatefulSet page, you

can update Replicas , image , updateStrategy , etc.

1. Container Platform, and navigate to Workloads > StatefulSets.

2. Locate the StatefulSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

Deleting a StatefulSet

StatefulSets - Alauda Container Platform

Understanding CronJobs

Creating CronJobs

Creating a CronJob by using CLI

Prerequisites

YAML file example

Creating a CronJobs via YAML

Creating CronJobs by using web console

Prerequisites

Procedure - Configure basic info

Procedure - Configure Pod

Procedure - Configure Containers

Create

Execute Immediately

Locate the CronJob resource

Initiate ad-hoc execution

Verify Job details:

Monitor execution status

Deleting CronJobs

Deleting CronJobs by using web console

Deleting CronJobs by using CLI

CronJobs

TOC

Understanding CronJobs

Menu ON THIS PAGE

CronJobs - Alauda Container Platform

Refer to the official Kubernetes documentation:

CronJobs

Running Automated Tasks with a CronJob

CronJob define tasks that run to completion and then stop. They allow you to run the same

Job multiple times according to a schedule.

A CronJob is a type of workload controller in Kubernetes. You can create a CronJob through

the web console or CLI to periodically or repeatedly run a non-persistent program, such as

scheduled backups, scheduled clean-ups, or scheduled email dispatches.

Ensure you have kubectl configured and connected to your cluster.

↗

↗

Creating CronJobs

Creating a CronJob by using CLI

Prerequisites

YAML file example

CronJobs - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

Obtain the image address. Images can be sourced from an image registry integrated by the

platform administrator via a toolchain, or from third-party image registries.

For images from an integrated registry, the Administrator typically assigns the image

registry to your project, allowing you to use the images within it. If the required image

registry is not found, please contact the Administrator for allocation.

If using a third-party image registry, ensure that images can be pulled directly from it within

the current cluster.

example-cronjob.yaml

apiVersion: batch/v1

kind: CronJob

metadata:

 name: hello

spec:

 schedule: "* * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: hello

 image: busybox:1.28

 imagePullPolicy: IfNotPresent

 command:

 - /bin/sh

 - -c

 - date; echo Hello from the Kubernetes cluster

 restartPolicy: OnFailure

Creating a CronJobs via YAML

kubectl apply -f example-cronjob.yaml

Creating CronJobs by using web console

Prerequisites

CronJobs - Alauda Container Platform

1.

Container Platform, navigate to Workloads > CronJobs in the left sidebar.

2.

Click on Create CronJob.

3.

Select or Input an image, and click Confirm.

Note: Image filtering is available only when using images from the platform's integrated

image registry. For example, an integrated project name like containers (docker-registry-

projectname) indicates the platform's project name projectname and the image registry's

project name containers.

4.

In the Cron Configuration section, configure the task execution method and associated

parameters.

Execute Type:

Manual: Manual execution requires explicit manual triggering for each task run.

Scheduled: Scheduled execution requires configuring the following scheduling

parameters:

Procedure - Configure basic info

CronJobs - Alauda Container Platform

Parameter Description

Schedule

Define the cron schedule using Crontab syntax . The

CronJob controller calculates the next execution time based

on the selected timezone.

Notes:

For Kubernetes clusters < v1.25: Timezone selection is

unsupported; schedules MUST use UTC.

For Kubernetes clusters ≥ v1.25: Timezone-aware

scheduling is supported (default: user's local timezone).

Concurrency

Policy

Specify how concurrent Job executions are handled (Allow ,

Forbid , or Replace per K8s spec).

Job History Retention:

Set retention limits for completed Jobs:

History Limits: Successful jobs history limit (default: 20)

Failed Jobs: Failed jobs history limit** (default: 20)

When retention limits are exceeded, the oldest jobs are garbage-collected first.

5.

In the Job Configuration section, select the job type. A CronJob manages Jobs composed

of Pods. Configure the Job template based on your workload type:

Parameter Description

Job Type

Select Job completion mode (Non-parallel , Parallel with

fixed completion count , or Indexed Job per K8s Job patterns

).

Backoff

Limit

Set the maximum number of retry attempts before marking a Job as

failed.

↗

↗

↗

Procedure - Configure Pod

CronJobs - Alauda Container Platform

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns

Pod section, please refer to Deployment - Configure Pod

Container section, please refer to Deployment - Configure Containers

Click Create.

web console: Container Platform, and navigate to Workloads > CronJobs in the left

sidebar.

CLI:

web console: Execute Immediately

5.1. Click the vertical ellipsis (⋮) on the right side of the cronjob list.

5.2. Click Execute Immediately. (Alternatively, from the CronJob details page, click

Actions in the upper-right corner and select Execute Immediately).

CLI:

Procedure - Configure Containers

Create

Execute Immediately

Locate the CronJob resource

kubectl get cronjobs -n <namespace>

Initiate ad-hoc execution

kubectl create job --from=cronjob/<cronjob-name> <job-name> -n <namespace>

Verify Job details:

CronJobs - Alauda Container Platform

Status Description

Pending The Job has been created but not yet scheduled.

Running The Job Pod(s) are actively executing.

Succeeded All Pods associated with the Job completed successfully (exit code 0).

Failed
At least one Pod associated with the Job terminated unsuccessfully

(non-zero exit code).

1. Container Platform, and navigate to Workloads > CronJobs.

2. Locate the CronJobs you wish to delete.

3. In the Actions drop-down menu, Click the Delete button and confirm.

kubectl describe job/<job-name> -n <namespace>

kubectl logs job/<job-name> -n <namespace>

Monitor execution status

Deleting CronJobs

Deleting CronJobs by using web console

Deleting CronJobs by using CLI

 kubectl delete cronjob <cronjob-name>

CronJobs - Alauda Container Platform

Understanding Jobs

YAML file example

Execution Overview

Refer to the official Kubernetes documentation: Jobs

A Job provide different ways to define tasks that run to completion and then stop. You can use

a Job to define a task that runs to completion, just once.

Atomic Execution Unit: Each Job manages one or more Pods until successful

completion.

Retry Mechanism: Controlled by spec.backoffLimit (default: 6).

Completion Tracking: Use spec.completions to define required success count.

Jobs

TOC

Understanding Jobs

↗

YAML file example

Menu ON THIS PAGE

Jobs - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Each Job execution in Kubernetes creates a dedicated Job object, enabling users to:

Creating a job via

Track job lifecycle via

Inspect execution details via

example-job.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: data-processing-job

spec:

 completions: 1 # Number of successful completions required

 parallelism: 1 # Maximum parallel Pods

 backoffLimit: 3 # Maximum retry attempts

 template:

 spec:

 restartPolicy: Never # Job-specific policy (Never/OnFailure)

 containers:

 - name: processor

 image: alpine:3.14

 command: ["/bin/sh", "-c"]

 args:

 - echo "Processing data..."; sleep 30; echo "Job completed"

Execution Overview

kubectl apply -f example-job.yaml

kubectl get jobs

kubectl describe job/<job-name>

Jobs - Alauda Container Platform

View Pod logs via

kubectl logs <pod-name>

Jobs - Alauda Container Platform

1. Understanding Helm

1.1. Key features

1.2. Catalog

Terminology Definitions

1.3 Understanding HelmRequest

2 Deploying Helm Charts as Applications via CLI

2.1 Workflow Overview

2.2 Preparing the Chart

2.3 Packaging the Chart

2.4 Obtaining an API Token

2.5 Creating a Chart Repository

2.6 Uploading the Chart

2.7 Uploading Related Images

2.8 Deploying the Application

2.9 Updating the Application

2.10 Uninstalling the Application

2.11 Deleting the Chart Repository

3. Deploying Helm Charts as Applications via UI

3.1 Workflow Overview

3.2 Prerequisites

3.3 Adding Templates to Manageable Repositories

3.4 Deleting Specific Versions of Templates

Steps to Operate

Working with Helm charts

TOC

Menu ON THIS PAGE

Working with Helm charts - Alauda Container Platform

Helm is a package manager that simplifies the deployment of applications and services on

Alauda Container Platform clusters. Helm uses a packaging format called charts. A Helm chart

is a collection of files that describe Kubernetes resources. Creating a chart in a cluster

generates a chart running instance called a release. Each time a chart is created, or a release

is upgraded or rolled back, an incremental revision is created.

Helm provides the ability to:

Search for a large collection of charts in chart repositories

Modify existing charts

Create your own charts using Kubernetes resources

Package applications and share them as charts

The Catalog is built on Helm and provides a comprehensive Chart distribution management

platform, extending the limitations of the Helm CLI tool. The platform enables developers to

more conveniently manage, deploy, and use charts through a user-friendly interface.

Term Definition Notes

Application

Catalog

A one-stop management platform for Helm

Charts

Helm Charts An application packaging format

HelmRequest
CRD. Defines the configuration needed to

deploy a Helm Chart

Template

Application

1. Understanding Helm

1.1. Key features

1.2. Catalog

Terminology Definitions

Working with Helm charts - Alauda Container Platform

Term Definition Notes

ChartRepo
CRD. Corresponds to a Helm charts

repository

Template

Repository

Chart CRD. Corresponds to Helm Charts Template

In Alauda Container Platform, Helm deployments are primarily managed through a custom

resource called HelmRequest. This approach extends standard Helm functionality and

integrates it seamlessly into the Kubernetes native resource model.

Standard Helm uses CLI commands to manage releases, while Alauda Container Platform

uses HelmRequest resources to define, deploy, and manage Helm charts. Key differences

include:

1. Declarative vs Imperative: HelmRequest provides a declarative approach to Helm

deployments, while traditional Helm CLI is imperative.

2. Kubernetes Native: HelmRequest is a custom resource directly integrated with the

Kubernetes API.

3. Continuous Reconciliation: Captain continuously monitors and reconciles

HelmRequest resources with their desired state.

4. Multi-cluster Support: HelmRequest supports deployments across multiple clusters

through the platform.

5. Platform Feature Integration: HelmRequest can be integrated with other platform

features, such as Application resources.

HelmRequest and Application resources have conceptual similarities, and users may want to

view them uniformly. The platform provides a mechanism to synchronize HelmRequest as

Application resources.

Users can mark a HelmRequest to be deployed as an Application by adding the following

annotation:

1.3 Understanding HelmRequest

Differences Between HelmRequest and Helm

HelmRequest and Application Integration

Working with Helm charts - Alauda Container Platform

When this feature is enabled, the platform UI displays additional fields and links to the

corresponding Application page.

The workflow for deploying charts via HelmRequest includes:

1. User creates or updates a HelmRequest resource

2. HelmRequest contains chart references and values to apply

3. Captain processes the HelmRequest and creates a Helm Release

4. Release contains the deployed resources

5. Metis monitors HelmRequests with application annotations and synchronizes them to

Applications

6. Application provides a unified view of deployed resources

HelmRequest: Custom resource definition that describes the desired Helm chart

deployment

Captain: Controller that processes HelmRequest resources and manages Helm releases

(source code available at https://github.com/alauda/captain)

Release: Deployed instance of a Helm chart

Charon: Component that monitors HelmRequests and creates corresponding Application

resources

Application: Unified representation of deployed resources, providing additional

management capabilities

Archon-api: Component responsible for specific advanced API functions within the

platform

alauda.io/create-app: "true"

Deployment Workflow

Component Definitions

↗

2 Deploying Helm Charts as Applications via CLI

Working with Helm charts - Alauda Container Platform

https://github.com/alauda/captain
https://github.com/alauda/captain
https://github.com/alauda/captain

Prepare chart → Package chart → Obtain API token → Create chart repository → Upload

chart → Upload related images → Deploy application → Update application → Uninstall

application → Delete chart repository

Helm uses a packaging format called charts. A chart is a collection of files that describe

Kubernetes resources. A single chart can be used to deploy anything from a simple pod to a

complex application stack.

Refer to the official documentation: Helm Charts Documentation

Example chart directory structure:

2.1 Workflow Overview

2.2 Preparing the Chart

↗

Working with Helm charts - Alauda Container Platform

https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/

nginx/

├── Chart.lock

├── Chart.yaml

├── README.md

├── charts/

│ └── common/

│ ├── Chart.yaml

│ ├── README.md

│ ├── templates/

│ │ ├── _affinities.tpl

│ │ ├── _capabilities.tpl

│ │ ├── _errors.tpl

│ │ ├── _images.tpl

│ │ ├── _ingress.tpl

│ │ ├── _labels.tpl

│ │ ├── _names.tpl

│ │ ├── _secrets.tpl

│ │ ├── _storage.tpl

│ │ ├── _tplvalues.tpl

│ │ ├── _utils.tpl

│ │ ├── _warnings.tpl

│ │ └── validations/

│ │ ├── _cassandra.tpl

│ │ ├── _mariadb.tpl

│ │ ├── _mongodb.tpl

│ │ ├── _postgresql.tpl

│ │ ├── _redis.tpl

│ │ └── _validations.tpl

│ └── values.yaml

├── ci/

│ ├── ct-values.yaml

│ └── values-with-ingress-metrics-and-serverblock.yaml

├── templates/

│ ├── NOTES.txt

│ ├── _helpers.tpl

│ ├── deployment.yaml

│ ├── extra-list.yaml

│ ├── health-ingress.yaml

│ ├── hpa.yaml

│ ├── ingress.yaml

│ ├── ldap-daemon-secrets.yaml

│ ├── pdb.yaml

│ ├── server-block-configmap.yaml

│ ├ i l

Working with Helm charts - Alauda Container Platform

Key file descriptions:

values.descriptor.yaml (optional): Works with ACP UI to display user-friendly forms

values.schema.json (optional): Validates values.yaml content and renders a simple UI

values.yaml (required): Defines chart deployment parameters

Use the helm package command to package the chart:

1. In Alauda Container Platform, click the avatar in the top-right corner => Profile

2. Click Add Api Token

3. Enter appropriate Description & Remaining Validity

4. Save the displayed token information (only shown once)

Create a local chart repository via API:

│ ├── serviceaccount.yaml

│ ├── servicemonitor.yaml

│ ├── svc.yaml

│ └── tls-secrets.yaml

├── values.descriptor.yaml

├── values.schema.json

└── values.yaml

2.3 Packaging the Chart

helm package nginx

输出: Successfully packaged chart and saved it to: /charts/nginx-8.8.0.tgz

2.4 Obtaining an API Token

2.5 Creating a Chart Repository

Working with Helm charts - Alauda Container Platform

Upload the packaged chart to the repository:

curl -k --request POST \

--url https://$ACP_DOMAIN/catalog/v1/chartrepos \

--header 'Authorization:Bearer $API_TOKEN' \

--header 'Content-Type: application/json' \

--data '{

 "apiVersion": "v1",

 "kind": "ChartRepoCreate",

 "metadata": {

 "name": "test",

 "namespace": "cpaas-system"

 },

 "spec": {

 "chartRepo": {

 "apiVersion": "app.alauda.io/v1beta1",

 "kind": "ChartRepo",

 "metadata": {

 "name": "test",

 "namespace": "cpaas-system",

 "labels": {

 "project.cpaas.io/catalog": "true"

 }

 },

 "spec": {

 "type": "Local",

 "url": null,

 "source": null

 }

 }

 }

}'

2.6 Uploading the Chart

curl -k --request POST \

--url https://$ACP_DOMAIN/catalog/v1/chartrepos/cpaas-system/test/charts \

--header 'Authorization:Bearer $API_TOKEN' \

--data-binary @"/root/charts/nginx-8.8.0.tgz"

Working with Helm charts - Alauda Container Platform

1. Pull the image: docker pull nginx

2. Save as tar package: docker save nginx > nginx.latest.tar

3. Load and push to private registry:

Create Application resource via API:

Update the application using PATCH request:

2.7 Uploading Related Images

docker load -i nginx.latest.tar

docker tag nginx:latest 192.168.80.8:30050/nginx:latest

docker push 192.168.80.8:30050/nginx:latest

2.8 Deploying the Application

curl -k --request POST \

--url https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPA

--header 'Authorization:Bearer $API_TOKEN' \

--header 'Content-Type: application/json' \

--data '{

 "apiVersion": "app.k8s.io/v1beta1",

 "kind": "Application",

 "metadata": {

 "name": "test",

 "namespace": "catalog-ns",

 "annotations": {

 "app.cpaas.io/chart.source": "test/nginx",

 "app.cpaas.io/chart.version": "8.8.0",

 "app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"IfNotPresent

 },

 "labels": {

 "sync-from-helmrequest": "true"

 }

 }

}'

2.9 Updating the Application

Working with Helm charts - Alauda Container Platform

Delete the Application resource:

Add templates to manageable repositories → Upload templates → Manage template versions

curl -k --request PATCH \

--url https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPA

--header 'Authorization:Bearer $API_TOKEN' \

--header 'Content-Type: application/merge-patch+json' \

--data '{

 "apiVersion": "app.k8s.io/v1beta1",

 "kind": "Application",

 "metadata": {

 "annotations": {

 "app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"Always\"}}"

 }

 }

}'

2.10 Uninstalling the Application

curl -k --request DELETE \

--url https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPA

--header 'Authorization:Bearer $API_TOKEN'

2.11 Deleting the Chart Repository

curl -k --request DELETE \

--url https://$ACP_DOMAIN/apis/app.alauda.io/v1beta1/namespaces/cpaas-system/

--header 'Authorization:Bearer $API_TOKEN'

3. Deploying Helm Charts as Applications via UI

3.1 Workflow Overview

Working with Helm charts - Alauda Container Platform

Template repositories are added by platform administrators. Please contact the platform

administrator to obtain the available Chart or OCI Chart type template repository names with

Management permissions.

1.

Go to Catalog.

2.

In the left navigation bar, click Helm Charts.

3.

Click Add Template in the upper right corner of the page, and select the template

repository based on the parameters below.

Parameter Description

Template

Repository

Synchronize the template directly to a Chart or OCI Chart type

template repository with Management permissions. Project

owners assigned to this Template Repository can directly use the

template.

Template

Directory

When the selected template repository type is OCI Chart, a

directory to store the Helm Chart must be selected or manually

entered.

Note: When manually entering a new template directory, the

platform will create this directory in the template repository, but

there is a risk of creation failure.

4.

Click Upload Template and upload the local template to the repository.

5.

Click Confirm. The template upload process may take a few minutes, please be patient.

3.2 Prerequisites

3.3 Adding Templates to Manageable Repositories

Working with Helm charts - Alauda Container Platform

Note: When the template status changes from Uploading to Upload Successful , it

indicates that the template has been uploaded successfully.

6.

If the upload fails, please troubleshoot according to the following prompts.

Note: An illegal file format means there is an issue with the files in the uploaded

compressed package, such as missing content or incorrect formatting.

If a version of a template is no longer applicable, it can be deleted.

1.

Go to Catalog.

2.

In the left navigation bar, click Helm Charts.

3.

Click on the Chart card to view details.

4.

Click Manage Versions.

5.

Find the template that is no longer applicable, click Delete, and confirm.

After deleting the version, the corresponding application will not be able to be updated.

3.4 Deleting Specific Versions of Templates

Steps to Operate

Working with Helm charts - Alauda Container Platform

Introduction

Introduction

Pod Parameters

Pod Parameters

Deleting Pods

Deleting Pods

Container

Introduction

Pod

Use Cases

Procedure

Menu

Pod - Alauda Container Platform

Debug Container (Alpha)

Entering the Container via EXEC

Implementation Principle

Notes

Use Cases

Procedure

Entering the Container through Applications

Entering the Container through the Pod

Pod - Alauda Container Platform

Refer to the official Kubernetes website documentation: Pod

Introduction

↗

Menu

Introduction - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/

The platform interface provides various information about the pods for quick reference. Below

are some parameter explanations.

Parameter Description

Resource

Requests/Limits

The effective resource (CPU, memory) requests and limits values

for the pods. The calculation method for requests and limits

values is the same; this document introduces using the limit

values as an example, and the specific rules and algorithms are

as follows:

When the pods only contains business containers

(containers), the CPU/memory limit value is the sum of the

CPU/memory limit values of all containers within the pods. For

example: If the pods includes two business containers with

CPU/memory limit values of 100m/100Mi and 50m/200Mi, the

pods's CPU/memory limit value will be 150m/300Mi.

When the pods contains both init containers (initContainers)

and business containers, the calculation steps for the pods's

CPU/memory limit values are as follows:

1. Take the maximum value of the CPU/memory limit values

of all init containers.

2. Take the sum of CPU/memory limit values of all business

containers.

3. Compare the results and take the maximum values of

CPU and memory from both init containers and business

containers as the pods's CPU/memory limit values.

Calculation Example: If the pods contains two init containers

with CPU/memory limit values of 100m/200Mi and

Pod Parameters

Menu

Pod Parameters - Alauda Container Platform

Parameter Description

200m/100Mi, the maximum CPU/memory limit value for the init

containers would be 200m/200Mi. At the same time, if the pods

also contains two business containers with CPU/memory limit

values of 100m/100Mi and 50m/200Mi, the total limit value for

the business containers will be 150m/300Mi. Therefore, the

comprehensive CPU/memory limit value for the pods would be

200m/300Mi.

Source The computing component to which the pods belongs.

Restart Count The number of restarts when the pods's status is abnormal.

Node The name of the node where the pods is located.

Service Account

The Service Account is an account that allows processes and

services in the Pod to access the Kubernetes APIServer,

providing an identity for the processes and services. The Service

Account field is visible only when the currently logged-in user has

either the platform administrator role or the platform auditor role,

and the YAML file of the Service Account can be viewed.

Pod Parameters - Alauda Container Platform

Deleting pods may affect the operation of computing components; please proceed with

caution.

Use Cases

Procedure

Restore the pods to its desired state promptly: If a pods remains in a state that affects

business operations, such as Pending or CrashLoopBackOff , manually deleting the

pods after addressing the error message can help it quickly return to its desired state, such

as Running . At this time, the deleted pods will be rebuilt on the current node or

rescheduled.

Resource cleanup for operations management: Some podss reach a designated stage

where they no longer change, and these groups often accumulate in large numbers,

complicating the management of other podss. The podss to be cleaned up may include

those in the Evicted status due to insufficient node resources or those in the Completed

status triggered by recurring scheduled tasks. In this case, the deleted podss will no longer

exist.

Note: For scheduled tasks, if you need to check the logs of each task execution, it is not

recommended to delete the corresponding Completed status podss.

Deleting Pods

TOC

Use Cases

Menu ON THIS PAGE

Deleting Pods - Alauda Container Platform

1.

Go to Container Platform.

2.

In the left navigation bar, click Workloads > Pods.

3.

(Delete individually) Click the ⋮ on the right side of the pods to be deleted > Delete, and

confirm.

4.

(Delete in bulk) Select the podss to be deleted, click Delete above the list, and confirm.

Procedure

Deleting Pods - Alauda Container Platform

Introduction

Debug Container (Alpha)

Entering the Container via EXEC

Container

Implementation Principle

Notes

Use Cases

Procedure

Entering the Container through Applications

Entering the Container through the Pod

Menu

Container - Alauda Container Platform

Refer to the official Kubernetes website documentation: Containers .

Introduction

↗

Menu

Introduction - Alauda Container Platform

https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/

The Debug feature provides relevant tools for debugging running containers, including

system, network, and disk utilities.

Implementation Principle

Notes

Use Cases

Procedure

The Debug feature is implemented through Ephemeral Containers. An Ephemeral Container

is a type of container that shares resources with business containers. You can add an

Ephemeral Container (for example, Container A-debug) to a pod and use debugging tools

within that container. The debugging results will be directly applied to the business container

(such as Container A).

Debug Container (Alpha)

TOC

Implementation Principle

Menu ON THIS PAGE

Debug Container (Alpha) - Alauda Container Platform

You cannot add an Ephemeral Container by directly updating the pod configuration; make

sure to enable the Ephemeral Container through the Debug feature.

The Ephemeral Containers enabled by the Debug feature do not have resource or

scheduling guarantees and will not restart automatically. Please avoid running business

applications in them, except for debugging purposes.

Please use the Debug feature cautiously if the resources on the node where the pod is

located are about to be exhausted, as it may lead to the eviction of the pod.

Although you can also log into containers and debug using the EXEC feature, many container

images do not include the required debugging tools (such as bash, net-tools, etc.) for the sake

Notes

Use Cases

Debug Container (Alpha) - Alauda Container Platform

of image size reduction. In contrast, the Debug feature, which comes pre-installed with

debugging tools, is more suitable for the following scenarios.

Fault Diagnosis: If a business container encounters an issue, in addition to checking events

and logs, you may need to conduct more detailed troubleshooting and resolution within the

container.

Configuration Tuning: If there are flaws in the current business solution, you might want to

perform configuration tuning on the business components within the container to devise a

new configuration scheme that helps the business run more effectively.

1.

Enter the Container Platform.

2.

In the left navigation bar, click Workloads > Pods.

3.

Locate the pod and click ⋮ > Debug.

4.

Select the container you wish to debug.

5.

(Optional) If prompted by the interface that initialization is required, click Initialize.

Note: After initializing the Debug feature, as long as the pod is not recreated, you can

directly enter the Ephemeral Container (for example, Container A-debug) for debugging.

6.

Wait for the debugging window to be ready, and then begin debugging.

Procedure

Debug Container (Alpha) - Alauda Container Platform

Tip: Click the command query in the upper right corner to view common tools and their

usage.

7.

Once finished, close the debugging window.

Debug Container (Alpha) - Alauda Container Platform

Entering the Container through Applications

Prerequisites

Procedure

Entering the Container through the Pod

Prerequisites

Procedure

You can enter the internal instance of the container using the kubectl exec command,

allowing you to execute command-line operations in the Web console window. Additionally,

you can easily upload and download files within the container using the file transfer feature.

The container must be running properly.

When using the file transfer feature, the tar tool must be available in the container, and

the container's operating system cannot be Windows.

1.

Enter Container Platform.

Entering the Container via EXEC

TOC

Entering the Container through Applications

Prerequisites

Procedure

Menu ON THIS PAGE

Entering the Container via EXEC - Alauda Container Platform

2.

In the left navigation bar, click Application > Applications.

3.

Click on Application Name.

4.

Locate the workload and click EXEC > Pod Name.

5.

Enter the command you wish to execute.

6.

Click OK to enter the Web console window and execute command-line operations.

7.

Click File Transfer. Enter Upload Path to upload files for testing into the container; or

enter Download Path to download logs and other files from the container to your local

machine for analysis.

You can enter the internal instance of the container using the kubectl exec command,

allowing you to execute command-line operations in the Web console window. Additionally,

you can easily upload and download files within the container using the file transfer feature.

The container must be running properly.

When using the file transfer feature, the tar tool must be available in the container, and

the container's operating system cannot be Windows.

Entering the Container through the Pod

Prerequisites

Entering the Container via EXEC - Alauda Container Platform

1.

In the left navigation bar, click Workloads > Pods.

2.

Click ⋮ > EXEC > Container Name.

3.

Enter the command you wish to execute.

4.

Click OK to enter the Web console window and execute command-line operations.

5.

Click File Transfer. Enter Upload Path to upload files for testing into the container; or

enter Download Path to download logs and other files from the container to your local

machine for analysis.

Procedure

Entering the Container via EXEC - Alauda Container Platform

Setting Scheduled Task Trigger Rules

How To

Time Conversion

Writing Crontab Expressions

Menu

How To - Alauda Container Platform

The scheduled task trigger rules support the input of Crontab expressions.

Time Conversion

Writing Crontab Expressions

Time conversion rule: Local time - time zone offset = UTC

Taking Beijing time to UTC time as an example:

Beijing is in the East Eight Time Zone, with a time difference of 8 hours between Beijing time

and UTC. The time conversion rule is:

Beijing Time - 8 = UTC

Example 1: Beijing time 9

converts to UTC time: 42 09 - 00 08 = 42 01, which means the UTC time is 1

AM.

Example 2: Beijing time 4

AM converts to UTC time: 32 04 - 00 08 = -68 03. If the result is negative, it indicates the

previous day, requiring another conversion: -68 03 + 00 24 = 32 20, which means the UTC

time is 8

PM of the previous day.

Setting Scheduled Task Trigger Rules

TOC

Time Conversion

Menu ON THIS PAGE

Setting Scheduled Task Trigger Rules - Alauda Container Platform

Basic format and value range of Crontab: minute hour day month weekday , with the

corresponding value ranges as shown in the table below:

Minute Hour Day Month Weekday

[0-59] [0-23] [1-31] [1-12] or [JAN-DEC] [0-6] or [SUN-SAT]

The special characters allowed in the minute hour day month weekday fields include:

, : Value list separator, used to specify multiple values. For example: 1,2,5,7,8,9 .

- : User-defined value range. For example: 2-4 , which represents 2, 3, 4.

* : Represents the entire time period. For example, when used for minutes, it means every

minute.

/ : Used to specify the increment of values. For example: n/m indicates starting from n,

increasing by m each time.

Conversion tool reference

Common Examples:

Input 30 18 25 12 * indicates a task triggers at 18:30:00 on December 25th .

Input 30 18 25 * 6 indicates a task triggers at 18:30:00 every Saturday .

Input 30 18 * * 6 indicates a task triggers at 18:30:00 on Saturdays .

Input * 18 * * * indicates a task triggers every minute starting from 18:00:00

(including 18:00:00).

Input 0 18 1,10,22 * * indicates a task triggers at 18:00:00 on the 1st, 10th, and

22nd of every month .

Input 0,30 18-23 * * * indicates a task triggers at 00 minutes and 30 minutes of

each hour between 18:00 and 23:00 daily .

Input * */1 * * * indicates a task triggers every minute.

Writing Crontab Expressions

↗

Setting Scheduled Task Trigger Rules - Alauda Container Platform

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/

Input * 2-7/1 * * * indicates a task triggers every minute between 2 AM and 7 AM

daily.

Input 0 11 4 * mon-wed indicates a task triggers at 11:00 AM on the 4th of every

month and on every Monday to Wednesday .

Setting Scheduled Task Trigger Rules - Alauda Container Platform

Introduction

Introduction

Install

Install Via YAML

Install Via Web UI

Registry

Principles and namespace isolation

Authentication and authorization

Advantages

Application Scenarios

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry via YAML

Updating/Uninstalling Alauda Container Platform Registry

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Updating/Uninstalling Alauda Container Platform Registry

Menu

Registry - Alauda Container Platform

How To

Common CLI Command Operations

Using Alauda Container Platform Registry in Kubernetes Clusters

Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account

Pulling Images

Pushing Images

Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Best Practices

Verification Checklist

Troubleshooting

Registry - Alauda Container Platform

Building, storing and managing container images is a core part of the cloud-native application

development process. Alauda Container Platform(ACP) provides a high-performance, highly-

available, built-in container image repository service designed to provide users with a secure

and convenient image storage and management experience, greatly simplifying application

development, continuous integration/continuous deployment (CI/CD) and application

deployment processes within the platform. CD) and application deployment processes within

the platform.

Deeply integrated into the platform architecture, Alauda Container Platform Registry provides

tighter platform collaboration, simplified configuration, and greater internal access efficiency

than an external, independently deployed image repository.

Principles and namespace isolation

Authentication and authorization

Authentication

Authorization

Advantages

Application Scenarios

Alauda Container Platform's built-in image repository, as one of the core components of the

platform, runs inside the cluster in a highly-available manner and utilizes the persistent

Introduction

TOC

Principles and namespace isolation

Menu ON THIS PAGE

Introduction - Alauda Container Platform

storage capabilities provided by the platform to ensure that the image data is secure and

reliable.

One of its core design concepts is logical isolation and management based on Namespace.

Within the Registry, image repositories are organized by namespace. This means that each

namespace can be considered as a separate “zone” for images belonging to that namespace,

and images between different namespaces are isolated by default, unless explicitly

authorized.

The authentication and authorization mechanism of Alauda Container Platform Registry is

deeply integrated with ACP's platform-level authentication and authorization system, enabling

access control as granular as the namespace:

Users or automated processes (e.g., CI/CD pipelines on the platform, automated build tasks,

etc.) do not need to maintain a separate set of account passwords for the Registry. They are

authenticated through the platform's standard authentication mechanisms (e.g., using

platform-provided API tokens, integrated enterprise identity systems, etc.). When accessing

Alauda Container Platform Registry through the CLI or other tools, it is common to utilize

existing platform login sessions or ServiceAccount tokens for transparent authentication.

Authorization control is implemented at the namespace level. Pull or Push permissions for an

image repository in Alauda Container Platform Registry depend on the platform role and

permissions that the user or ServiceAccount has in the corresponding namespace.

Typically, the owner or developer role of a namespace is automatically granted Push and

Pull permissions to image repositories under that namespace.

Users in other namespaces or users who wish to pull images across namespaces

need to be explicitly granted the appropriate permissions by the administrator of the target

Authentication and authorization

Authentication

Authorization

Introduction - Alauda Container Platform

namespace (e.g., bind a role that allows pulling of images via RBAC) before they can

access images within that namespace.

This namespace-based authorization mechanism ensures isolation of images between

namespaces, improving security and avoiding unauthorized access and modification.

Core advantages of Alauda Container Platform Registry:

Ready-to-Use: Rapidly deploy a private image registry without complex configurations.

Flexible Access: Supports both intra-cluster and external access modes.

Security Assurance: Provides RBAC authorization and image scanning capabilities.

High Availability: Ensures service continuity through replication mechanisms.

Production-Grade: Validated in enterprise environments with SLA guarantees.

Lightweight Deployment: Implement streamlined registry solutions in low-traffic

environments to accelerate application delivery.

Edge Computing: Enable autonomous management for edge clusters with dedicated

registries.

Resource Optimization: Demonstrate full workflow capabilities through integrated Source

to Image (S2I) solutions when underutilizing infrastructure.

Advantages

Application Scenarios

Introduction - Alauda Container Platform

Install Via YAML

Install Via Web UI

Install

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry via YAML

Updating/Uninstalling Alauda Container Platform Registry

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Updating/Uninstalling Alauda Container Platform Registry

Menu

Install - Alauda Container Platform

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry via YAML

Procedure

Configuration Reference

Mandatory Fields

Verification

Updating/Uninstalling Alauda Container Platform Registry

Update

Uninstall

Recommended for:

Advanced users with Kubernetes expertise who prefer a manual approach.

Production-grade deployments requiring enterprise storage (NAS, AWS S3, Ceph, etc.).

Environments needing fine-grained control over TLS, ingress.

Full YAML customization for advanced configurations.

Install Via YAML

TOC

When to Use This Method?

Menu ON THIS PAGE

Install Via YAML - Alauda Container Platform

Install the Alauda Container Platform Registry cluster plugin to a target cluster.

Access to the target Kubernetes cluster with kubectl configured.

Cluster admin permissions to create cluster-scoped resources.

Obtain a registered domain (e.g., registry.yourcompany.com) Create a Domain

Provide valid NAS storage (e.g., NFS, GlusterFS, etc.).

(Optional) Provide valid S3 storage (e.g., AWS S3, Ceph, etc.). If no existing S3 storage is

available, deploy a MinIO (Built-in S3) instance in the cluster Deploy MinIO.

1. Create a YAML configuration file named registry-plugin.yaml with the following

template:

Prerequisites

Installing Alauda Container Platform Registry via YAML

Procedure

Install Via YAML - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/create_domain.html
http://localhost:4173/container_platform/storage/storagesystem_minio/installation.html

apiVersion: cluster.alauda.io/v1alpha1

kind: ClusterPluginInstance

metadata:

 annotations:

 cpaas.io/display-name: internal-docker-registry

 labels:

 create-by: cluster-transformer

 manage-delete-by: cluster-transformer

 manage-update-by: cluster-transformer

 name: internal-docker-registry

spec:

 config:

 access:

 address: ""

 enabled: false

 fake:

 replicas: 2

 global:

 expose: false

 isIPv6: false

 replicas: 2

 resources:

 limits:

 cpu: 500m

 memory: 512Mi

 requests:

 cpu: 250m

 memory: 256Mi

 ingress:

 enabled: true

 hosts:

 - name: <YOUR-DOMAIN> # [REQUIRED] Customize domain

 tlsCert: <NAMESPACE>/<TLS-SECRET> # [REQUIRED] Namespace/SecretNam

 ingressClassName: "<INGRESS-CLASS-NAME>" # [REQUIRED] IngressClassName

 insecure: false

 persistence:

 accessMode: ReadWriteMany

 nodes: ""

 path: <YOUR-HOSTPATH> # [REQUIRED] Local path for LocalVolume

 size: <STORAGE-SIZE> # [REQUIRED] Storage size (e.g., 10Gi)

 storageClass: <STORAGE-CLASS-NAME> # [REQUIRED] StorageClass name

 type: StorageClass

 s3storage:

b k [] b k

Install Via YAML - Alauda Container Platform

1. Customize the following fields according to your environment:

1. How to create a secret for S3 credentials:

Replace <S3-CREDENTIALS-SECRET> with the name of your S3 credentials secret.

 bucket: <S3-BUCKET-NAME> # [REQUIRED] S3 bucket name

 enabled: false # Set false for local storage

 env:

 REGISTRY_STORAGE_S3_SKIPVERIFY: false # Set true for self-signed cer

 region: <S3-REGION> # S3 region

 regionEndpoint: <S3-ENDPOINT> # S3 endpoint

 secretName: <S3-CREDENTIALS-SECRET> # S3 credentials Secret

 service:

 nodePort: ""

 type: ClusterIP

 pluginName: internal-docker-registry

spec:

 config:

 ingress:

 hosts:

 - name: "<YOUR-DOMAIN>" # e.g., registry.your-company.

 tlsCert: "<NAMESPACE>/<TLS-SECRET>" # e.g., cpaas-system/tls-secr

 ingressClassName: "<INGRESS-CLASS-NAME>" # e.g., cluster-alb-1

 persistence:

 size: "<STORAGE-SIZE>" # e.g., 10Gi

 storageClass: "<STORAGE-CLASS-NAME>" # e.g., cpaas-system-storage

 s3storage:

 bucket: "<S3-BUCKET-NAME>" # e.g., prod-registry

 region: "<S3-REGION>" # e.g., us-west-1

 regionEndpoint: "<S3-ENDPOINT>" # e.g., https://s3.amazonaws.c

 secretName: "<S3-CREDENTIALS-SECRET>" # Secret containing AWS_ACCES

 env:

 REGISTRY_STORAGE_S3_SKIPVERIFY: "true" # Set "true" for self-signed

kubectl create secret generic <S3-CREDENTIALS-SECRET> \

 --from-literal=access-key-id=<YOUR-S3-ACCESS-KEY-ID> \

 --from-literal=secret-access-key=<YOUR-S3-SECRET-ACCESS-KEY> \

 -n cpaas-system

Install Via YAML - Alauda Container Platform

1. Apply the configuration to your cluster:

Parameter Description Example V

spec.config.ingress.hosts[0].name
Custom domain for

registry access
registry.yourco

spec.config.ingress.hosts[0].tlsCert

TLS certificate

secret reference

(namespace/secret-

name)

cpaas-system/re

tls

spec.config.ingress.ingressClassName
Ingress class name

for the registry
cluster-alb-1

spec.config.persistence.size
Storage size for the

registry
10Gi

spec.config.persistence.storageClass
StorageClass name

for the registry
nfs-storage-sc

spec.config.s3storage.bucket
S3 bucket name for

image storage
prod-image-stor

spec.config.s3storage.region
AWS region for S3

storage
us-west-1

spec.config.s3storage.regionEndpoint
S3 service endpoint

URL
https://s3.amaz

spec.config.s3storage.secretName
Secret containing

S3 credentials
s3-access-keys

kubectl apply -f registry-plugin.yaml

Configuration Reference

Mandatory Fields

Install Via YAML - Alauda Container Platform

1. Check plugin:

1. Verify registry pods :

Execute the following command on the global cluster::

Execute the following command on the global cluster:

Verification

kubectl get clusterplugininstances internal-docker-registry -o yaml

kubectl get pods -n cpaas-system -l app=internal-docker-registry

Updating/Uninstalling Alauda Container Platform
Registry

Update

<CLUSTER-NAME> is the cluster where the plugin is installed

kubectl edit -n cpaas-system \

 $(kubectl get moduleinfo -n cpaas-system -l cpaas.io/cluster-name=<CLUSTER-

Uninstall

<CLUSTER-NAME> is the cluster where the plugin is installed

kubectl get moduleinfo -n cpaas-system -l cpaas.io/cluster-name=<CLUSTER-NAME

Install Via YAML - Alauda Container Platform

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Procedure

Verification

Updating/Uninstalling Alauda Container Platform Registry

Recommended for:

First-time users who prefer a guided, visual interface.

Quick proof-of-concept setups in non-production environments.

Teams with limited Kubernetes expertise seeking a simplified deployment process.

Scenarios requiring minimal customization (e.g., default storage configurations).

Basic networking setups without specific ingress rules.

StorageClass configurations for high availability.

Not Recommended for:

Production environments requiring advanced storage(S3 storage) configurations.

Networking setups needing specific ingress rules.

Install Via Web UI

TOC

When to Use This Method?

Menu ON THIS PAGE

Install Via Web UI - Alauda Container Platform

Install the Alauda Container Platform Registry cluster plugin to a target cluster using the

Cluster Plugin mechanism.

1. Log in and navigate to the Administrator page.

2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Registry cluster plugin, click Install, then

proceed to the installation page.

4. Configure parameters according to the following specifications and click Install to

complete the deployment.

The parameter descriptions are as follows:

Parameter Description

Expose Service

Once enabled, administrators can manage the image repository

externally using the access address. This poses significant

security risks and should be enabled with extreme caution.

Enable IPv6
Enable this option when the cluster uses IPv6 single-stack

networking.

NodePort
When Expose Service is enabled, configure NodePort to allow

external access to the Registry via this port.

Storage Type
Select a storage type. Supported types: LocalVolume and

StorageClass.

Prerequisites

Installing Alauda Container Platform Registry cluster
plugin using the web console

Procedure

Install Via Web UI - Alauda Container Platform

http://localhost:4173/container_platform/extend/cluster_plugin.html

Parameter Description

Nodes
Select a node to run the Registry service for image storage and

distribution. (Available only when Storage Type is LocalVolume)

StorageClass

Select a StorageClass. When replicas exceed 1, select storage

with RWX (ReadWriteMany) capability (e.g., File Storage) to

ensure high availability. (Available only when Storage Type is

StorageClass)

Storage Size Storage capacity allocated to the Registry (Unit: Gi).

Replicas

Configure the number of replicas for the Registry Pod:

LocalVolume: Default is 1 (fixed)

StorageClass: Default is 3 (adjustable)

Resource

Requirements

Define CPU and Memory resource requests and limits for the

Registry Pod.

1. Navigate to Marketplace > Cluster Plugins and confirm the plugin status shows

Installed.

2. Click the plugin name to view its details.

3. Copy the Registry Address and use the Docker client to push/pull images.

You can update or uninstall the Alauda Container Platform Registry plugin from either the

list page or details page.

Verification

Updating/Uninstalling Alauda Container Platform
Registry

Install Via Web UI - Alauda Container Platform

Common CLI Command Operations

Using Alauda Container Platform Registry in Kubernetes Clusters

How To

Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account

Pulling Images

Pushing Images

Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Best Practices

Verification Checklist

Troubleshooting

Menu

How To - Alauda Container Platform

The Alauda Container Platform provides command line tools for users to interact with the

Alauda Container Platform Registry. The following are some examples of common operations

and commands:

Let's assume that Alauda Container Platform Registry for the cluster has a service address of

registry.cluster.local and the namespace you are currently working on is my-ns.

Contact technical services to acquire the kubectl-acp plugin and ensure it is properly

installed in your environment.

Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account

Pulling Images

Pushing Images

Log in to the cluster's Registry by logging in to the ACP.

Common CLI Command Operations

TOC

Logging in Registry

kubectl acp login <ACP-endpoint>

Menu ON THIS PAGE

Common CLI Command Operations - Alauda Container Platform

Add namespace pull permission for a user.

Add namespace push permissions to a user.

Add namespace pull permission for a service account.

Add namespace push permission for a service account.

Pulls an image from the registry to inside the cluster (e.g., for Pod deployment).

Add namespace permissions for users

kubectl create rolebinding <binding-name> --clusterrole=system:image-puller -

kubectl create rolebinding <binding-name> --clusterrole=system:image-pusher -

Add namespace permissions for a service account

kubectl create rolebinding <binding-name> --clusterrole=system:image-puller -

kubectl create rolebinding <binding-name> --clusterrole=system:image-pusher -

Pulling Images

Common CLI Command Operations - Alauda Container Platform

This command verifies your identity and pull permissions in the target namespace, and then

pulls the image from the Registry.

Pushes locally built images or images pulled from elsewhere to a specific namespace in the

registry.

You need to first tag (tag) the local image with the address and namespace format of the

target Registry using a standard container command line tool such as docker.

Pushes an image from a remote image repository to a specific namespace in the Alauda

Container Platform Registry.

This command verifies your identity and push permissions within the my-ns namespace, and

then uploads the locally tagged image to Registry.

Pull the image named my-app, labeled latest, from the Registry of the curre

kubectl acp pull registry.cluster.local/my-ns/my-app:latest

Pull images from other namespaces (e.g. shared-ns) (requires permission to

kubectl acp pull registry.cluster.local/shared-ns/base-image:latest

Pushing Images

Tag it with the target address:

docker tag my-app:latest registry.cluster.local/my-ns/my-app:v1

Use the kubectl command to push it to the Registry for the current namespac

kubectl acp push registry.cluster.local/my-ns/my-app:v1

If your remote image repository has an image remote.registry.io/demo/my-app

Use the kubectl command to push it to the namespace(my-ns) of the registry

kubectl acp push remote.registry.io/demo/my-app:latest registry.cluster.local

Common CLI Command Operations - Alauda Container Platform

The Alauda Container Platform (ACP) Registry provides secure container image management

for Kubernetes workloads.

Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Example Role Binding

Best Practices

Verification Checklist

Troubleshooting

Internal Address Recommended: For images stored in the cluster's registry, always

prioritize using the internal service address internal-docker-registry.cpaas-

system.svc when deploying within the cluster. This ensures optimal network performance

and avoids unnecessary external routing.

External Address Usage: The external ingress domain (e.g. registry.cluster.local)

is primarily intended for:

Image pushes/pulls from outside the cluster (e.g., developer machines, CI/CD systems)

Cluster-external operations requiring registry access

Using Alauda Container Platform Registry in
Kubernetes Clusters

TOC

Registry Access Guidelines

Menu ON THIS PAGE

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

1. Create an application named my-app in the my-ns namespace.

2. Store the application image in the registry at internal-docker-registry.cpaas-

system.svc/my-ns/my-app:v1 .

3. The default ServiceAccount in each namespace is automatically configured with an

imagePullSecret for accessing images from internal-docker-registry.cpaas-

system.svc .

Example Deployment:

Deploy Sample Application

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-app

 namespace: my-ns

spec:

 replicas: 3

 selector:

 matchLabels:

 app: my-app

 template:

 metadata:

 labels:

 app: my-app

 spec:

 containers:

 - name: main-container

 image: internal-docker-registry.cpaas-system.svc/my-ns/my-app:v1

 ports:

 - containerPort: 8080

Cross-Namespace Access

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

To allow users from my-ns to pull images from shared-ns , the administrator of shared-ns

can create a role binding to grant the necessary permissions.

Registry Usage: Always use internal-docker-registry.cpaas-system.svc for

deployments to ensure security and performance.

Namespace Isolation: Leverage namespace isolation for better security and management

of images.

Use namespace-based image paths: internal-docker-registry.cpaas-

system.svc/<namespace>/<image>:<tag> .

Access Control: Use role bindings to manage cross-namespace access for users and

service accounts.

1. Validate image accessibility for the default ServiceAccount in my-ns :

1. Validate image accessibility for a user in my-ns :

Example Role Binding

Access images from shared namespace (requires permissions)

kubectl create rolebinding cross-ns-pull \

 --clusterrole=system:image-puller \

 --serviceaccount=my-ns:default \

 -n shared-ns

Best Practices

Verification Checklist

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --as=syste

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

Image Pull Errors: Check the imagePullSecrets in the pod spec and ensure they are

correctly configured.

Permission Denied: Ensure the user or ServiceAccount has the necessary role bindings in

the target namespace.

Network Issues: Verify network policies and service configurations to ensure connectivity

to the internal registry.

DNS Failures: Check the content of /etc/hosts file on the node, ensure DNS resolution

for the internal-docker-registry.cpaas-system.svc is correctly configured.

Verify node's /etc/hosts configuration to ensure correct DNS resolution of internal-

docker-registry.cpaas-system.svc

Example showing registry service mapping (ClusterIP of internal-docker-registry

service):

How to get internal-docker-registry current ClusterIP:

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --as=<user

Troubleshooting

/etc/hosts

127.0.0.1 localhost localhost.localdomain

10.4.216.11 internal-docker-registry.cpaas-system internal-docker-registr

kubectl get svc -n cpaas-system internal-docker-registry -o jsonpath='{.s

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

Introduction

Introduction

Install

Installing Alauda Container Platform Builds

Architecture

Architecture

Source to Image

Source to Image Concept

Core Features

Core Benefits

Application scenarios

Usage Limitations

Prerequisites

Procedure

Menu

Source to Image - Alauda Container Platform

Guides

Managing applications created from Code

How To

Creating an application from Code

Key Features

Advantages

Prerequisites

Procedure

Related operations

Prerequisites

Procedure

Source to Image - Alauda Container Platform

Alauda Container Platform Builds is a cloud-native container tool provided by Alauda

Container Platform that integrates Source to Image (S2I) capabilities with automated

pipelines. It accelerates enterprise cloud-native journeys by enabling fully automated CI/CD

pipelines that support multiple programming languages, including Java, Go, Python, and

Node.js. Additionally, Alauda Container Platform Builds offers visual release management and

seamless integration with Kubernetes-native tools like Helm and GitOps, ensuring efficient

application lifecycle management from development to production.

Source to Image Concept

Core Features

Core Benefits

Application scenarios

Usage Limitations

Source to Image (S2I) is a tool and workflow for building reproducible container images from

source code. It injects the application’s source code into a predefined builder image and

automatically completes steps such as compilation and packaging, ultimately generating a

runnable container image. This allows developers to focus more on business code

development without worrying about the details of containerization.

Introduction

TOC

Source to Image Concept

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Alauda Container Platform Builds facilitates a full-stack, cloud-native workflow from code to

application, enabling multi-language builds and visual release management. It leverages

Kubernetes-native capabilities to convert source code into runnable container images,

ensuring seamless integration into a comprehensive cloud-native platform.

Multi-language Builds: Supports building applications in various programming languages

such as Java, Go, Python, and Node.js, accommodating diverse development needs.

Visual Interface: Provides an intuitive interface that allows you to easily create, configure,

and manage build tasks without deep technical knowledge.

Full Lifecycle Management: Covers the entire lifecycle from code commit to application

deployment, automating build, deployment, and operational management.

Deep Integration: Seamlessly integrates with your Container Platform product, providing a

seamless development experience.

High Extensibility: Supports custom plugins and extensions to meet your specific needs.

Accelerated Development: Streamlines the build process, speeding up application

delivery.

Enhanced Flexibility: Supports building in multiple programming languages.

Improved Efficiency: Automates build and deployment processes, reducing manual

intervention.

Increased Reliability: Provides detailed build logs and visual monitoring for easy

troubleshooting.

Core Features

Core Benefits

Application scenarios

Introduction - Alauda Container Platform

The main application scenarios for S2I are as follows:

Web applications

S2I supports various programming languages, such as Java, Go, Python, and Node.js. By

leveraging the Alauda Container Platform application management capabilities, it allows for

rapid building and deployment of web applications simply by entering the code repository

URL.

CI/CD

S2I integrates seamlessly with DevOps pipelines, leveraging Kubernetes-native tools like

Helm and GitOps to automate the image building and deployment processes. This enables

continuous integration and continuous deployment of applications.

The current version only supports Java, Go, Python, and Node.js languages.

WARNING

Prerequisites: Tekton Operator is now available in the cluster OperatorHub.

Usage Limitations

Introduction - Alauda Container Platform

Installing Alauda Container Platform Builds

Install

Prerequisites

Procedure

Menu

Install - Alauda Container Platform

Prerequisites

Procedure

Install the Alauda Container Platform Builds Operator

Install the Shipyard instance

Verification

Alauda Container Platform Builds is a container tool offered by Alauda Container Platform

that integrates building (capable of Source to Image) and create application.

1. Download the latest version package of Alauda Container Platform Builds that

matches your platform. If the Tekton operator has not been installed on the Kubernetes

cluster, it is recommended to download it together.

2. Utilize the violet CLI tool to upload Alauda Container Platform Builds and Tekton

packages to your target cluster. For detailed instructions on using violet , please refer to

the CLI.

Installing Alauda Container Platform Builds

TOC

Prerequisites

Procedure

Install the Alauda Container Platform Builds Operator

Menu ON THIS PAGE

Installing Alauda Container Platform Builds - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

1. Log in, and navigate to the Platform Management page.

2. Click Marketplace > OperatorHub.

3. Find the Alauda Container Platform Builds operator, click Install, and enter the Install

page.

Configuration Parameters:

Parameter Recommended Configuration

Channel Alpha : The default Channel is set to alpha.

Version Please select the latest version.

Installation

Mode

Cluster : A single Operator is shared across all namespaces in the

cluster for instance creation and management, resulting in lower

resource usage.

Namespace
Recommended : It is recommended to use the shipyard-operator

namespace; it will be created automatically if it does not exist.

Upgrade

Strategy

Please select the Manual .

Manual : When a new version is available in the OperatorHub

the Upgrade action will not be executed automatically.

1. On the Install page, select default configuration, click Install, and complete the

installation of the Alauda Container Platform Builds Operator.

1.

Click on Marketplace > OperatorHub.

2.

Find the installed Alauda Container Platform Builds operator, navigate to All Instances.

3.

Install the Shipyard instance

Installing Alauda Container Platform Builds - Alauda Container Platform

Click Create Instance button, and click Shipyard card in the resource area.

4.

On the parameter configuration page for the instance, you may use the default

configuration unless there are specific requirements.

5.

Click Create.

After the instance is successfully creted, wait approximately "20 mins" before switching to

Container Platform > Applications > Applications and click on Create.

You should see the entry for Create from Code. At this time, the installation of Alauda

Container Platform Builds is successful, and you can start your S2I journey with the

Creating an application from Code.

Verification

Installing Alauda Container Platform Builds - Alauda Container Platform

Source to Image (S2I) capability is implemented through the Alauda Container Platform

Builds operator, enabling automated container image builds from Git repository source code

and subsequent pushes to a designated image registry. The core components include:

Alauda Container Platform Builds operator: Manages the end-to-end build lifecycle and

orchestrates Tekton pipelines.

Tekton pipelines: Executes S2I workflows via Kubernetes-native TaskRun resources.

Architecture

Menu

Architecture - Alauda Container Platform

Managing applications created from Code

Guides

Key Features

Advantages

Prerequisites

Procedure

Related operations

Menu

Guides - Alauda Container Platform

Key Features

Advantages

Prerequisites

Procedure

Related operations

Build

Input the code repository URL to trigger the S2I process, which converts the source code

into a image and publishes it as an application.

When the source code is updated, initiate the Rebuild action via the visual interface to

update the application version with a single click.

Simplifies the process of creating and upgrading applications from code.

Lowers the barrier for developers, eliminating the need to understand the details of

containerization.

Provides a visual construction process and operational management, facilitating problem

localization, analysis, and troubleshooting.

Managing applications created from Code

TOC

Key Features

Advantages

Menu ON THIS PAGE

Managing applications created from Code - Alauda Container Platform

Installing Alauda Container Platform Builds is completed.

Access to a image repository is required; if unavailable, contact the Administrator to

Installing Alauda Container Platform Registry

1.

Container Platform, navigate to Application > Application.

2.

Click Create.

3.

Select the Create from Code.

4.

Refer to the parameter descriptions below to complete the configuration.

Region Parameter Description

Code

Repository

Type

Platform Integrated: Choose a code repository

that is integrated with the platform and already

allocated for the current project; the platform

supports GitLab, GitHub, and Bitbucket.

Input: Use a code repository URL that is not

integrated with the platform.

Prerequisites

Procedure

Managing applications created from Code - Alauda Container Platform

Integrated

Project

Name

The name of the integration tool project assigned

or associated with the current project by the

Administrator.

Repository

Address

Select or input the address of the code repository

that stores the source code.

Version

Identifier

Supports creating applications based on branches,

tags, or commits in the code repository. Among

them:

When the version identifier is a branch, only the

latest commit under the selected branch is

supported for creating applications.

When the version identifier is a tag or commit,

the latest tag or commit in the code repository is

selected by default. However, you can also

choose other versions as needed.

Context dir
Optional directory for the source code, used as a

context directory for build.

Secret
When using an input code repository, you can add

an authentication secret as needed.

Builder

Image
An image that includes specific programming

language runtime environments, dependency

libraries, and S2I scripts. Its main purpose is to

convert source code into runnable application

images.

Managing applications created from Code - Alauda Container Platform

The supported builder images, include: Golang,

Java, Node.js, and Python.

Version

Select the runtime environment version that is

compatible with your source code to ensure

smooth application execution.

Build Build Type
Currently, only the Build method is supported for

constructing application images. This method

simplifies and automates the complex image

building process, allowing developers to focus

solely on code development. The general process

is as follows:

4.1.

After installed Alauda Container Platform Builds

and creating the Shipyard instance, the system

automatically generates cluster-level resources,

such as ClusterBuildStrategy, and defines a

standardized build process. This process

includes detailed build steps and necessary

build parameters, thereby enabling Source-to-

Image (S2I) builds. For detailed information,

refer to: Installing Alauda Container Platform

Builds

4.2.

Create Build type resources based on the

above strategies and the information provided

in the form. These resources specify build

strategies, build parameters, source code

repositories, output image repositories, and

other relevant information.

4.3.

Managing applications created from Code - Alauda Container Platform

Create BuildRun type resources to initiate

specific build instances, which coordinate the

entire build process.

4.4.

After completing the BuildRun creation, the

system will automatically generate the

corresponding TaskRun resource instance. This

TaskRun instance triggers the Tekton pipeline

build and creates a Pod to execute the build

process. The Pod is responsible for the actual

build work, which includes: Pulling the source

code from the code repository.

Calling the specified builder image.

Executing the build process.

Image URL
After the build is complete, specify the target

image repository address for the application.

Application -

Fill in the application configuration as needed. For

specific details, refer to the parameter descriptions

in the Creating applications from Image

documentation.

Network -
Target Port: The actual port that the application

inside the container listens on. When external

access is enabled, all matching traffic will be

forwarded to this port to provide external

services.

Managing applications created from Code - Alauda Container Platform

Other Parameters: Please refer to the

parameter descriptions in the CreatingIngress

documentation.

Label

Annotations
-

Fill in the relevant labels and annotations as

needed.

5.

After filling in the parameters, click on Create.

6.

You can view the corresponding deployment on the Details page.

After the application has been created, the corresponding information can be viewed on the

details page.

Parameter Description

Build
Click the link to view the specific build (Build) and build task (BuildRun)

resource information and YAML.

Start

Build

When the build fails or the source code changes, you can click this

button to re-execute the build task.

Related operations

Build

Managing applications created from Code - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

Creating an application from Code

How To

Prerequisites

Procedure

Menu

How To - Alauda Container Platform

Using the powerful capabilities of Alauda Container Platform Builds installation to achieve

the entire process from Java source code to create an application, and ultimately enable

the application to run efficiently in a containerized manner on Kubernetes.

Prerequisites

Procedure

Before using this functionality, ensure that:

Installing Alauda Container Platform Builds

There is an accessible image repository on the platform. If not, please contact the

Administrator to Installing Alauda Container Platform Registry

1.

Container Platform, click Applications > Applications.

2.

Creating an application from Code

TOC

Prerequisites

Procedure

Menu ON THIS PAGE

Creating an application from Code - Alauda Container Platform

Click Create.

3.

Select the Create from Code.

4.

Complete the configuration according to the parameters below:

Parameter Recommended Configuration

Code

Repository

Type: Input

Repository URL: https://github.com/alauda/spring-boot-

hello-world

Build Method Build

Image

Repository
Contact the Administrator.

Application

Application: spring-boot-hello-world

Name: spring-boot-hello-world

Resource Limits: Use the default value.

Network Target Port: 8080

5.

After filling in the parameters, click Create.

6.

You can check the corresponding application status on the Details page.

Creating an application from Code - Alauda Container Platform

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to

exclusively use cluster nodes.

Introduction

Introduction

Architecture

Architecture

Concepts

Core Concepts

Guides

Node Isolation Strategy

Advantages

Application Scenarios

Node Isolation

Menu

Node Isolation Strategy - Alauda Container Platform

Create Node Isolation Strategy

Permissions

Permissions

Create Node Isolation Strategy

Delete Node Isolation Strategy

Node Isolation Strategy - Alauda Container Platform

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to

exclusively use cluster nodes.

Advantages

Application Scenarios

Conveniently allocate nodes to projects in an exclusive or shared manner, preventing

resource contention between projects.

Node Isolation Strategy is suitable for scenarios where enhanced resource isolation between

projects is required, and where there is a desire to prevent other projects' components from

occupying nodes, which could lead to resource constraints or inability to meet performance

requirements.

Introduction

TOC

Advantages

Application Scenarios

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Node Isolation Strategy is implemented based on the Container Platform Cluster Core

component, providing the capability of node isolation between projects by allocating nodes on

each workload cluster. When containers are created in a project, they are forcibly scheduled

to the nodes allocated to that specific project.

Architecture

Menu

Architecture - Alauda Container Platform

Core Concepts

Concepts

Node Isolation

Menu

Concepts - Alauda Container Platform

Node Isolation

Node Isolation refers to isolating nodes in a cluster to prevent containers from different

projects from simultaneously using the same node, thereby avoiding resource contention and

performance degradation.

Core Concepts

TOC

Node Isolation

Menu ON THIS PAGE

Core Concepts - Alauda Container Platform

Create Node Isolation Strategy

Guides

Create Node Isolation Strategy

Delete Node Isolation Strategy

Menu

Guides - Alauda Container Platform

Create a node isolation policy for the current cluster, allowing specified projects to have

exclusive access to the nodes of grouped resources within the cluster, thereby restricting the

runnable nodes for Pods under the project, achieving physical resource isolation between

projects.

Create Node Isolation Strategy

Delete Node Isolation Strategy

1.

In the left navigation bar, click on Security > Node Isolation Strategy.

2.

Click on Create Node Isolation Strategy.

3.

Refer to the instructions below to configure the relevant parameters.

Parameter Description

Project

Exclusivity

Whether to enable or disable the switch for the nodes contained in

the project isolation policy configured in the strategy; click to toggle

on or off, default is on.

Create Node Isolation Strategy

TOC

Create Node Isolation Strategy

Menu ON THIS PAGE

Create Node Isolation Strategy - Alauda Container Platform

Parameter Description

When the switch is on, only Pods under the specified project in the

policy can run on the nodes included in the policy; when off, Pods

under other projects in the current cluster can also run on the nodes

included in the policy apart from the specified project.

Project

The project that is configured to use the nodes in the policy.

Click the Project dropdown selection box, and check the checkbox

before the project name to select multiple projects.

Note:

A project can only have one node isolation policy set; if a project

has already been assigned a node isolation policy, it cannot be

selected;

Supports entering keywords in the dropdown selection box to filter

and select projects.

Node

The IP addresses of the compute nodes allocated for use by the

project in the policy.

Click the Node dropdown selection box, and check the checkbox

before the node name to select multiple nodes.

Note:

A node can belong to only one isolation policy; if a node already

belongs to another isolation policy, it cannot be selected;

Supports entering keywords in the dropdown selection box to filter

and select nodes.

4.

Click Create.

Note:

After the policy is created, existing Pods in the project that do not comply with the

current policy will be scheduled to the nodes included in the current policy after they are

rebuilt;

When Project Exclusivity is on, currently existing Pods on the nodes will not be

automatically evicted; manual scheduling is required if eviction is needed.

Create Node Isolation Strategy - Alauda Container Platform

Note: After the node isolation policy is deleted, the project will no longer be restricted to run

on specific nodes, and the nodes will no longer be exclusively used by the project.

1.

In the left navigation bar, click on Security > Node Isolation Strategy.

2.

Locate the node isolation policy, click ⋮ > Delete.

Delete Node Isolation Strategy

Create Node Isolation Strategy - Alauda Container Platform

Function Action
Platform

Administrator
Platform
auditors

Project
Manager

Namespace
Administrator

nodegroups

acp-

nodegroups

View ✓ ✓ ✓ ✓

Create ✓ ✕ ✕ ✕

Update ✓ ✕ ✕ ✕

Delete ✓ ✕ ✕ ✕

Permissions

Menu

Permissions - Alauda Container Platform

Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist or a LimitRange that is not named default in a namesp…

When importing a namespace, if the namespace contains multiple ResourceQuota resources,

the platform will select the smallest value for each quota item among all ResourceQuotas and

merge them, ultimately creating a single ResourceQuota named default .

Example:

The namespace to-import to be imported contains the following resourcequota

resources:

FAQ

TOC

Why shouldn't multiple ResourceQuotas exist in a
namespace when importing it?

Menu ON THIS PAGE

FAQ - Alauda Container Platform

After importing the to-import namespace, the following default ResourceQuota will be

created in that namespace:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: a

 namespace: to-import

spec:

 hard:

 requests.cpu: "1"

 requests.memory: "500Mi"

 limits.cpu: "3"

 limits.memory: "1Gi"

apiVersion: v1

kind: ResourceQuota

metadata:

 name: b

 namespace: to-import

spec:

 hard:

 requests.cpu: "2"

 requests.memory: "300Mi"

 limits.cpu: "2"

 limits.memory: "2Gi"

apiVersion: v1

kind: ResourceQuota

metadata:

 name: default

 namespace: to-import

spec:

 hard:

 requests.cpu: "1"

 requests.memory: "300Mi"

 limits.cpu: "2"

 limits.memory: "1Gi"

FAQ - Alauda Container Platform

For each ResourceQuota, the quotas of resources is the minimum value between a and b .

When multiple ResourceQuotas exist in a namespace, Kubernetes validates each

ResourceQuota independently. Therefore, after importing a namespace, it is recommended to

delete all ResourceQuotas except for the default one. This helps avoid complications in

quota calculations due to multiple ResourceQuotas, which can easily lead to errors.

When importing a namespace, if the namespace contains multiple LimitRange resources, the

platform cannot merge them into a single LimitRange. Since Kubernetes independently

validates each LimitRange when multiple exist, and the behavior of which LimitRange's

default values Kubernetes selects is unpredictable.

The platform will create a LimitRange named default when creating a namespace.

Therefore, before importing a namespace, only a single LimitRange named default should

exist in the namespace.

Why shouldn't multiple LimitRanges exist or a
LimitRange that is not named default in a namespace

when importing it?

FAQ - Alauda Container Platform

	Developer
	Overview
	Introduction
	TOC
	Advantages
	Use Cases
	Cross-Cutting Cloud-Native Principles

	Concepts
	Resource Unit Description
	Application Types
	Workload Types
	Features
	TOC
	Building Application
	Namespace Management
	Application Observability
	Source to Image
	Registry
	Node Isolation Strategy
	OAM Application

	Quick Start
	Creating a simple application via image
	TOC
	Introduction
	Use Cases
	Time Commitment

	Important Notes
	Prerequisites
	Workflow Overview
	Procedure
	Create namespace
	Configure Image Repository
	Method 1: Integrated Registry via Toolchain
	Method 2: External Registry Services

	Create application via Deployment
	Expose Service via NodePort
	Validate Application Accessibility

	Building Applications
	Overview
	TOC
	Namespace Management
	Application Lifecycle Management
	Application Creation Patterns
	Application Operations
	Application Observability

	Kubernetes Workload Management

	Concepts
	Understanding Parameters
	TOC
	Overview
	Core Concepts
	What are Parameters?
	Relationship with Docker

	Use Cases and Scenarios
	1. Application Configuration
	2. Environment-Specific Deployment
	3. Database Connection Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Parameter Examples
	Web Server with Custom Configuration
	Application with Multiple Parameters

	Best Practices
	1. Parameter Design Principles
	2. Security Considerations
	3. Configuration Management

	Troubleshooting Common Issues
	1. Parameter Not Recognized
	2. Parameter Override Not Working
	3. Debugging Parameter Issues

	Advanced Usage Patterns
	1. Conditional Parameters with Init Containers
	2. Parameter Templating with Helm

	Understanding Startup Commands
	TOC
	Overview
	Core Concepts
	What are Startup Commands?
	Relationship with Docker and Parameters
	Command vs Args Interaction

	Use Cases and Scenarios
	1. Custom Application Startup
	2. Debugging and Troubleshooting
	3. Initialization Scripts
	4. Multi-Purpose Images

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create job
	Complex Startup Command Examples
	Multi-Step Initialization
	Conditional Startup Logic

	Best Practices
	1. Signal Handling and Graceful Shutdown
	2. Error Handling and Logging
	3. Security Considerations
	4. Resource Management

	Advanced Usage Patterns
	1. Init Containers with Custom Commands
	2. Sidecar Containers with Different Commands
	3. Job Patterns with Custom Commands

	Understanding Environment Variables
	TOC
	Overview
	Core Concepts
	What are Environment Variables?
	Environment Variable Sources in Kubernetes
	Environment Variable Precedence

	Use Cases and Scenarios
	1. Application Configuration
	2. Database Configuration
	3. Dynamic Runtime Information
	4. Environment-Specific Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Environment Variable Examples
	Microservices with Service Discovery
	Multi-Container Pod with Shared Configuration

	Best Practices
	1. Security Best Practices
	2. Configuration Organization
	3. Environment Variable Naming
	4. Default Values and Validation

	Guides
	Namespaces
	Creating Namespaces
	TOC
	Understanding namespaces
	Creating namespaces by using web console
	Creating namespace by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Importing Namespaces
	TOC
	Overview
	Use Cases
	Prerequisites
	Procedure

	Resource Quota
	TOC
	Understanding Resource Requests & Limits
	Quotas
	Resource Quotas
	YAML file example
	Create resouce quota by using CLI

	Storage Quotas
	Extended Resources Quotas
	Other Quotas

	Limit Range
	TOC
	Understanding Limit Range
	Create Limit Range by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Pod Security Admission
	TOC
	Security Modes
	Security Standards
	Configuration
	Namespace Labels
	Exemptions

	Overcommit Ratio
	TOC
	UnderStanding Namespace Resource Overcommit Ratio
	CRD Define
	Creating overcommit ratio by using CLI
	Creating/Updating Overcommit Ratio by using web console
	Precautions
	Procedure

	Managing Namespace Members
	TOC
	Importing Members
	Constraints and Limitations
	Prerequisites
	Procedure

	Adding Members
	Procedure

	Removing Members
	Procedure

	Updating Namespaces
	TOC
	Updating Quotas
	Updating a Resource Quota by using web console
	Updating a Resource Quota by using CLI

	Updating Container LimitRanges
	Updating a LimitRange by using web console
	Updating a LimitRange by using CLI

	Updating Pod Security Admission
	Updating a Pod Security Admission by using web console
	Updating a Pod Security Admission by using CLI

	Deleting/Removing Namespaces
	TOC
	Deleting Namespaces
	Removing Namespaces

	Pre-Application-Creation Preparation
	Configuring ConfigMap
	TOC
	Understanding Config Maps
	Config Map Restrictions
	ConfigMap vs Secret
	Creating a ConfigMap by using the web console
	Creating a ConfigMap by using the CLI
	Operations
	View, Edit and Delete by using the CLI
	Ways to Use a ConfigMap in a Pod
	As Environment Variables
	As Files in a Volume
	As Individual Environment Variables

	ConfigMap vs Secret

	Configuring Secrets
	TOC
	Understanding Secrets
	Usage Characteristics
	Supported Types
	Usage Methods

	Creating an Opaque type Secret
	Creating a Docker registry type Secret
	Creating a Basic Auth type Secret
	Creating a SSH-Auth type Secret
	Creating a TLS type Secret
	Creating a Secret by using the web console
	How to Use a Secret in a Pod
	As Environment Variables
	As Mounted Files (Volume)

	Follow-up Actions
	Operations

	Creating Applications
	Creating applications from Image
	TOC
	Prerequisites
	Procedure 1 - Workloads
	Workload 1 - Configure Basic Info
	Workload 2 - Configure Pod
	Workload 3 - Configure Containers

	Procedure 2 - Services
	Procedure 3 - Ingress
	Application Management Operations
	Reference Information
	Storage Volume Mounting Instructions
	Health Check Parameters
	Common Parameters
	Protocol-Specific Parameters

	Creating applications from Chart
	TOC
	Precautions
	Prerequisites
	Procedure
	Status Analysis Reference

	Creating applications from YAML
	TOC
	Precautions
	Prerequisites
	Procedure

	Creating applications from Code
	TOC
	Prerequisites
	Procedure

	Creating applications from Operator Backed
	TOC
	Procedure
	Troubleshooting

	Creating applications by using CLI
	TOC
	Prerequisites
	Procedure
	Example
	YAML
	kubectl commands

	Reference

	Post-Application-Creation Configuration
	Configuring HPA
	TOC
	Understanding Horizontal Pod Autoscalers
	How Does the HPA Work?
	Supported Metrics

	Prerequisites
	Creating a Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console
	Using Custom Metrics for HPA
	Requirements
	Traditional (Core Metrics) HPA
	Custom Metrics HPA
	Trigger Condition Definition
	Custom Metrics HPA Compatibility
	Updates in autoscaling/v2beta2

	Calculation Rules

	Configuring VerticalPodAutoscaler (VPA)
	TOC
	Understanding VerticalPodAutoscalers
	How Does the VPA Work?
	Supported Features

	Prerequisites
	Installing the Vertical Pod Autoscaler Plugin

	Creating a VerticalPodAutoscaler
	Using the CLI
	Using the Web Console
	Advanced VPA Configuration
	Update Policy Options
	Container Policy Options

	Follow-Up Actions

	Configuring CronHPA
	TOC
	Understanding Cron Horizontal Pod Autoscalers
	How Does the CronHPA Work?

	Prerequisites
	Creating a Cron Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console

	Schedule Rule Explanation

	Operation and Maintenance
	Status Description
	TOC
	Applications

	Deployment
	Starting and Stopping Applications
	TOC
	Starting the Application
	Stopping the Application

	Updating Applications
	TOC
	Importing Resources
	Removing/Batch Removing Resources

	Exporting Applications
	TOC
	Exporting Helm Charts
	Procedure
	Follow-Up Actions

	Exporting YAML to Local
	Steps
	Method 1
	Method 2

	Follow-Up Actions

	Exporting YAML to Code Repository (Alpha)
	Precautions
	Steps
	Follow-Up Actions

	Updating and deleting Chart Applications
	TOC
	Important Notes
	Prerequisites
	Status Analysis Description

	Version Management for Applications
	TOC
	Creating a Version Snapshot
	Procedure

	Rolling Back to a Historical Version
	Procedure

	Deleting Applications
	Health Checks
	TOC
	Understanding Health Checks
	Probe Types
	HTTP GET Action
	exec Action
	TCP Socket Action

	Best Practices

	YAML file example
	Health Checks configuration parameters by using web console
	Common parameters
	Protocol specific parameters

	Troubleshooting probe failures
	Check pod events
	View container logs
	Test probe endpoint manually
	Review probe configuration
	Check application code
	Resource constraints
	Network issues

	Application Observability
	Monitoring Dashboards
	TOC
	Prerequisites
	Namespace-Level Monitoring Dashboards
	Procedure
	Creating Namespace-Level Monitoring Dashboard

	Workload-Level Monitoring
	Default Monitoring Dashboard
	Procedure
	Metric interpretation

	Custom Monitoring Dashboard

	Logs
	TOC
	Procedure

	Events
	TOC
	Procedure
	Event records interpretation

	Workloads
	Deployments
	TOC
	Understanding Deployments
	Creating Deployments
	Creating a Deployment by using CLI
	Prerequisites
	YAML file example
	Creating a Deployment via YAML

	Creating a Deployment by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Reference Information
	Storage Volume Mounting instructions

	Heath Checks

	Managing Deployments
	Managing a Deployment by using CLI
	Viewing a Deployment
	Updating a Deployment
	Scaling a Deployment
	Rolling Back a Deployment
	Deleting a Deployment

	Managing a Deployment by using web console
	Viewing a Deployment
	Updating a Deployment
	Deleting a Deployment

	Troubleshooting by using CLI
	Check Deployment status
	Check ReplicaSet status
	Check Pod status
	View Logs
	Enter Pod for debugging
	Check Health configuration
	Check Resource Limits

	DaemonSets
	TOC
	Understanding DaemonSets
	Creating DaemonSets
	Creating a DaemonSet by using CLI
	Prerequisites
	YAML file example
	Creating a DaemonSet via YAML

	Creating a DaemonSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create

	Managing DaemonSets
	Managing a DaemonSet by using CLI
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	Managing a DaemonSet by using web console
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	StatefulSets
	TOC
	Understanding StatefulSets
	Creating StatefulSets
	Creating a StatefulSet by using CLI
	Prerequisites
	YAML file example
	Creating a StatefulSet via YAML

	Creating a StatefulSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create
	Heath Checks

	Managing StatefulSets
	Managing a StatefulSet by using CLI
	Viewing a StatefulSet
	Scaling a StatefulSet
	Updating a StatefulSet (Rolling Update)
	Deleting a StatefulSet

	Managing a StatefulSet by using web console
	Viewing a StatefulSet
	Updating a StatefulSet
	Deleting a StatefulSet

	CronJobs
	TOC
	Understanding CronJobs
	Creating CronJobs
	Creating a CronJob by using CLI
	Prerequisites
	YAML file example
	Creating a CronJobs via YAML

	Creating CronJobs by using web console
	Prerequisites
	Procedure - Configure basic info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Create

	Execute Immediately
	Locate the CronJob resource
	Initiate ad-hoc execution
	Verify Job details:
	Monitor execution status

	Deleting CronJobs
	Deleting CronJobs by using web console
	Deleting CronJobs by using CLI

	Jobs
	TOC
	Understanding Jobs
	YAML file example
	Execution Overview

	Working with Helm charts
	TOC
	1. Understanding Helm
	1.1. Key features
	1.2. Catalog
	Terminology Definitions

	1.3 Understanding HelmRequest
	Differences Between HelmRequest and Helm
	HelmRequest and Application Integration
	Deployment Workflow
	Component Definitions

	2 Deploying Helm Charts as Applications via CLI
	2.1 Workflow Overview
	2.2 Preparing the Chart
	2.3 Packaging the Chart
	2.4 Obtaining an API Token
	2.5 Creating a Chart Repository
	2.6 Uploading the Chart
	2.7 Uploading Related Images
	2.8 Deploying the Application
	2.9 Updating the Application
	2.10 Uninstalling the Application
	2.11 Deleting the Chart Repository

	3. Deploying Helm Charts as Applications via UI
	3.1 Workflow Overview
	3.2 Prerequisites
	3.3 Adding Templates to Manageable Repositories
	3.4 Deleting Specific Versions of Templates
	Steps to Operate

	Pod
	Introduction
	Pod Parameters
	Deleting Pods
	TOC
	Use Cases
	Procedure

	Container
	Introduction
	Debug Container (Alpha)
	TOC
	Implementation Principle
	Notes
	Use Cases
	Procedure

	Entering the Container via EXEC
	TOC
	Entering the Container through Applications
	Prerequisites
	Procedure

	Entering the Container through the Pod
	Prerequisites
	Procedure

	How To
	Setting Scheduled Task Trigger Rules
	TOC
	Time Conversion
	Writing Crontab Expressions

	Registry
	Introduction
	TOC
	Principles and namespace isolation
	Authentication and authorization
	Authentication
	Authorization

	Advantages
	Application Scenarios

	Install
	Install Via YAML
	TOC
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry via YAML
	Procedure
	Configuration Reference
	Mandatory Fields

	Verification

	Updating/Uninstalling Alauda Container Platform Registry
	Update
	Uninstall

	Install Via Web UI
	TOC
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry cluster plugin using the web console
	Procedure
	Verification

	Updating/Uninstalling Alauda Container Platform Registry

	How To
	Common CLI Command Operations
	TOC
	Logging in Registry
	Add namespace permissions for users
	Add namespace permissions for a service account
	Pulling Images
	Pushing Images

	Using Alauda Container Platform Registry in Kubernetes Clusters
	TOC
	Registry Access Guidelines
	Deploy Sample Application
	Cross-Namespace Access
	Example Role Binding

	Best Practices
	Verification Checklist
	Troubleshooting

	Source to Image
	Introduction
	TOC
	Source to Image Concept
	Core Features
	Core Benefits
	Application scenarios
	Usage Limitations

	Install
	Installing Alauda Container Platform Builds
	TOC
	Prerequisites
	Procedure
	Install the Alauda Container Platform Builds Operator
	Install the Shipyard instance
	Verification

	Architecture
	Guides
	Managing applications created from Code
	TOC
	Key Features
	Advantages
	Prerequisites
	Procedure
	Related operations
	Build

	How To
	Creating an application from Code
	TOC
	Prerequisites
	Procedure

	Node Isolation Strategy
	Introduction
	TOC
	Advantages
	Application Scenarios

	Architecture
	Concepts
	Core Concepts
	TOC
	Node Isolation

	Guides
	Create Node Isolation Strategy
	TOC
	Create Node Isolation Strategy
	Delete Node Isolation Strategy

	Permissions
	FAQ
	TOC
	Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?
	Why shouldn't multiple LimitRanges exist or a LimitRange that is not named default in a namespace when importing it?

