
Introduction

Introduction

Architecture

Understanding Kube-OVN

Understanding ALB

Networking

Advantages

Application Scenarios

Usage Limitations

Upstream OVN/OVS Components

Core Controller and Agent

Monitoring, Operation and Maintenance Tools and Extension Components

Core components

Quick Start

ALB Common Concepts

Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project

ALB Leader

Additional resources:

Menu

Networking - Alauda Container Platform

Understanding MetalLB

Concepts

Auth

Ingress-nginx Annotation Compatibility

Terminology

Principles of High Availability in MetalLB

MetalLB's Algorithm for Selecting VIP Host Nodes

External Address Pools and Number of Nodes

Additional resources

Basic Concept

Quick Start

Related Ingress Annotations

forward-auth

basic-auth

CR

ALB Special Ingress Annotation

Ingress-Nginx Auth Related Other Features

Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Basic concepts

Supported ingress-nginx annotations

Networking - Alauda Container Platform

TCP/HTTP Keepalive

ModSecurity

Comparison Among Different Ingress Method

HTTP Redirect

Basic Concept

CRD

Terminology

Procedure to Operate

Related Explanations

Configuration Example

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

Basic Concept

CRD

Ingress Annotation

Port Level Redirect

Rule Level Redirect

Networking - Alauda Container Platform

L4/L7 Timeout

GatewayAPI

OTel

Guides

Basic Concept

CRD

What Timeout Means

Ingress Annotation

Port Level Timeout

Terminology

Prerequisites

Procedure

Related Operations

Additional Notes

Configuration Example

Networking - Alauda Container Platform

Creating Services

Creating Ingresses

Why Service is Needed

Example ClusterIP type Service:

Headless Services

Creating a service by using the web console

Creating a service by using the CLI

Example: Accessing an Application Within the Cluste

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations

Implementation Method

Prerequisites

Example Ingress:

Creating a Ingress by using the web console

Creating a Ingress by using the CLI

Networking - Alauda Container Platform

Configure Gateway

Creating a Domain Name

Creating Certificates

Terminology

Prerequisites

Example Gateway and Alb2 custom resource (CR)

Creating Gateway by using the web console

Creating Gateway by using the CLI

Viewing Resources Created by the Platform

Updating Gateways

Updating Gateway by using the web console

Add Listener

Add Listener by using the web console

Add Listener by using the CLI

Creating Route Rules

Example HTTPRoute custom resource (CR)

Creating Route by using the web console

Creating Route by using the CLI

Example Domain custom resource (CR)

Creating Domain by using the web console

Creating Domain by using the CLI

Subsequent Actions

Additional resources

Creating a certificate by using the web console

Networking - Alauda Container Platform

Creating External IP Address Pool

Creating BGP Peers

Configure Subnets

Configure Network Policies

Prerequisites

Constraints and Limitations

Deploying the MetalLB Plugin

Example IPAddressPool custom resource (CR)

Creating an External IP Address Pool by using the web console

Creating an External IP Address Pool by using the CLI

View Alarm Policy

Terminology

Prerequisites

Example BGPPeer custom resource (CR)

Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

IP Allocation Rules

Calico Network

Kube-OVN Network

Subnet Management

Creating NetworkPolicy by using the web console

Creating NetworkPolicy by using the CLI

Reference

Networking - Alauda Container Platform

Creating Admin Network Policies

Configure Cluster Network Policies

How To

Deploy High Available VIP for ALB

Soft Data Center LB Solution (Alpha)

Notes

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI

Additional resource

Notes

Procedure

Method 1: Use LoadBalancer type internal routing to provide VIP

Method 2: Use external load balancer device to provide VIP

Prerequisites

Procedure

Verification

Networking - Alauda Container Platform

Preparing Kube-OVN Underlay Physical Network

Automatic Interconnection of Underlay and Overlay Subnets

Use OAuth Proxy with ALB

Creating GatewayAPI Gateway

Usage Instructions

Terminology Explanation

Environment Requirements

Configuration Example

Overview

Procedure

Result

Deploy MetalLB

Set Pod Security Policies to Privileged Mode

Networking - Alauda Container Platform

Configure a Load Balancer

How to properly allocate CPU and memory resources

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster

Prerequisites

Example ALB2 custom resource (CR)

Creating a Load Balancer by using the web console.

Creating a Load Balancer by using the CLI.

Update Load Balancer by using the web console

Delete Load Balancer by using the web console

Delete Load Balancer by using the CLI

Configure Listener Ports (Frontend)

Prerequisites

Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by using the web console

Creating Listener Ports (Frontend) by using the CLI

Subsequent Actions

Related Operations

Example Rule custom resource (CR)

Creating Rule by using web console

Creating Rule by using the CLI

Logs and Monitoring

Viewing Logs

Monitoring Metrics

Additional resources

Networking - Alauda Container Platform

Calico Network Supports WireGuard Encryption

Kube-OVN Overlay Network Supports IPsec Encryption

ALB Monitoring

Trouble Shooting

How to Solve Inter-node Communication Issues in ARM Environments?

Find Who Cause the Error

Installation Status

Terminology

Notes

Prerequisites

Procedure

Result Verification

Terminology

Notes

Prerequisites

Procedure

Terminology

Procedure

Monitoring Metrics

Networking - Alauda Container Platform

The container network is a comprehensive networking solution designed for cloud-native

applications, ensuring seamless east-west communication within clusters and efficient north-

south traffic management across external networks, while providing essential networking

functionalities. It consists of these core components:

Container Network Interfaces (CNIs) for east-west traffic management within the cluster.

Ingress Gateway Controller ALB for managing HTTPS ingress traffic.

MetalLB for handling LoadBalancer type Services.

Additionally, it provides robust network security and encryption features to ensure secure

communication.

Advantages

Application Scenarios

Usage Limitations

The container network offers the following core advantages:

Flexible Network Management

With support for multiple CNIs, he container network supports both overlay, underlay and

routing modes, providing flexibility to adapt to diverse network environments. It also offers

fine-grained IP allocation and robust egress management. As the founding team of Kube-

Introduction

TOC

Advantages

Menu ON THIS PAGE

Introduction - Alauda Container Platform

OVN, we bring extensive hands-on experience in building and maintaining large-scale

networks, ensuring reliable and performant connectivity.

Isolation, Multi-Tenant, and API Flexibility for Ingress Gateway

With the ALB operator, multiple ALB instances can be created and managed within one

cluster. Each tenant can have a dedicated group of ALB instances as ingress gateway,

ensuring effective isolation and resource management. Additionally, users can flexibly

choose between Ingress and Gateway API based on their preferences and operational

requirements, ensuring seamless traffic management and enhanced flexibility. As the

founding team of ALB, we can guaranteeing a robust and scalable solution.

Comprehensive Network Security

Container network provides a multi-layered security framework to ensure protection across

all levels. In the CNI layer, we support multiple security policy models, including

NetworkPolicy and AdminNetworkPolicy, to enforce fine-grained network access controls.

For secure data transmission, the network incorporates robust traffic encryption. At the

Ingress Gateway layer, we provide advanced security mechanisms such as TLS

termination and support for ModSecurity, offering comprehensive protection for external-

facing applications. With built-in network policy enforcement, encryption, and traffic

monitoring, it ensures protection against unauthorized access and maintains compliance

with security standards.

The container network is particularly suitable for the following scenarios:

East-West Traffic Management

Leveraging CNIs to provide efficient pod-to-pod communication within clusters, with

support for both overlay and underlay network modes to meet different deployment needs.

North-South Traffic Control

Using ALB as the Ingress Gateway Controller to manage external HTTPS traffic, with

flexible API choices and multi-tenant isolation capabilities for different teams.

Application Scenarios

Introduction - Alauda Container Platform

Load Balancer Service Exposure

Utilizing MetalLB to provide high availability for LoadBalancer type Services, enabling

reliable external access to cluster services through virtual IP addresses.

Network Security and Encryption

Implementing comprehensive security through NetworkPolicy, AdminNetworkPolicy, and

traffic encryption to ensure secure communication across the network infrastructure.

While the container network provides extensive functionalities, the following limitations should

be noted:

Underlay Network Requirement

Some underlay network capabilities, such as Kube-OVN Underlay Subnet, Egress IP, and

MetalLB, require underlying L2 network support. These features cannot be used in public

cloud providers and certain virtualized environments like AWS and GCP.

With its versatile design and comprehensive feature set, the container network empowers

organizations to build, scale, and manage secure, reliable, and high-performance

containerized applications.

Usage Limitations

Introduction - Alauda Container Platform

Understanding Kube-OVN

Understanding ALB

Understanding MetalLB

Architecture

Upstream OVN/OVS Components

Core Controller and Agent

Monitoring, Operation and Maintenance Tools and Extension Components

Core components

Quick Start

ALB Common Concepts

Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project

ALB Leader

Additional resources:

Terminology

Principles of High Availability in MetalLB

MetalLB's Algorithm for Selecting VIP Host Nodes

External Address Pools and Number of Nodes

Additional resources

Menu

Architecture - Alauda Container Platform

This document describes the general architecture of Kube-OVN, the functionality of each

component and how they interact with each other.

Overall, Kube-OVN serves as a bridge between Kubernetes and OVN, combining proven SDN

with Cloud Native. This means that Kube-OVN not only implements network specifications

under Kubernetes, such as CNI, Service and Networkpolicy, but also brings a large number of

SDN domain capabilities to cloud-native, such as logical switches, logical routers, VPCs,

gateways, QoS, ACLs and traffic mirroring.

Kube-OVN also maintains a good openness to integrate with many technology solutions, such

as Cilium, Submariner, Prometheus, KubeVirt, etc.

The components of Kube-OVN can be broadly divided into three categories.

Upstream OVN/OVS components.

Core Controller and Agent.

Monitoring, operation and maintenance tools and extension components.

Understanding Kube-OVN

Menu ON THIS PAGE

Understanding Kube-OVN - Alauda Container Platform

Upstream OVN/OVS Components

ovn-central

ovs-ovn

Core Controller and Agent

kube-ovn-controller

kube-ovn-cni

Monitoring, Operation and Maintenance Tools and Extension Components

kube-ovn-speaker

kube-ovn-pinger

kube-ovn-monitor

kubectl-ko

This type of component comes from the OVN/OVS community with specific modifications for

Kube-OVN usage scenarios. OVN/OVS itself is a mature SDN system for managing virtual

machines and containers, and we strongly recommend that users interested in the Kube-OVN

implementation read ovn-architecture(7) first to understand what OVN is and how to

integrate with it. Kube-OVN uses the northbound interface of OVN to create and coordinate

virtual networks and map the network concepts into Kubernetes.

All OVN/OVS-related components have been packaged into images and are ready to run in

Kubernetes.

The ovn-central Deployment runs the control plane components of OVN, including ovn-

nb , ovn-sb , and ovn-northd .

TOC

Upstream OVN/OVS Components

↗

ovn-central

Understanding Kube-OVN - Alauda Container Platform

https://www.mankier.com/7/ovn-architecture
https://www.mankier.com/7/ovn-architecture
https://www.mankier.com/7/ovn-architecture

ovn-nb : Saves the virtual network configuration and provides an API for virtual network

management. kube-ovn-controller will mainly interact with ovn-nb to configure the

virtual network.

ovn-sb : Holds the logical flow table generated from the logical network of ovn-nb , as

well as the actual physical network state of each node.

ovn-northd : translates the virtual network of ovn-nb into a logical flow table in ovn-sb .

Multiple instances of ovn-central will synchronize data via the Raft protocol to ensure high

availability.

ovs-ovn runs as a DaemonSet on each node, with openvswitch , ovsdb , and ovn-

controller running inside the Pod. These components act as agents for ovn-central to

translate logical flow tables into real network configurations.

This part is the core component of Kube-OVN, serving as a bridge between OVN and

Kubernetes, bridging the two systems and translating network concepts between them. Most

of the core functions are implemented in these components.

This component performs the translation of all resources within Kubernetes to OVN resources

and acts as the control plane for the entire Kube-OVN system. The kube-ovn-controller

listens for events on all resources related to network functionality and updates the logical

network within the OVN based on resource changes. The main resources listened including:

Pod, Service, Endpoint, Node, NetworkPolicy, VPC, Subnet, Vlan, ProviderNetwork.

Taking the Pod event as an example, kube-ovn-controller listens to the Pod creation

event, allocates the address via the built-in in-memory IPAM function, and calls ovn-central

to create logical ports, static routes and possible ACL rules. Next, kube-ovn-controller

writes the assigned address and subnet information such as CIDR, gateway, route, etc. to the

ovs-ovn

Core Controller and Agent

kube-ovn-controller

Understanding Kube-OVN - Alauda Container Platform

annotation of the Pod. This annotation is then read by kube-ovn-cni and used to configure

the local network.

This component runs on each node as a DaemonSet, implements the CNI interface, and

operates the local OVS to configure the local network.

This DaemonSet copies the kube-ovn binary to each machine as a tool for interaction

between kubelet and kube-ovn-cni . This binary sends the corresponding CNI request to

kube-ovn-cni for further operation. The binary will be copied to the /opt/cni/bin

directory by default.

kube-ovn-cni will configure the specific network to perform the appropriate traffic

operations, and the main tasks including:

1. Config ovn-controller and vswitchd .

2. Handle CNI Add/Del requests:

2.1. Create or delete veth pair and bind or unbind to OVS ports.

2.2. Configure OVS ports

2.3. Update host iptables/ipset/route rules.

3. Dynamically update the network QoS.

4. Create and configure the ovn0 NIC to connect the container network and the host

network.

5. Configure the host NIC to implement Vlan/Underlay/EIP.

6. Dynamically config inter-cluster gateways.

These components provide monitoring, diagnostics, operations tools, and external interface to

extend the core network capabilities of Kube-OVN and simplify daily operations and

kube-ovn-cni

Monitoring, Operation and Maintenance Tools and
Extension Components

Understanding Kube-OVN - Alauda Container Platform

maintenance.

This component is a DaemonSet running on a specific labeled nodes that publish routes to

the external, allowing external access to the container directly through the Pod IP.

This component is a DaemonSet running on each node to collect OVS status information,

node network quality, network latency, etc.

This component collects OVN status information and the monitoring metrics.

This component is a kubectl plugin, which can quickly run common operations.

kube-ovn-speaker

kube-ovn-pinger

kube-ovn-monitor

kubectl-ko

Understanding Kube-OVN - Alauda Container Platform

ALB (Another Load Balancer) is a Kubernetes Gateway powered by OpenResty with years of

production experience from Alauda.

Core components

Quick Start

Deploy the ALB Operator

Deploy an ALB Instance

Run a demo application

ALB Common Concepts

Auth

Network Mode

Host Network Mode

Container Network Mode

Frontend

Additional resources

Rules

dslx

Project Isolation

Project Mode

Port Project Mode

Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project

Ingress

Ingress Controller

ALB

Understanding ALB

TOC

Menu ON THIS PAGE

Understanding ALB - Alauda Container Platform

ALB Instance

ALB-Operator

Frontend (abbreviation: FT)

RULE

ALB Leader

Project

Additional resources:

ALB Operator: An operator that manage the lifecycle of ALB instances. It is responsible for

watching ALB CRs and then creating and updating ALB instances for different tenants.

ALB Instance: The ALB instance includes an Openresty that act as the data plan and a Go

controller as the controller plan. The Go controller monitors various CRs (Ingress, Gateway,

Rule, etc.) and converts them into ALB-specific DSL rules. OpenResty then uses these

DSL rules to match and process incoming requests.

Core components

Understanding ALB - Alauda Container Platform

1. Create a cluster.

2.

3.

Quick Start

Deploy the ALB Operator

 helm repo add alb https://alauda.github.io/alb/;helm repo update;helm sear

 helm install alb-operator alb/alauda-alb2

Deploy an ALB Instance

cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2beta1

kind: ALB2

metadata:

 name: alb-demo

 namespace: kube-system

spec:

 address: "172.20.0.5" # the ip address of node where alb been deployed

 type: "nginx"

 config:

 networkMode: host

 loadbalancerName: alb-demo

 projects:

 - ALL_ALL

 replicas: 1

EOF

Run a demo application

Understanding ALB - Alauda Container Platform

cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hello-world

 labels:

 k8s-app: hello-world

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: hello-world

 template:

 metadata:

 labels:

 k8s-app: hello-world

 spec:

 terminationGracePeriodSeconds: 60

 containers:

 - name: hello-world

 image: docker.io/crccheck/hello-world:latest

 imagePullPolicy: IfNotPresent

apiVersion: v1

kind: Service

metadata:

 name: hello-world

 labels:

 k8s-app: hello-world

spec:

 ports:

 - name: http

 port: 80

 targetPort: 8000

 selector:

 k8s-app: hello-world

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: hello-world

spec:

 rules:

h

Understanding ALB - Alauda Container Platform

Now you can access the app via curl http://${ip}

The following defines common concepts in the ALB.

Auth is a mechanism that performs authentication before a request reaches the actual

service. It allows you to handle authentication at the ALB level uniformly, without implementing

authentication logic in each backend service.

Learn more about ALB Auth.

An ALB instance could be deployed in two modes: host network mode and container network

mode.

Directly use the node's network stack, sharing the IP address and port with the node.

In this mode, the load balancer instance directly binds to the node's port, without port mapping

or similar container network encapsulation conversion.

 - http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: hello-world

 port:

 number: 80

EOF

ALB Common Concepts

Auth

Network Mode

Host Network Mode

Understanding ALB - Alauda Container Platform

NOTE

To avoid port conflicts, only one ALB instance is allowed to be deployed on a single node.

In host-network mode ALB instance will listen to all the NIC of the node by default.

1. Best network performance.

2. Could be accessed by node's IP address.

1. Only one ALB instance is allowed to be deployed on a single node.

2. Port might conflict with other processes.

Unlike host network mode, container network mode deploys ALB using container networking.

Advantages:

Disadvantages:

Container Network Mode

Understanding ALB - Alauda Container Platform

1. Supports deploying multiple ALB instances on a single node.

2. ALB provides integration with MetalLB, which can provide VIP for ALB.

3. Port will not conflict with other processes.

1. Slightly lower performance.

2. Must access ALB through LoadBalancer service.

We define a resource called frontend (abbreviated as ft), which is used to declare all the ports

that all the alb should listen to.

Each frontend corresponds to a listening port on the load balancer (LB). A Frontend is

associated with the ALB via labels.

Advantages:

Disadvantages:

Frontend

Understanding ALB - Alauda Container Platform

1 Required, indicate the ALB instance to which this Frontend belongs to.

2 Format as alb_name-port .

3 Format as $secret_ns/$secret_name .

4 Protocol of this Frontend itself.

http|https|grpc|grpcs for l7 proxy.

tcp|udp for l4 proxy.

5 For l4 proxy, serviceGroup is required. For l7 proxy, serviceGroup is. optional. When

a request arrives, ALB will first try to match it against rules associated with this Frontend. Only

if the request doesn't match any rule, ALB will then forward it to the default serviceGroup

specified in the Frontend configuration.

6 weight configuration applicable to Round Robin and Weighted Round Robin

scheduling algorithms.

NOTE

ALB listens to ingress and automatically creates a Frontend or Rule. source field is defined as

follows:

apiVersion: crd.alauda.io/v1

kind: Frontend

metadata:

 labels:

 alb2.cpaas.io/name: alb-demo 1

 name: alb-demo-00080 2

 namespace: cpaas-system

spec:

 backendProtocol: "http"

 certificate_name: "" 3

 port: 80

 protocol: http 4

 serviceGroup: 5

 services:

 - name: hello-world

 namespace: default

 port: 80

 weight: 100 6

Understanding ALB - Alauda Container Platform

2.1. spec.source.type currently only supports ingress .

2.2. spec.source.name is ingress name.

2.3. spec.source.namespace is ingress namespace.

L4/L7 timeout

Keepalive

We define a resource called rule, which is used to describe how an alb instance should handle

a 7-layer request.

Complex traffic matching and distribution patterns can be configured by Rule. When the traffic

arrives, it hits the traffic according to the internal rules and does the corresponding forwarding,

and provides some additional functions such as cors, url rewrite and so on.

Additional resources

Rules

Understanding ALB - Alauda Container Platform

apiVersion: crd.alauda.io/v1

kind: Rule

metadata:

 labels:

 alb2.cpaas.io/frontend: alb-demo-00080 1

 alb2.cpaas.io/name: alb-demo 2

 name: alb-demo-00080-test

 namespace: kube-system

spec:

 backendProtocol: "" 3

 certificate_name: "" 4

 dslx:

 - type: METHOD

 values:

 - - EQ

 - POST

 - type: URL

 values:

 - - STARTS_WITH

 - /app-a

 - - STARTS_WITH

 - /app-b

 - type: PARAM

 key: group

 values:

 - - EQ

 - vip

 - type: HOST

 values:

 - - ENDS_WITH

 - .app.com

 - type: HEADER

 key: LOCATION

 values:

 - - IN

 - east-1

 - east-2

 - type: COOKIE

 key: uid

 values:

 - - EXIST

 - type: SRC_IP

 values:

Understanding ALB - Alauda Container Platform

1 Required, indicate the Frontend to which this rule belongs.

2 Required, indicate the ALB to which this rule belongs.

3 As same as Frontend.

4 As same as Frontend.

5 The lower the number, the higher the priority.

6 As same as Frontend.

dslx is a domain specific language, it is used to describe the matching criteria.

For example, below rule matches a request that satisfies all the following criteria:

url starts with /app-a or /app-b

method is post

url param's group is vip

host is *.app.com

header's location is east-1 or east-2

has a cookie name is uid

source IPs come from 1.1.1.1-1.1.1.100

 - - RANGE

 - "1.1.1.1"

 - "1.1.1.100"

 enableCORS: false

 priority: 4 5

 serviceGroup: 6

 services:

 - name: hello-world

 namespace: default

 port: 80

 weight: 100

dslx

Understanding ALB - Alauda Container Platform

For rule, default is project isolation, each user can only see the rule of their own project.

dslx:

 - type: METHOD

 values:

 - - EQ

 - POST

 - type: URL

 values:

 - - STARTS_WITH

 - /app-a

 - - STARTS_WITH

 - /app-b

 - type: PARAM

 key: group

 values:

 - - EQ

 - vip

 - type: HOST

 values:

 - - ENDS_WITH

 - .app.com

 - type: HEADER

 key: LOCATION

 values:

 - - IN

 - east-1

 - east-2

 - type: COOKIE

 key: uid

 values:

 - - EXIST

 - type: SRC_IP

 values:

 - - RANGE

 - "1.1.1.1"

 - "1.1.1.100"

Project Isolation

Project Mode

Understanding ALB - Alauda Container Platform

An ALB can be shared by multiple projects, and these projects can control this ALB. All ports

of the ALB are visible to these projects.

A port of a ALB can belong to different projects. This deployment mode is called Port Project

Mode. The administrator needs to specify the port segment that each project can use. The

users of this project can only create ports within this port segment, and can only see the ports

within this port segment.

LoadBalancer is a key component in modern cloud-native architectures, serving as an

intelligent traffic router and load balancer.

To understand how ALB works in a Kubernetes cluster, we need to understand several core

concepts and their relationships:

ALB itself

Frontend (FT)

Rules

Ingress resources

Projects

These components work together to enable flexible and powerful traffic management

capabilities.

Next introduces how these concepts work together and what roles they play in the request-

calling chain. Detailed introductions for each concept will be covered in other articles.

Port Project Mode

Relationship between ALB, ALB Instance, Frontend/FT,
Rule, Ingress, and Project

Understanding ALB - Alauda Container Platform

Kubernetes cluster
Svc-A

network-request route to pod via ingressclient alb-instance SvcAPod1

SvcAPod2

In a request-calling chain:

1. A client sends an HTTP/HTTPS/other protocol request, and finally the request will arrive

on a pod of ALB, and the pod (an ALB instance) will start to handle this request.

2. This ALB instance finds a rule which could match this request.

3. If needed, modify/redirect/rewrite the request based on the rule.

4. Find and select one pod IP from the services which the rule configured. And forward the

request to the pod.

Ingress is a resource in Kubernetes, used to describe what request should be sent to which

service.

A program that understands Ingress resource and will proxy request to service.

ALB is an Ingress controller.

In Kubernetes cluster, we use the alb2 resource to operate an ALB. You could use kubectl

get alb2 -A to view all the ALBs in the cluster.

ALBs are created by users manually. Each ALB has its own IngressClass. When you create

an Ingress, you can use .spec.ingressClassName field to indicate which Ingress controller

should handle this Ingress.

Ingress

Ingress Controller

ALB

Understanding ALB - Alauda Container Platform

ALB also is a Deployment (bunch of pods) running in the cluster. Each pod is called an ALB

instance.

Each ALB instance handles requests independently, but all instances share Frontend (FT),

Rule, and other configurations belonging to the same ALB.

ALB-Operator, a default component deployed in the cluster, is an operator for ALB. It will

create/update/delete Deployment and other related resources for each ALB according to the

ALB resource.

FT is a resource defined by ALB itself. It is used to represent the ALB instance listening ports.

FT could be created by ALB-Leader or user manually.

Cases of FT created by ALB-Leader:

1. If Ingress has certificate, we will create FT 443 (HTTPS).

2. If Ingress has no certificate, we will create FT 80 (HTTP).

RULE is a resource defined by ALB itself. It takes the same role as the Ingress, but it is more

specific. A RULE is uniquely associated with a FT.

RULE could be created by ALB-Leader or user manually.

Cases of RULE created by ALB-Leader:

1. Sync Ingress to RULE.

ALB Instance

ALB-Operator

Frontend (abbreviation: FT)

RULE

ALB Leader

Understanding ALB - Alauda Container Platform

In multiple ALB instances, one will be elected as leader. The leader is responsible for:

1. Translating the Ingress into Rules. We will create Rule for each path in the Ingress.

2. Creating FT needed by Ingress. For example, if Ingress has certificate we will create FT

443 (HTTPS), if Ingress has no certificate we will create FT 80 (HTTP).

From the perspective of ALB, Project is a set of namespaces.

You could configure one or more Projects in an ALB. When ALB Leader translates the Ingress

into Rules, it will ignore Ingress in namespaces which do not belong to the Project.

Configure a Load Balancer

Project

Additional resources:

Understanding ALB - Alauda Container Platform

Terminology

Principles of High Availability in MetalLB

MetalLB's Algorithm for Selecting VIP Host Nodes

External Address Pools and Number of Nodes

Calculation Formula

Application Example

Additional resources

Term Description

VIP

A Virtual IP Address (VIP) is the IP address assigned by MetalLB for the

LoadBalancer type internal routing, providing a unified access point for

external traffic to access services within the cluster.

ARP
The Address Resolution Protocol (ARP) is utilized to map network layer

IP addresses to data link layer MAC addresses.

GARP

Gratuitous ARP (GARP) is a special ARP request used to inform other

nodes in the network about the binding of an IP address to a MAC

address. Unlike normal ARP requests, GARP does not wait for

responses but actively sends information across the network.

Understanding MetalLB

TOC

Terminology

Menu ON THIS PAGE

Understanding MetalLB - Alauda Container Platform

Term Description

ARP

Responder

A component of MetalLB responsible for responding to ARP requests by

mapping the VIP to the node's MAC address. When a node needs to

communicate with the VIP, it sends ARP requests to retrieve the MAC

address corresponding to the VIP. Each available node has an ARP

Responder that responds to these requests, mapping the VIP to the

node's MAC address.

Controller

A component of MetalLB that dynamically allocates VIPs from the

external address pool for LoadBalancer type internal routing. The

Controller listens for creation and deletion events of internal routes in

the cluster to allocate or free VIPs as required.

Speaker

A component of MetalLB that determines, based on policies or

algorithms, whether nodes should host a VIP and send GARP. It

ensures a certain level of balance among nodes, and when a node

becomes unavailable, other nodes can take over the VIP and send

GARP, thereby achieving high availability.

Principles of High Availability in MetalLB

Understanding MetalLB - Alauda Container Platform

By default, the platform uses MetalLB's ARP mode, and the specific implementation process

and principles are as follows:

The Controller component of MetalLB selects an IP address from the external address pool

and allocates it to the LoadBalancer type internal routing as a VIP.

MetalLB selects an available node to host the VIP based on the algorithm, which then

forwards the traffic.

The Speaker component on this node actively sends GARP, establishing a mapping

relationship between the VIP and MAC address across all nodes.

Nodes within the same subnet, upon learning the mapping between the VIP and the

available node's MAC address, will communicate directly with this node when accessing

the VIP.

Nodes in different subnets will route traffic to the gateway of their subnet first, which will

then forward the traffic to the node hosting the VIP.

When this node encounters a failure, MetalLB selects another available node to host the

VIP, thereby ensuring high availability.

Upon reaching the node, Kube-Proxy forwards the traffic to the corresponding Pod.

Understanding MetalLB - Alauda Container Platform

MetalLB hashes all available nodes corresponding to the external address pool with the VIP

and sorts them according to a specific algorithm, choosing the first available node as the host

for the VIP.

Create an external address pool and add available nodes. All available nodes maintain a

backup relationship, meaning only the node hosting the VIP can forward traffic, requiring it to

handle all traffic for the VIPs in the external address pool.

The formula is: Number of external address pools = ceil(n-vip / n-node), where ceil rounds

up.

Note: If using virtual machines, the number of virtual machines = Number of external address

pools * n. Here, n must be greater than 2, with a maximum of one node failure allowed.

n-vip: Represents the number of VIPs.

n-node: Represents the number of VIPs a single node can handle.

If a company has 10 VIPs, and each available node can handle 5 VIPs, allowing for one node

failure, how should the company plan the number of external address pools and available

nodes?

Analysis:

A total of two external address pools and four available nodes are needed.

MetalLB's Algorithm for Selecting VIP Host Nodes

External Address Pools and Number of Nodes

Calculation Formula

Application Example

Understanding MetalLB - Alauda Container Platform

Each available node can handle a maximum of 5 VIPs, meaning one external address pool

can accommodate 5 VIPs, so two external address pools are required for 10 VIPs.

Allowing one node failure means that each address pool must include one node hosting the

VIP and one backup node, resulting in two available nodes for each of the two external

address pools.

Creating External IP Address Pool

Creating BGP Peers

Additional resources

Understanding MetalLB - Alauda Container Platform

Auth

Ingress-nginx Annotation Compatibility

TCP/HTTP Keepalive

Concepts

Basic Concept

Quick Start

Related Ingress Annotations

forward-auth

basic-auth

CR

ALB Special Ingress Annotation

Ingress-Nginx Auth Related Other Features

Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Basic concepts

Supported ingress-nginx annotations

Basic Concept

CRD

Menu

Concepts - Alauda Container Platform

ModSecurity

Comparison Among Different Ingress Method

HTTP Redirect

L4/L7 Timeout

GatewayAPI

Terminology

Procedure to Operate

Related Explanations

Configuration Example

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

Basic Concept

CRD

Ingress Annotation

Port Level Redirect

Rule Level Redirect

Basic Concept

CRD

What Timeout Means

Ingress Annotation

Port Level Timeout

Concepts - Alauda Container Platform

OTel
Terminology

Prerequisites

Procedure

Related Operations

Additional Notes

Configuration Example

Concepts - Alauda Container Platform

Basic Concept

What is Auth

Supported Auth Methods

Auth Configuration Methods

Auth Result Handling

Quick Start

Deploy ALB

Configure Secret and Ingress

Verify

Related Ingress Annotations

forward-auth

Construct Related Annotations

auth-url

auth-method

auth-proxy-set-headers

Construct app-request related annotations

auth-response-headers

cookie handling

Redirect sign related configuration

auth-signin

auth-signin-redirect-param

auth-request-redirect

basic-auth

auth-realm

Auth

TOC

Menu ON THIS PAGE

Auth - Alauda Container Platform

auth-type

auth-secret

auth-secret-type

CR

ALB Special Ingress Annotation

Auth-Enable

Ingress-Nginx Auth Related Other Features

Global-Auth

No-Auth-Locations

Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Auth is a mechanism that performs authentication before a request reaches the actual

service. It allows you to handle authentication at the ALB level uniformly, without implementing

authentication logic in each backend service.

ALB supports two main authentication methods:

1.

Forward Auth (External Authentication)

Send a request to an external authentication service to verify the user's identity

Applicable scenarios: Need complex authentication logic, such as OAuth, SSO, etc.

Workflow:

1.1. User request arrives at ALB

1.2. ALB forwards the authentication information to the authentication service

Basic Concept

What is Auth

Supported Auth Methods

Auth - Alauda Container Platform

1.3. The authentication service returns the verification result

1.4. Based on the authentication result, decide whether to allow access to the

backend service

2.

Basic Auth (Basic Authentication)

A simple authentication mechanism based on username and password

Applicable scenarios: Simple access control, development environment protection

Workflow:

2.1. User request arrives at ALB

2.2. ALB checks the username and password in the request

2.3. Compare with the configured authentication information

2.4. If the verification passes, forward to the backend service

1.

Global Auth

Configure at the ALB level, applicable to all services

Configure at the ALB or FT CR

2.

Path-level Auth

Configure at the specific Ingress path

Configure at the specific Rule

Can override the global auth configuration

3.

Disable Auth

Disable auth for a specific path

Auth Configuration Methods

Auth - Alauda Container Platform

Configure at the Ingress with annotation: alb.ingress.cpaas.io/auth-enable:

"false"

Configure at the Rule with CR

Auth success: Request will be forwarded to the backend service

Auth failed: Return 401 unauthorized error

Can configure the redirect behavior after auth failed (applicable to Forward Auth)

Configure Basic Auth with ALB

Auth Result Handling

Quick Start

Deploy ALB

cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

 name: auth

 namespace: cpaas-system

spec:

 config:

 networkMode: container

 projects:

 - ALL_ALL

 replicas: 1

 vip:

 enableLbSvc: false

 type: nginx

EOF

export ALB_IP=$(kubectl get pods -n cpaas-system -l service_name=alb2-auth -o

Auth - Alauda Container Platform

Configure Secret and Ingress

echo "Zm9vOiRhcHIxJHFJQ05aNjFRJDJpb29pSlZVQU1tcHJxMjU4L0NoUDE=" | base64 -d

openssl passwd -apr1 -salt qICNZ61Q bar # $apr1$qICNZ61Q$2iooiJVUAMmprq258/

kubectl apply -f - <<'END'

apiVersion: v1

kind: Secret

metadata:

 name: auth-file

type: Opaque

data:

 auth: Zm9vOiRhcHIxJHFJQ05aNjFRJDJpb29pSlZVQU1tcHJxMjU4L0NoUDE=

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: auth-file

 annotations:

 "nginx.ingress.kubernetes.io/auth-type": "basic"

 "nginx.ingress.kubernetes.io/auth-secret": "default/auth-file"

 "nginx.ingress.kubernetes.io/auth-secret-type": "auth-file"

spec:

 rules:

 - http:

 paths:

 - path: /app-file

 pathType: Prefix

 backend:

 service:

 name: app-server

 port:

 number: 80

END

Verify

Auth - Alauda Container Platform

Ingress-nginx defines a series of annotations to configure the specific details of the

authentication process. Below is a list of annotations that ALB supports, where "v" indicates

support and "x" indicates no support.

support type note

forward-auth
forward auth by

sending http request

nginx.ingress.kubernetes.io/auth-url v string

nginx.ingress.kubernetes.io/auth-

method
v string

nginx.ingress.kubernetes.io/auth-

signin
v string

nginx.ingress.kubernetes.io/auth-

signin-redirect-param
v string

nginx.ingress.kubernetes.io/auth-

response-headers
v string

nginx.ingress.kubernetes.io/auth-

proxy-set-headers
v string

nginx.ingress.kubernetes.io/auth-

request-redirect
v string

echo "Zm9vOiJhYXIi" | base64 -d # foo:bar

curl -v -X GET -H "Authorization: Basic Zm9vOmJhcg==" http://$ALB_IP:80/app-f

wrong password

curl -v -X GET -H "Authorization: Basic XXXXOmJhcg==" http://$ALB_IP:80/app-f

Related Ingress Annotations

Auth - Alauda Container Platform

support type note

nginx.ingress.kubernetes.io/auth-

always-set-cookie
v boolean

nginx.ingress.kubernetes.io/auth-

snippet
x string

basic-auth
auth by username

and password secret

nginx.ingress.kubernetes.io/auth-

realm
v string

nginx.ingress.kubernetes.io/auth-

secret
v string

nginx.ingress.kubernetes.io/auth-

secret-type
v string

nginx.ingress.kubernetes.io/auth-

type
-

"basic"

or

"digest"

basic: supports apr1

digest: not

supported

auth-cache

nginx.ingress.kubernetes.io/auth-

cache-key
x string

nginx.ingress.kubernetes.io/auth-

cache-duration
x string

auth-keepalive

keepalive when

sending request.

specify keepalive

behavior through a

series of annotations

nginx.ingress.kubernetes.io/auth-

keepalive
x number

Auth - Alauda Container Platform

support type note

nginx.ingress.kubernetes.io/auth-

keepalive-share-vars
x

"true" or

"false"

nginx.ingress.kubernetes.io/auth-

keepalive-requests
x number

nginx.ingress.kubernetes.io/auth-

keepalive-timeout
x number

auth-tls

when request is

https, extra verify

the certificate.

nginx.ingress.kubernetes.io/auth-tls-

secret
x string

nginx.ingress.kubernetes.io/auth-tls-

verify-depth
x number

nginx.ingress.kubernetes.io/auth-tls-

verify-client
x string

nginx.ingress.kubernetes.io/auth-tls-

error-page
x string

nginx.ingress.kubernetes.io/auth-tls-

pass-certificate-to-upstream
x

"true" or

"false"

nginx.ingress.kubernetes.io/auth-tls-

match-cn
x string

↗

forward-auth

Auth - Alauda Container Platform

https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication

appauth-serveralbclient

appauth-serveralbclient

client request (cli-request)

alb request to auth-server (auth-request)

auth-server reply 200 (auth-response)

app-request

app-response

cli-response

Related annotations:

nginx.ingress.kubernetes.io/auth-url

nginx.ingress.kubernetes.io/auth-method

nginx.ingress.kubernetes.io/auth-signin

nginx.ingress.kubernetes.io/auth-signin-redirect-param

nginx.ingress.kubernetes.io/auth-response-headers

nginx.ingress.kubernetes.io/auth-proxy-set-headers

nginx.ingress.kubernetes.io/auth-request-redirect

nginx.ingress.kubernetes.io/auth-always-set-cookie

These annotations describe the modifications made to auth-request, app-request, and cli-

response in the above diagram.

Auth-request's URL, value can be a variable.

Auth-request's method.

Construct Related Annotations

auth-url

auth-method

auth-proxy-set-headers

Auth - Alauda Container Platform

The value is a ConfigMap reference in the format ns/name . By default, all headers from the

cli-request will be sent to the auth-server. Additional headers can be configured through

proxy_set_header. The following headers are sent by default:

Value is a comma-separated string, allowing us to bring specific headers from auth-response

to app-request. example:

When ALB initiates an app-request, it will include the Remote-User and Remote-Name from

the auth-response headers.

auth-response and app-response can both set cookies. By default, only when app-

response.success, the auth-response.set-cookie will be merged into cli-response.set-cookie.

X-Original-URI $request_uri;

X-Scheme $pass_access_scheme;

X-Original-URL $scheme://$http_host$request_uri;

X-Original-Method $request_method;

X-Sent-From "alb";

X-Real-IP $remote_addr;

X-Forwarded-For $proxy_add_x_forwarded_for;

X-Auth-Request-Redirect $request_uri;

Construct app-request related annotations

auth-response-headers

nginx.ingress.kubernetes.io/auth-response-headers: Remote-User,Remote-Name

cookie handling

Auth - Alauda Container Platform

enable always-set-cookie

app-response.set-cookie

merge cookie

auth-response.set-cookie

cli-response.set-cookie

not enable always-set-
cookie

Yes No

app-response.set-cookie

app-response.success?

auth-response.set-cookie

merge cookie
only use app-response.set-

cookie

cli-response.set-cookie

When the auth-server returns 401, we can set the redirect header in the cli-response to

instruct the browser to redirect to the url specified by auth-signin for verification.

auth-serveralbclient

auth-serveralbclient

client request (cli-request)

alb request to auth-server (auth-request)

auth-server reply not 200 (auth-response)

in case of auth failed, alb reply cli-response (with location header to redirect)

Value is a url, specify the location header in cli-response.

The name of the query parameter in the signin-url, default is rd. if the signin-url does not

contain the auth-signin-redirect-param specified parameter name, alb will automatically

add the parameter. The parameter value will be set to

Redirect sign related configuration

auth-signin

auth-signin-redirect-param

Auth - Alauda Container Platform

$pass_access_scheme://$http_host$escaped_request_uri , used to record the original

request URL.

Set the x-auth-request-redirect header in auth-request.

basic-auth is the authentication process described in RFC 7617 . The interaction process is

as follows:

albclient

albclient

client request (cli-request)

check the username and password in the request

cli-response

description of the protected area Which is the realm value in the WWW-Authenticate

header of cli-response. WWW-Authenticate: Basic realm="$realm"

The type of the authentication scheme, currently only supports basic

auth-request-redirect

basic-auth

↗

auth-realm

↗

auth-type

auth-secret

Auth - Alauda Container Platform

https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm

The secret refs of the username and password, format is ns/name

Secret supports two types:

1.

auth-file: secret's data only contains one key "auth", and its value is the string of Apache

htpasswd format. for example:

2.

auth-map: secret's data each key represents a username, and the corresponding value is

the password hash (without the username in htpasswd format). for example:

Note: Currently, only htpasswd format password hashes generated using the apr1 algorithm

are supported.

ALB CR has added auth-related configuration items that can be configured on

ALB/Frontend/Rule CRs. During runtime, ALB will convert the annotations on Ingress into

rules.

auth-secret-type

data:

 auth: "user1:$apr1$xyz..."

data:

 user1: "$apr1$xyz...."

 user2: "$apr1$abc...."

CR

Auth - Alauda Container Platform

Auth supports configuration on:

Alb CR's .spec.config.auth

Frontend CR's .spec.config.auth

Rule CR's .spec.config.auth

The inheritance order is Alb > Frontend > Rule. If a child cr is not configured, the configuration

of the parent cr will be used.

auth:

 # Basic authentication configuration

 basic:

 # string; corresponding to nginx.ingress.kubernetes.io/auth-type: basic

 auth_type: "basic"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-realm

 realm: "Restricted Access"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-secret

 secret: "ns/name"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-secret-type

 secret_type: "auth-map|auth-file"

 # Forward authentication configuration

 forward:

 # boolean; corresponding to nginx.ingress.kubernetes.io/auth-always-set-

 always_set_cookie: true

 # string; corresponding to nginx.ingress.kubernetes.io/auth-proxy-set-he

 auth_headers_cm_ref: "ns/name"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-request-redi

 auth_request_redirect: "/login"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-method

 method: "GET"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-signin

 signin: "/signin"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-signin-redir

 signin_redirect_param: "redirect_to"

 # []string; corresponding to nginx.ingress.kubernetes.io/auth-response-h

 upstream_headers:

 - "X-User-ID"

 - "X-User-Name"

 - "X-User-Email"

 # string; corresponding to nginx.ingress.kubernetes.io/auth-url

 url: "http://auth-service/validate"

Auth - Alauda Container Platform

In the process of handling Ingress, ALB determines the priority based on the prefix of the

annotation. The priority from high to low is:

index.$rule_index-$path_index.alb.ingress.cpaas.io

alb.ingress.cpaas.io

nginx.ingress.kubernetes.io

This can handle the compatibility problem with ingress-nginx and specify the auth

configuration on a specific Ingress path.

A new annotation added by ALB, used to specify whether to enable authentication

functionality for the Ingress.

In ingress-nginx, you can set a global auth through the ConfigMap. This is equivalent to

configuring auth for all Ingresses. In ALB, you can configure auth on the ALB2 and FT CRs.

The rules under them will inherit these configurations.

In ALB, you can disable the auth function of this Ingress by configuring the annotation:

alb.ingress.cpaas.io/auth-enable: "false" on the Ingress.

ALB Special Ingress Annotation

Auth-Enable

alb.ingress.cpaas.io/auth-enable: "false"

Ingress-Nginx Auth Related Other Features

Global-Auth

No-Auth-Locations

Auth - Alauda Container Platform

1. Does not support auth-keepalive

2. Does not support auth-snippet

3. Does not support auth-cache

4. Does not support auth-tls

5. Basic-auth only supports basic, does not support digest

6. Basic-auth basic only supports apr1 algorithm, does not support bcrypt sha256, etc.

1. Check ALB pod Nginx container log

2. Check the X-ALB-ERR-REASON header in the return

Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Auth - Alauda Container Platform

Basic concepts

Supported ingress-nginx annotations

ingress-nginx is a commonly used Ingress Controller in Kubernetes, and defines many

annotations to implement various functions beyond the official ingress definition.

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/app-root string x

nginx.ingress.kubernetes.io/affinity cookie

o ingress does not

support. alb rule can

configure cookie hash

nginx.ingress.kubernetes.io/use-regex bool

Ingress-nginx Annotation Compatibility

TOC

Basic concepts

Supported ingress-nginx annotations

Menu ON THIS PAGE

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/affinity-mode

"balanced"

or

"persistent"

o ingress does not

support. alb rule can

configure session

persistence

nginx.ingress.kubernetes.io/affinity-canary-

behavior

"sticky" or

"legacy"

o ingress does not

support. alb rule can

configure session

persistence

nginx.ingress.kubernetes.io/auth-realm string v auth

nginx.ingress.kubernetes.io/auth-secret string v auth

nginx.ingress.kubernetes.io/auth-secret-type string v auth

nginx.ingress.kubernetes.io/auth-type
"basic" or

"digest"
v auth

nginx.ingress.kubernetes.io/auth-tls-secret string x

nginx.ingress.kubernetes.io/auth-tls-verify-

depth
number x

nginx.ingress.kubernetes.io/auth-tls-verify-

client
string x

nginx.ingress.kubernetes.io/auth-tls-error-

page
string x

nginx.ingress.kubernetes.io/auth-tls-pass-

certificate-to-upstream

"true" or

"false"
x

nginx.ingress.kubernetes.io/auth-tls-match-

cn
string x

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/auth-url string v

nginx.ingress.kubernetes.io/auth-cache-key string x

nginx.ingress.kubernetes.io/auth-cache-

duration
string x

nginx.ingress.kubernetes.io/auth-keepalive number x

nginx.ingress.kubernetes.io/auth-keepalive-

share-vars

"true" or

"false"
x

nginx.ingress.kubernetes.io/auth-keepalive-

requests
number x

nginx.ingress.kubernetes.io/auth-keepalive-

timeout
number x

nginx.ingress.kubernetes.io/auth-proxy-set-

headers
string v

nginx.ingress.kubernetes.io/auth-snippet string x

nginx.ingress.kubernetes.io/enable-global-

auth

"true" or

"false"
o auth

nginx.ingress.kubernetes.io/backend-

protocol
string v

nginx.ingress.kubernetes.io/canary
"true" or

"false"
x

nginx.ingress.kubernetes.io/canary-by-

header
string x

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/canary-by-

header-value
string x

nginx.ingress.kubernetes.io/canary-by-

header-pattern
string x

nginx.ingress.kubernetes.io/canary-by-cookie string x

nginx.ingress.kubernetes.io/canary-weight number x

nginx.ingress.kubernetes.io/canary-weight-

total
number x

nginx.ingress.kubernetes.io/client-body-

buffer-size
string x

nginx.ingress.kubernetes.io/configuration-

snippet
string x

nginx.ingress.kubernetes.io/custom-http-

errors
[]int x

nginx.ingress.kubernetes.io/custom-headers string o

nginx.ingress.kubernetes.io/default-backend string
o can use ingress's

default-backend

nginx.ingress.kubernetes.io/enable-cors
"true" or

"false"
v

nginx.ingress.kubernetes.io/cors-allow-origin string v

nginx.ingress.kubernetes.io/cors-allow-

methods
string v

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/cors-allow-

headers
string v

nginx.ingress.kubernetes.io/cors-expose-

headers
string x

nginx.ingress.kubernetes.io/cors-allow-

credentials

"true" or

"false"
x

nginx.ingress.kubernetes.io/cors-max-age number x

nginx.ingress.kubernetes.io/force-ssl-redirect
"true" or

"false"
v redirect

nginx.ingress.kubernetes.io/from-to-www-

redirect

"true" or

"false"
x

nginx.ingress.kubernetes.io/http2-push-

preload

"true" or

"false"
x

nginx.ingress.kubernetes.io/limit-connections number x

nginx.ingress.kubernetes.io/limit-rps number x

nginx.ingress.kubernetes.io/global-rate-limit number x

nginx.ingress.kubernetes.io/global-rate-limit-

window
duration x

nginx.ingress.kubernetes.io/global-rate-limit-

key
string x

nginx.ingress.kubernetes.io/global-rate-limit-

ignored-cidrs
string x

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/permanent-

redirect
string v redirect

nginx.ingress.kubernetes.io/permanent-

redirect-code
number v redirect

nginx.ingress.kubernetes.io/temporal-redirect string v redirect

nginx.ingress.kubernetes.io/preserve-trailing-

slash

"true" or

"false"
x

nginx.ingress.kubernetes.io/proxy-body-size string x

nginx.ingress.kubernetes.io/proxy-cookie-

domain
string x

nginx.ingress.kubernetes.io/proxy-cookie-

path
string x

nginx.ingress.kubernetes.io/proxy-connect-

timeout
number v timeout

nginx.ingress.kubernetes.io/proxy-send-

timeout
number v timeout

nginx.ingress.kubernetes.io/proxy-read-

timeout
number v timeout

nginx.ingress.kubernetes.io/proxy-next-

upstream
string x

nginx.ingress.kubernetes.io/proxy-next-

upstream-timeout
number x

nginx.ingress.kubernetes.io/proxy-next-

upstream-tries
number x

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/proxy-request-

buffering
string x

nginx.ingress.kubernetes.io/proxy-redirect-

from
string x

nginx.ingress.kubernetes.io/proxy-redirect-to string x

nginx.ingress.kubernetes.io/proxy-http-

version

"1.0" or

"1.1"
x

nginx.ingress.kubernetes.io/proxy-ssl-secret string x

nginx.ingress.kubernetes.io/proxy-ssl-ciphers string x

nginx.ingress.kubernetes.io/proxy-ssl-name string x

nginx.ingress.kubernetes.io/proxy-ssl-

protocols
string x

nginx.ingress.kubernetes.io/proxy-ssl-verify string x

nginx.ingress.kubernetes.io/proxy-ssl-verify-

depth
number x

nginx.ingress.kubernetes.io/proxy-ssl-server-

name
string x

nginx.ingress.kubernetes.io/enable-rewrite-

log

"true" or

"false"
x

nginx.ingress.kubernetes.io/rewrite-target URI v

nginx.ingress.kubernetes.io/satisfy string x

nginx.ingress.kubernetes.io/server-alias string x

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/server-snippet string x

nginx.ingress.kubernetes.io/service-

upstream

"true" or

"false"
x

nginx.ingress.kubernetes.io/session-cookie-

change-on-failure

"true" or

"false"
x

nginx.ingress.kubernetes.io/session-cookie-

conditional-samesite-none

"true" or

"false"
x

nginx.ingress.kubernetes.io/session-cookie-

domain
string x

nginx.ingress.kubernetes.io/session-cookie-

expires
string x

nginx.ingress.kubernetes.io/session-cookie-

max-age
string x

nginx.ingress.kubernetes.io/session-cookie-

name
string x

nginx.ingress.kubernetes.io/session-cookie-

path
string x

nginx.ingress.kubernetes.io/session-cookie-

samesite
string x

nginx.ingress.kubernetes.io/session-cookie-

secure
string x

nginx.ingress.kubernetes.io/ssl-redirect
"true" or

"false"
v

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/ssl-passthrough
"true" or

"false"
x

nginx.ingress.kubernetes.io/stream-snippet string x

nginx.ingress.kubernetes.io/upstream-hash-

by
string x

nginx.ingress.kubernetes.io/x-forwarded-

prefix
string x

nginx.ingress.kubernetes.io/load-balance string x

nginx.ingress.kubernetes.io/upstream-vhost string v

nginx.ingress.kubernetes.io/denylist-source-

range
CIDR

o can achieve similar

effect through

modsecurity

nginx.ingress.kubernetes.io/whitelist-source-

range
CIDR

o can achieve similar

effect through

modsecurity

nginx.ingress.kubernetes.io/proxy-buffering string x

nginx.ingress.kubernetes.io/proxy-buffers-

number
number x

nginx.ingress.kubernetes.io/proxy-buffer-size string x

nginx.ingress.kubernetes.io/proxy-max-temp-

file-size
string x

nginx.ingress.kubernetes.io/ssl-ciphers string x

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name type

Support (v supports
x does not support
o partially supports
or can be achieved
by configuration)

nginx.ingress.kubernetes.io/ssl-prefer-server-

ciphers

"true" or

"false"
x

nginx.ingress.kubernetes.io/connection-

proxy-header
string x

nginx.ingress.kubernetes.io/enable-access-

log

"true" or

"false"

o default enable

access_log, format is

fixed

nginx.ingress.kubernetes.io/enable-

opentelemetry

"true" or

"false"
v otel

nginx.ingress.kubernetes.io/opentelemetry-

trust-incoming-span

"true" or

"false"
v otel

nginx.ingress.kubernetes.io/enable-

modsecurity
bool v modsecurity

nginx.ingress.kubernetes.io/enable-owasp-

core-rules
bool v modsecurity

nginx.ingress.kubernetes.io/modsecurity-

transaction-id
string v modsecurity

nginx.ingress.kubernetes.io/modsecurity-

snippet
string v modsecurity

nginx.ingress.kubernetes.io/mirror-request-

body
string x

nginx.ingress.kubernetes.io/mirror-target string x

nginx.ingress.kubernetes.io/mirror-host string x

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Basic Concept

CRD

1.

ALB supports keepalive configuration at the port level. It can be configured on the frontend.

2.

Keepalive is between the client and ALB, not between ALB and the backend.

3.

It is implemented through the Nginx configuration, and Nginx needs and will

automatically reload when the configuration is changed.

4.

TCP keepalive and HTTP keepalive are two different concepts:

4.1. TCP keepalive is a TCP protocol feature that sends periodic probe packets to

check if the connection is still alive when there is no data transmission. It helps detect

and clean up dead connections.

4.2. HTTP keepalive (also known as persistent connections) allows multiple HTTP

requests to reuse the same TCP connection, avoiding the overhead of establishing new

connections. This improves performance by reducing latency and resource usage.

TCP/HTTP Keepalive

TOC

Basic Concept

Menu ON THIS PAGE

TCP/HTTP Keepalive - Alauda Container Platform

It can only be configured on the Frontend .spec.config.keepalive .

CRD

keepalive:

 properties:

 http:

 description: Downstream L7 keepalive

 properties:

 header_timeout:

 description: Keepalive header timeout. Default is not set.

 type: string

 requests:

 description: Keepalive requests. Default is 1000.

 type: integer

 timeout:

 description: Keepalive timeout. Default is 75s.

 type: string

 type: object

 tcp:

 description: TCPKeepAlive defines TCP keepalive parameters (SO_KEEPALIV

 properties:

 count:

 description: The TCP_KEEPCNT socket option.

 type: integer

 idle:

 description: The TCP_KEEPIDLE socket option.

 type: string

 interval:

 description: The TCP_KEEPINTVL socket option.

 type: string

 type: object

 type: object

TCP/HTTP Keepalive - Alauda Container Platform

ModSecurity is an open-source Web Application Firewall (WAF) designed to protect web

applications from malicious attacks. It is maintained by the open-source community and

supports various programming languages and web servers. The platform Load Balancer

(ALB) supports configuring ModSecurity, allowing for individual configurations at the Ingress

level.

Terminology

Procedure to Operate

Method One: Add Annotations

Method Two: Configure CR

Related Explanations

Override

Configuration Example

Term Explanation

owasp-core-

rules

The OWASP Core Rule Set is an open-source ruleset used to detect

and prevent common web application attacks.

ModSecurity

TOC

Terminology

Menu ON THIS PAGE

ModSecurity - Alauda Container Platform

Configure ModSecurity by adding annotations to the corresponding resource's YAML file or by

configuring CR.

Add the following annotations to the metadata.annotations field of the corresponding YAML file

to configure ModSecurity.

Ingress-Nginx Compatible Annotations

Annotation Type
Applicable
Object

Explanation

nginx.ingress.kubernetes.io/enable-

modsecurity
bool Ingress

Enable

ModSecurity.

nginx.ingress.kubernetes.io/enable-

owasp-core-rules
bool Ingress

Enable the

OWASP Core

Rule Set.

nginx.ingress.kubernetes.io/modsecurity-

transaction-id
string Ingress

Used to

identify

unique

transaction

IDs for each

request,

aiding in

logging and

debugging.

nginx.ingress.kubernetes.io/modsecurity-

snippet

string Ingress,

ALB, FT,

Rule

Allows users

to insert

custom

ModSecurity

configurations

Procedure to Operate

Method One: Add Annotations

ModSecurity - Alauda Container Platform

Annotation Type
Applicable
Object

Explanation

to meet

specific

security

requirements

ALB Special Annotations

Annotation Type
Applicable
Object

Explanation

alb.modsecurity.cpaas.io/use-

recommend
bool Ingress

Enable or disable

recommended

ModSecurity rules; set to

true to apply a

predefined set of

security rules.

alb.modsecurity.cpaas.io/cmref string Ingress

Reference specific

configurations, e.g.,

custom security

configurations can be

loaded by specifying the

ConfigMap's reference

path

($ns/$name#$section)

1.

Open the ALB, FT, or Rule configuration file that needs to be configured.

2.

Add the following fields under spec.config as required.

Method Two: Configure CR

ModSecurity - Alauda Container Platform

3.

Save and apply the configuration file.

If ModSecurity is not configured in the Rule, it will attempt to find the configuration in FT; if

there is no configuration in FT, it will use the configuration from ALB.

The following example deploys an ALB named waf-alb and a demo backend application

named hello . Additionally, an Ingress named ing-waf-enable is deployed, which defines

the /waf-enable route and configures ModSecurity rules. Any request containing the query

parameter test , where the value includes the string test , will be blocked.

{ "modsecurity": {

 "enable": true, # Enable or disable ModSecurity

 "transactionId": "$xx", # Use ID from Nginx

 "useCoreRules": true, # Add modsecurity_rules_file /etc/nginx/owasp-m

 "useRecommend": true, # Add modsecurity_rules_file /etc/nginx/modsecu

 "cmRef": "$ns/$name#$section", # Add configuration from ConfigMap

 } }

Related Explanations

Override

Configuration Example

ModSecurity - Alauda Container Platform

cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

 name: waf-alb

 namespace: cpaas-system

spec:

 config:

 loadbalancerName: waf-alb

 projects:

 - ALL_ALL

 replicas: 1

 type: nginx

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 nginx.ingress.kubernetes.io/enable-modsecurity: "true"

 nginx.ingress.kubernetes.io/modsecurity-transaction-id: "$request_id"

 nginx.ingress.kubernetes.io/modsecurity-snippet: |

 SecRuleEngine On

 SecRule ARGS:test "@contains test" "id:1234,deny,log"

 name: ing-waf-enable

spec:

 ingressClassName: waf-alb

 rules:

 - http:

 paths:

 - backend:

 service:

 name: hello

 port:

 number: 80

 path: /waf-enable

 pathType: ImplementationSpecific

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: ing-waf-normal

spec:

 ingressClassName: waf-alb

l

ModSecurity - Alauda Container Platform

 rules:

 - http:

 paths:

 - backend:

 service:

 name: hello

 port:

 number: 80

 path: /waf-not-enable

 pathType: ImplementationSpecific

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hello

spec:

 replicas: 1

 selector:

 matchLabels:

 service.cpaas.io/name: hello

 service_name: hello

 template:

 metadata:

 labels:

 service.cpaas.io/name: hello

 service_name: hello

 spec:

 containers:

 - name: hello-world

 image: docker.io/hashicorp/http-echo

 imagePullPolicy: IfNotPresent

apiVersion: v1

kind: Service

metadata:

 name: hello

spec:

 internalTrafficPolicy: Cluster

 ipFamilies:

 - IPv4

 ipFamilyPolicy: SingleStack

 ports:

 - name: http

 port: 80

ModSecurity - Alauda Container Platform

 protocol: TCP

 targetPort: 5678

 selector:

 service_name: hello

 sessionAffinity: None

 type: ClusterIP

EOF

ModSecurity - Alauda Container Platform

The Alauda Container Platform supports multiple ingress traffic specifications in Kubernetes

ecosystem. This document compares them (Service, Ingress, Gateway API, and ALB Rule) to

help users make the right choice.

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

Ingress

GatewayAPI

ALB Rule

Services of type LoadBalancer, Gateway API, and ALB Rules can all expose L4 traffic

externally. Here we recommend using the LoadBalancer type Service approach. Both

Gateway API and ALB Rules are implemented by ALB, which is a userspace proxy, and their

performance degrades significantly when handling L4 traffic compared to LoadBalancer type

Services.

Comparison Among Different Ingress Method

TOC

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

Menu ON THIS PAGE

Comparison Among Different Ingress Method - Alauda Container Platform

While Ingress, GatewayAPI, and ALB Rules can all expose L7 traffic externally, they differ in

their capabilities and isolation models.

Ingress is the standard specification adopted by the Kubernetes community and are

recommended for default use. The Ingress is handled by ALB instances that are managed by

the platform administrator.

GatewayAPI provides more flexible isolation mode, however they are not as mature as

Ingress. By using GatewayAPI developer can create their own isolated ALB instances to

handle GatewayAPI rules. Therefore, if you need to delegate the creation and management of

ALB instances to developers, you need to choose to use GatewayAPI.

ALB Rule(Load Balancer in the UI) provides the most flexible traffic match rules and the most

capabilities. In fact, both Ingress and GatewayAPI are implemented by translating them to

ALB Rules. However, the ALB Rule is more complex than Ingress and GatewayAPI and is not

a community-standard API. Therefore, we recommend using it only when Ingress and

GatewayAPI don’t meet your needs.

Ingress

GatewayAPI

ALB Rule

Comparison Among Different Ingress Method - Alauda Container Platform

Basic Concept

CRD

Ingress Annotation

SSL-Redirect

Port Level Redirect

Rule Level Redirect

HTTP redirect is a feature provided by ALB. It will directly return a 30x HTTP code for the

request that matches the rule. The Location header will be used to instruct the client to

redirect to the new URL.

ALB supports redirect configuration at the port and rule levels.

HTTP Redirect

TOC

Basic Concept

CRD

Menu ON THIS PAGE

HTTP Redirect - Alauda Container Platform

Redirect could be configured on:

Frontend: .spec.config.redirect

Rule: .spec.config.redirect

Annotation Description

nginx.ingress.kubernetes.io/permanent-

redirect

Corresponds to URL in CR, will set

code to 301 by default

nginx.ingress.kubernetes.io/permanent-

redirect-code
Corresponds to code in CR

nginx.ingress.kubernetes.io/temporal-redirect
Corresponds to URL in CR, will set

code to 302 by default

redirect:

 properties:

 code:

 type: integer

 host:

 type: string

 port:

 type: integer

 prefix_match:

 type: string

 replace_prefix:

 type: string

 scheme:

 type: string

 url:

 type: string

 type: object

Ingress Annotation

HTTP Redirect - Alauda Container Platform

Annotation Description

nginx.ingress.kubernetes.io/temporal-

redirect-code
Corresponds to code in CR

nginx.ingress.kubernetes.io/ssl-redirect
Corresponds to scheme in CR, will set

scheme to HTTPS by default

nginx.ingress.kubernetes.io/force-ssl-redirect
Corresponds to scheme in CR, will set

scheme to HTTPS by default

1. SSL-redirect and force-ssl-redirect differ in that SSL-redirect only takes effect when the

ingress has a certificate for the corresponding domain, while force-ssl-redirect takes effect

regardless of whether there is a certificate.

2. For HTTPS ports, if only SSL-redirect is configured, the redirect will not be set.

When redirect is configured at the port level, all requests to this port will be redirected

according to the redirect configuration.

When redirect is configured at the rule level, the request matching this rule will be redirected

according to the redirect configuration.

SSL-Redirect

Port Level Redirect

Rule Level Redirect

HTTP Redirect - Alauda Container Platform

Basic Concept

CRD

What Timeout Means

Ingress Annotation

Port Level Timeout

L4/L7 timeout is a feature provided by ALB. It is used to configure the timeout time for L4/L7

proxy.

Timeout is implemented through a Lua script, and Nginx does not need to reload when it is

changed.

L4/L7 Timeout

TOC

Basic Concept

CRD

Menu ON THIS PAGE

L4/L7 Timeout - Alauda Container Platform

Config can be configured on:

Frontend: .spec.config.timeout

Rule: .spec.config.timeout

There are three types of timeouts:

1.

proxy_connect_timeout_ms: Defines the timeout for establishing a connection with the

upstream server. If the connection cannot be established within this time, the request will

fail.

2.

proxy_read_timeout_ms: Defines the timeout for reading a response from the upstream

server. The timeout is set between two successive read operations, not for the entire

response. If no data is received within this time, the connection is closed.

3.

proxy_send_timeout_ms: Defines the timeout for sending a request to the upstream

server. Similar to the read timeout, this is set between two successive write operations. If

no data can be sent within this time, the connection is closed.

timeout:

 properties:

 proxy_connect_timeout_ms:

 type: integer

 proxy_read_timeout_ms:

 type: integer

 proxy_send_timeout_ms:

 type: integer

 type: object

What Timeout Means

L4/L7 Timeout - Alauda Container Platform

Annotation Description

nginx.ingress.kubernetes.io/proxy-connect-

timeout

Corresponds to

proxy_connect_timeout_ms in CR

nginx.ingress.kubernetes.io/proxy-read-

timeout

Corresponds to proxy_read_timeout_ms

in CR

nginx.ingress.kubernetes.io/proxy-send-

timeout

Corresponds to proxy_send_timeout_ms

in CR

You can configure timeout on a port directly, which is used as an L4 timeout.

Ingress Annotation

Port Level Timeout

L4/L7 Timeout - Alauda Container Platform

GatewayAPI is a new standard for Kubernetes ingress.

ALB supports GatewayAPI as well. Each Gateway resource will be translated into an ALB

resource.

Listener and Router will be handled in ALB directly. They will not be translated into Frontend

and Rule .

GatewayAPI

↗

Menu

GatewayAPI - Alauda Container Platform

https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/

OpenTelemetry (OTel) is an open-source project aimed at providing a vendor-neutral standard

for collecting, processing, and exporting telemetry data in distributed systems, such as

microservices architectures. It helps developers analyze the performance and behavior of

software more easily, thus facilitating the diagnosis and resolution of application issues.

Terminology

Prerequisites

Procedure

Update ALB Configuration

Related Operations

Configuring OTel in Ingress

Using OTel in Applications

Inheritance

Additional Notes

Sampling Strategies

Attributes

Configuration Example

OTel

TOC

Terminology

Menu ON THIS PAGE

OTel - Alauda Container Platform

Term Explanation

Trace

The data submitted to the OTel Server, which is a collection of related

events or operations used to track the flow of requests in distributed

systems; each Trace consists of multiple Spans.

Span
An independent operation or event within a Trace that includes start

time, duration, and other relevant information.

OTel Server
An OTel server capable of receiving and storing Trace data, such as

Jaeger, Prometheus, etc.

Jaeger

An open-source distributed tracing system used for monitoring and

troubleshooting microservices architectures, supporting integration

with OpenTelemetry.

Attributes

Key-value pairs attached to a Trace or Span to provide additional

contextual information. This includes Resource Attributes and Span

Attributes; see Attributes for more information.

Sampler

A strategy component that determines whether to sample and report a

Trace. Different sampling strategies can be configured, such as full

sampling, proportional sampling, etc.

ALB

(Another

Load

Balancer)

A software or hardware device that distributes network requests

across available nodes in a cluster; the load balancer (ALB) used in

the platform is a layer 7 software load balancer, which can be

configured to monitor traffic with OTel. ALB supports submitting Traces

to a specified Collector and allows different sampling strategies; it also

supports configuring whether to submit Traces at the Ingress level.

FT

(Frontend)
The port configuration for ALB, specifying port-level configurations.

Rule Routing rules on the port (FT) used to match specific routes.

HotROD

(Rides on

Demand)

A sample application provided by Jaeger to demonstrate the use of

distributed tracing; refer to Hot R.O.D. - Rides on Demand for more

details.

↗

OTel - Alauda Container Platform

https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod

Term Explanation

hotrod-with-

proxy

Specifies the addresses of HotROD's internal microservices via

environment variables; refer to hotrod-with-proxy for more details.

Ensure that an operable ALB exists: Create or use an existing ALB, where the name of

the ALB is replaced with <otel-alb> in this document. For instructions on creating an

ALB, refer to Creating Load Balancer.

Ensure that there is an OTel data reporting server address: This address will

hereinafter be referred to as <jaeger-server> .

1.

On the Master node of the cluster, use the CLI tool to execute the following command to

edit the ALB configuration.

2.

Add the following fields under the spec.config section.

↗

Prerequisites

Procedure

Update ALB Configuration

kubectl edit alb2 -n cpaas-system <otel-alb> # Replace <otel-alb> with the

OTel - Alauda Container Platform

https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53

Example configuration once completed:

3.

Execute the following command to save the updates. After the update, the ALB will default

to enabling OpenTelemetry, and all request Trace information will be reported to the Jaeger

Server.

otel:

 enable: true

 exporter:

 collector:

 address: "<jaeger-server>" # Replace <jaeger-server> with the actual

 request_timeout: 1000

spec:

 address: 192.168.1.1

 config:

 otel:

 enable: true

 exporter:

 collector:

 address: "http://jaeger.default.svc.cluster.local:4318"

 request_timeout: 1000

 antiAffinityKey: system

 defaultSSLCert: cpaas-system/cpaas-system

 defaultSSLStrategy: Both

 gateway:

 ...

type: nginx

:wq

Related Operations

OTel - Alauda Container Platform

Enable or Disable OTel on Ingress

By configuring whether to enable OTel on Ingress, you can better monitor and debug the

request flow of applications, identifying performance bottlenecks or errors by tracing

requests as they propagate between different services.

Procedure

Add the following configuration under the metadata.annotations field of Ingress:

Parameter Explanation:

nginx.ingress.kubernetes.io/enable-opentelemetry: When set to true , it indicates

that the Ingress controller enables OpenTelemetry functionality while processing

requests through this Ingress, which means request Trace information will be collected

and reported. When set to false or this annotation is removed, it means that request

Trace information will not be collected or reported.

Enable or Disable OTel Trust on Ingress

OTel Trust determines whether Ingress trusts and uses the Trace information (e.g., trace

ID) from incoming requests.

Procedure

Add the following configuration under the metadata.annotations field of Ingress:

Parameter Explanation:

nginx.ingress.kubernetes.io/opentelemetry-trust-incoming-span: When set to

true , the Ingress continues to use already existing Trace information, helping maintain

consistency in cross-service tracing, allowing the entire request chain to be fully traced

and analyzed in the distributed tracing system. When set to false , it will generate new

Configuring OTel in Ingress

nginx.ingress.kubernetes.io/enable-opentelemetry: "true"

nginx.ingress.kubernetes.io/opentelemetry-trust-incoming-span: "true"

OTel - Alauda Container Platform

tracing information for the request, which may cause the request to be treated as part of

a new tracing chain after entering the Ingress, interrupting cross-service trace continuity.

Add Different OTel Configurations on Ingress

This configuration allows you to customize OTel's behavior and data export methodology

for different Ingress resources, enabling fine-grained control over each service's tracing

strategy or target.

Procedure

Add the following configuration under the metadata.annotations field of Ingress:

Parameter Explanation:

exporter: Specifies how the collected Trace data is sent to the OTel Collector (the OTel

data reporting server).

address: Specifies the address of the OTel Collector.

request_timeout: Specifies the request timeout.

The following configuration shows the complete OTel configuration structure, which can be

used to define how to enable and use OTel features in applications.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 alb.ingress.cpaas.io/otel: >

 {

 "enable": true,

 "exporter": {

 "collector": {

 "address": "<jaeger-server>", # Replace <jaeger-server> wi

 "request_timeout": 1000

 }

 }

 }

Using OTel in Applications

OTel - Alauda Container Platform

On the cluster Master node, use the CLI tool to execute the following command to get the

complete OTel configuration structure.

Echoed Result:

Parameter Explanation:

Parameter Description

otel.enable Whether to enable OTel functionality.

kubectl get crd alaudaloadbalancer2.crd.alauda.io -o json|jq ".spec.versions[

{

 "otel": {

 "enable": true

 }

 "exporter": {

 "collector": {

 "address": ""

 },

 },

 "flags": {

 "hide_upstream_attrs": false

 "notrust_incoming_span": false

 "report_http_request_header": false

 "report_http_response_header": false

 },

 "sampler": {

 "name": "",

 "options": {

 "fraction": ""

 "parent_name": ""

 },

 },

 }

OTel - Alauda Container Platform

Parameter Description

exporter.collector.address

The address of the OTel data reporting server,

supporting http/https protocols and domain

names.

flags.hide_upstream_attrs
Whether to report information about upstream

rules.

flag.notrust_incoming_span

Whether to trust and use the OTel Trace

information (e.g., trace ID) from incoming

requests.

flags.report_http_request_header Whether to report request headers.

flags.report_http_response_header Whether to report response headers.

sampler.name
Sampling strategy name; see Sampling

Strategies for details.

sampler.options.fraction Sampling rate.

sampler.options.parent_name
The parent strategy for parent_base sampling

strategies.

By default, if the ALB configures certain OTel parameters and FT is not configured, FT will

inherit the parameters from the ALB as its own configuration; that is, FT inherits the ALB

configuration, while Rule can inherit configurations from both ALB and FT.

ALB: The configuration on the ALB is typically global and default. You can configure global

parameters such as Collector addresses here, which will be inherited by the lower-level FT

and Rule.

FT: FT can inherit configurations from ALB, meaning that certain OTel parameters that are

not configured on FT will use the configuration from ALB. However, FT can also be refined

further; for instance, you can choose to selectively enable or disable OTel on FT without

affecting other FT or the global settings of ALB.

Inheritance

OTel - Alauda Container Platform

Rule: Rule can inherit configurations from both ALB and FT. However, Rule can also be

refined further; for instance, a specific Rule can choose not to trust the incoming OTel

Trace information or to adjust the sampling strategies.

Procedure

By configuring the spec.config.otel field in the YAML files of ALB, FT, and Rule, you can

add OTel-related configuration.

Parameter Explanation

always on Always report all tracing data.

always off Never report tracing data.

traceid-

ratio

Decide whether to report based on traceid . The format of

traceparent is xx-traceid-xx-flag , where the first 16 characters of

traceid represent a 32-bit hexadecimal integer. If this integer is less

than fraction multiplied by 4294967295 (i.e., (2^32-1)), it will be

reported.

parent-

base

Decide whether to report based on the flag part of the traceparent in the

request. When the flag is 01, it will be reported; for example: curl -v

"http://$ALB_IP/" -H 'traceparent: 00-xx-xx-01' ; when the flag

is 02, it will not be reported; for example: curl -v "http://$ALB_IP/"

-H 'traceparent: 00-xx-xx-02' .

Resource Attributes

These attributes are reported by default.

Additional Notes

Sampling Strategies

Attributes

OTel - Alauda Container Platform

Parameter Description

hostname The hostname of the ALB Pod

service.name The name of the ALB

service.namespace The namespace where the ALB resides

service.type Default is ALB

service.instance.id The name of the ALB Pod

Span Attributes

Attributes reported by default:

Parameter Description

http.status_code Status code

http.request.resend_count Retry count

alb.rule.rule_name The name of the rule matched by this request

alb.rule.source_type
The type of the rule matched by this request,

currently only Ingress

alb.rule.source_name The name of the Ingress

alb.rule.source_ns The namespace where the Ingress resides

Attributes reported by default but can be excluded by modifying the

flag.hide_upstream_attrs field:

Parameter Description

alb.upstream.svc_name
The name of the Service (internal route) to which

traffic is forwarded

alb.upstream.svc_ns
The namespace where the Service (internal route)

being forwarded resides

OTel - Alauda Container Platform

Parameter Description

alb.upstream.peer
The IP address and port of the Pod being forwarded

to

Attributes not reported by default but can be reported by modifying the

flag.report_http_request_header field:

Parameter Description

http.request.header.<header> Request Header

Attributes not reported by default but can be reported by modifying the

flag.report_http_response_header field:

Parameter Description

http.response.header.<header> Response Header

The following YAML configuration deploys an ALB and uses Jaeger as the OTel server, with

Hotrod-proxy as the demonstration backend. By configuring Ingress rules, when clients

request the ALB, the traffic will be forwarded to HotROD. Additionally, the communication

between internal microservices of HotROD is also routed through the ALB.

1.

Save the following YAML as a file named all.yaml.

Configuration Example

OTel - Alauda Container Platform

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hotrod

spec:

 replicas: 1

 selector:

 matchLabels:

 service.cpaas.io/name: hotrod

 service_name: hotrod

 template:

 metadata:

 labels:

 service.cpaas.io/name: hotrod

 service_name: hotrod

 spec:

 containers:

 - name: hotrod

 env:

 - name: PROXY_PORT

 value: "80"

 - name: PROXY_ADDR

 value: "otel-alb.default.svc.cluster.local:"

 - name: OTEL_EXPORTER_OTLP_ENDPOINT

 value: "http://jaeger.default.svc.cluster.local:4318"

 image: theseedoaa/hotrod-with-proxy:latest

 imagePullPolicy: IfNotPresent

 command: ["/bin/hotrod", "all", "-v"]

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: hotrod-frontend

spec:

 ingressClassName: otel-alb

 rules:

 - http:

 paths:

 - backend:

 service:

 name: hotrod

 port:

 number: 8080

h /di h

OTel - Alauda Container Platform

 path: /dispatch

 pathType: ImplementationSpecific

 - backend:

 service:

 name: hotrod

 port:

 number: 8080

 path: /frontend

 pathType: ImplementationSpecific

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: hotrod-customer

spec:

 ingressClassName: otel-alb

 rules:

 - http:

 paths:

 - backend:

 service:

 name: hotrod

 port:

 number: 8081

 path: /customer

 pathType: ImplementationSpecific

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: hotrod-route

spec:

 ingressClassName: otel-alb

 rules:

 - http:

 paths:

 - backend:

 service:

 name: hotrod

 port:

 number: 8083

 path: /route

 pathType: ImplementationSpecific

OTel - Alauda Container Platform

apiVersion: v1

kind: Service

metadata:

 name: hotrod

spec:

 internalTrafficPolicy: Cluster

 ipFamilies:

 - IPv4

 ipFamilyPolicy: SingleStack

 ports:

 - name: frontend

 port: 8080

 protocol: TCP

 targetPort: 8080

 - name: customer

 port: 8081

 protocol: TCP

 targetPort: 8081

 - name: router

 port: 8083

 protocol: TCP

 targetPort: 8083

 selector:

 service_name: hotrod

 sessionAffinity: None

 type: ClusterIP

apiVersion: apps/v1

kind: Deployment

metadata:

 name: jaeger

spec:

 replicas: 1

 selector:

 matchLabels:

 service.cpaas.io/name: jaeger

 service_name: jaeger

 template:

 metadata:

 labels:

 service.cpaas.io/name: jaeger

 service_name: jaeger

 spec:

 containers:

OTel - Alauda Container Platform

 - name: jaeger

 env:

 - name: LOG_LEVEL

 value: debug

 image: jaegertracing/all-in-one:1.58.1

 imagePullPolicy: IfNotPresent

 hostNetwork: true

 tolerations:

 - operator: Exists

apiVersion: v1

kind: Service

metadata:

 name: jaeger

spec:

 internalTrafficPolicy: Cluster

 ipFamilies:

 - IPv4

 ipFamilyPolicy: SingleStack

 ports:

 - name: http

 port: 4318

 protocol: TCP

 targetPort: 4318

 selector:

 service_name: jaeger

 sessionAffinity: None

 type: ClusterIP

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

 name: otel-alb

spec:

 config:

 loadbalancerName: otel-alb

 otel:

 enable: true

 exporter:

 collector:

 address: "http://jaeger.default.svc.cluster.local:4318"

 request_timeout: 1000

 projects:

 - ALL_ALL

OTel - Alauda Container Platform

2.

In the CLI tool, execute the following command to deploy Jaeger, ALB, HotROD, and all

necessary CRs for testing.

3.

Execute the following command to get the access address of Jaeger.

4.

Execute the following command to obtain the access address of otel-alb.

5.

 replicas: 1

 resources:

 alb:

 limits:

 cpu: 200m

 memory: 2Gi

 requests:

 cpu: 50m

 memory: 128Mi

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 50m

 memory: 128Mi

 type: nginx

kubectl apply ./all.yaml

export JAEGER_IP=$(kubectl get po -A -o wide |grep jaeger | awk '{print $7}

export ALB_IP=$(kubectl get po -A -o wide|grep otel-alb | awk '{print $7}')

OTel - Alauda Container Platform

Execute the following command to send a request to HotROD via ALB. Here, ALB will

report the Trace to Jaeger.

6.

Open the access address of Jaeger obtained in Step 3 to view the results.

curl -v "http://<$ALB_IP>:80/dispatch?customer=567&nonse=" # Replace <$ALB_

OTel - Alauda Container Platform

OTel - Alauda Container Platform

Creating Services

Creating Ingresses

Guides

Why Service is Needed

Example ClusterIP type Service:

Headless Services

Creating a service by using the web console

Creating a service by using the CLI

Example: Accessing an Application Within the Cluste

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations

Implementation Method

Prerequisites

Example Ingress:

Creating a Ingress by using the web console

Creating a Ingress by using the CLI

Menu

Guides - Alauda Container Platform

Configure Gateway

Creating a Domain Name

Creating Certificates

Terminology

Prerequisites

Example Gateway and Alb2 custom resource (CR)

Creating Gateway by using the web console

Creating Gateway by using the CLI

Viewing Resources Created by the Platform

Updating Gateways

Updating Gateway by using the web console

Add Listener

Add Listener by using the web console

Add Listener by using the CLI

Creating Route Rules

Example HTTPRoute custom resource (CR)

Creating Route by using the web console

Creating Route by using the CLI

Example Domain custom resource (CR)

Creating Domain by using the web console

Creating Domain by using the CLI

Subsequent Actions

Additional resources

Creating a certificate by using the web console

Guides - Alauda Container Platform

Creating External IP Address Pool

Creating BGP Peers

Configure Subnets

Configure Network Policies

Prerequisites

Constraints and Limitations

Deploying the MetalLB Plugin

Example IPAddressPool custom resource (CR)

Creating an External IP Address Pool by using the web console

Creating an External IP Address Pool by using the CLI

View Alarm Policy

Terminology

Prerequisites

Example BGPPeer custom resource (CR)

Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

IP Allocation Rules

Calico Network

Kube-OVN Network

Subnet Management

Creating NetworkPolicy by using the web console

Creating NetworkPolicy by using the CLI

Reference

Guides - Alauda Container Platform

Creating Admin Network Policies

Configure Cluster Network Policies

Notes

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI

Additional resource

Notes

Procedure

Guides - Alauda Container Platform

In Kubernetes, a Service is a method for exposing a network application that is running as one

or more Pods in your cluster.

Why Service is Needed

Example ClusterIP type Service:

Headless Services

Creating a service by using the web console

Creating a service by using the CLI

Example: Accessing an Application Within the Cluste

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations

AWS EKS Cluster

Huawei Cloud CCE Cluster

Azure AKS Cluster

Google GKE Cluster

1.

Pods have their own IPs, but:

Creating Services

TOC

Why Service is Needed

Menu ON THIS PAGE

Creating Services - Alauda Container Platform

Pod IPs are not stable (they change if the Pod is recreated).

Directly accessing Pods becomes unreliable.

2.

Service solves this by providing:

A stable IP and DNS name.

Automatic load balancing to the matching Pods.

1 The available type values and their behaviors are ClusterIP , NodePort ,

LoadBalancer , ExternalName

2 The set of Pods targeted by a Service is usually determined by a selector that you

define.

3 Service port.

4 Bind targetPort of the Service to the Pod containerPort . In addition, you can

reference port.name under the pod container.

Example ClusterIP type Service:

simple-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 type: ClusterIP 1

 selector: 2

 app.kubernetes.io/name: MyApp

 ports:

 - protocol: TCP

 port: 80 3

 targetPort: 80 4

Creating Services - Alauda Container Platform

Sometimes you don't need load-balancing and a single Service IP. In this case, you can

create what are termed headless Services:

Headless Services are useful when:

You want to discover individual Pod IPs, not just a single service IP.

You need direct connections to each Pod (e.g., for databases like Cassandra or

StatefulSets).

You’re using StatefulSets where each Pod must have a stable DNS name.

1.

Go to Container Platform.

2.

In the left navigation bar, click Network > Services.

3.

Click Create Service.

4.

Refer to the following instructions to configure the relevant parameters.

Headless Services

spec:

 clusterIP: None

Creating a service by using the web console

Creating Services - Alauda Container Platform

Parameter Description

Virtual IP

Address

If enabled, a ClusterIP will be allocated for this Service, which can

be used for service discovery within the cluster.

If disabled, a Headless Service will be created, which is usually

used by StatefulSet.

Type

ClusterIP: Exposes the Service on a cluster-internal IP.

Choosing this value makes the Service only reachable from

within the cluster.

NodePort: Exposes the Service on each Node's IP at a static

port (the NodePort).

ExternalName: Maps the Service to the contents of the

externalName field (for example, to the hostname

api.foo.bar.example).

LoadBalancer: Exposes the Service externally using an external

load balancer. Kubernetes does not directly offer a load

balancing component; you must provide one, or you can

integrate your Kubernetes cluster with a cloud provider.

Target

Component

Workload: The Service will forward requests to a specific

workload, which matches the labels like

project.cpaas.io/name: projectname and

service.cpaas.io/name: deployment-name .

Virtualization: The Service will forward requests to a specific

virtual machine or virtual machine group.

Label Selector: The Service will forward requests to a certain

type of workload with specified labels, for example,

environment: release .

Port Used to configure the port mapping for this Service. In the following

example, other podss within the cluster can call this Service via the

Creating Services - Alauda Container Platform

Parameter Description

virtual IP (if enabled) and TCP port 80; the access requests will be

forwarded to the externally exposed TCP port 6379 or redis of the

target component's pods.

Protocol: The protocol used by the Service, supported protocols

include: TCP , UDP , HTTP , HTTP2 , HTTPS , gRPC .

Service Port: The service port number exposed by the Service

within the cluster, that is, Port, e.g., 80.

Container Port: The target port number (or name) that the

service port maps to, that is, targetPort, e.g., 6379 or redis.

Service Port Name: Will be generated automatically. The format

is <protocol>-<service port>-<container port> , for

example: tcp-80-6379 or tcp-80-redis.

Session

Affinity

Session affinity based on the source IP address (ClientIP). If

enabled, all access requests from the same IP address will be kept

on the same server during load balancing, ensuring that requests

from the same client are forwarded to the same server for

processing.

5.

Click Create.

Create a service based on an existing deployment resource my-app .

Creating a service by using the CLI

kubectl apply -f simple-service.yaml

Creating Services - Alauda Container Platform

kubectl expose deployment my-app \

 --port=80 \

 --target-port=8080 \

 --name=test-service \

 --type=NodePort \

 -n p1-1

Example: Accessing an Application Within the Cluste

Creating Services - Alauda Container Platform

1. Apply this YAML:

1. Starting another Pod:

access-internal-demo.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.25

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: nginx-clusterip

spec:

 type: ClusterIP

 selector:

 app: nginx

 ports:

 - port: 80

 targetPort: 80

kubectl apply -f access-internal-demo.yaml

Creating Services - Alauda Container Platform

1. Accessing the nginx-clusterip service in test-pod Pod:

You should see a HTML response containing text like "Welcome to nginx!".

kubectl run test-pod --rm -it --image=busybox -- /bin/sh

wget -qO- http://nginx-clusterip

or using DNS records created automatically by Kubernetes: <service-name>.<n

wget -qO- http://nginx-clusterip.default.svc.cluster.local

Example: Accessing an Application Outside the Cluste

Creating Services - Alauda Container Platform

1. Apply this YAML:

1. Checking Pods:

access-external-demo.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.25

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: nginx-nodeport

spec:

 type: NodePort

 selector:

 app: nginx

 ports:

 - port: 80

 targetPort: 80

 nodePort: 30080

kubectl apply -f access-external-demo.yaml

Creating Services - Alauda Container Platform

1. curl Service:

You should see a HTML response containing text like "Welcome to nginx!".

Of course, it is also possible to access the application from outside the cluster by creating a

Service of type LoadBalancer.

Note: Please configure the LoadBalancer service beforehand.

kubectl get pods -l app=nginx -o wide

curl http://{NodeIP}:{nodePort}

Creating Services - Alauda Container Platform

1. Apply this YAML:

1. Get external ip address:

access-external-demo-with-loadbalancer.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 replicas: 2

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.25

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: nginx-lb-service

spec:

 type: LoadBalancer

 selector:

 app: nginx

 ports:

 - port: 80

 targetPort: 80

kubectl apply -f access-external-demo-with-loadbalancer.yaml

Creating Services - Alauda Container Platform

EXTERNAL-IP is the address you access from your browser.

You should see a HTML response containing text like "Welcome to nginx!".

If EXTERNAL-IP is pending , the Loadbalancer service is not currently deployed on the

cluster.

1. Apply this YAML:

1. Try to resolve inside a Pod in the cluster:

kubectl get svc nginx-lb-service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

nginx-service LoadBalancer 10.0.2.57 34.122.45.100 80:30005/TCP

curl http://34.122.45.100

Example: ExternalName type of Servce

apiVersion: v1

kind: Service

metadata:

 name: my-external-service

 namespace: default

spec:

 type: ExternalName

 externalName: example.com

kubectl apply -f external-service.yaml

Creating Services - Alauda Container Platform

then:

You'll see that it resolves to example.com .

For detailed explanations of the EKS LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation .

Key Value Description

service.beta.kubernetes.io/aws-

load-balancer-type

external: Use the

official AWS

LoadBalancer

Controller.

Specifies the controller

for the LoadBalancer

type.

Note: Please contact

the platform

administrator in

advance to deploy the

AWS LoadBalancer

Controller.

service.beta.kubernetes.io/aws-

load-balancer-nlb-target-type
instance: Traffic

will be sent to the

pods via

NodePort.

Specifies how traffic

reaches the pods.

kubectl run test-pod --rm -it --image=busybox -- sh

nslookup my-external-service.default.svc.cluster.local

LoadBalancer Type Service Annotations

AWS EKS Cluster

↗

Creating Services - Alauda Container Platform

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/

Key Value Description

ip: Traffic routes

directly to the

pods (the cluster

must use Amazon

VPC CNI).

service.beta.kubernetes.io/aws-

load-balancer-scheme

internal: Private

network.

internet-facing:

Public network.

Specifies whether to

use a private network

or a public network.

service.beta.kubernetes.io/aws-

load-balancer-ip-address-type

ipv4

dualstack

Specifies the supported

IP address stack.

For detailed explanations of the CCE LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation .

Key

kubernetes.io/elb.id

kubernetes.io/elb.autocreate Example: {"type":"public","bandwidth_name":"cce-

1551163379627","bandwidth_chargemode":"bandwidth

["cn-north-4b"],"l4_flavor_name":"L4_flavor.elb.

Huawei Cloud CCE Cluster

↗

Creating Services - Alauda Container Platform

https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html

Key

Note: Please read the Filling Instructions first and adjus

kubernetes.io/elb.subnet-id

kubernetes.io/elb.class
union: Shared load balancing.

performance: Exclusive load balancing, only supported

↗

Creating Services - Alauda Container Platform

https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8

Key

kubernetes.io/elb.enterpriseID

For detailed explanations of the AKS LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation .

Key Value Description

service.beta.kubernetes.io/azure-load-

balancer-internal

true:

Private

network.

false:

Public

network.

Specifies whether to use

a private network or a

public network.

For detailed explanations of the GKE LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation .

Key Value Description

networking.gke.io/load-

balancer-type
Internal Specifies the use of a private network.

Azure AKS Cluster

↗

Google GKE Cluster

↗

Creating Services - Alauda Container Platform

https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn

Key Value Description

loud.google.com/l4-rbs enabled

Defaults to public. If this parameter is

configured, traffic will route directly to the

pods.

Creating Services - Alauda Container Platform

Ingress rules (Kubernetes Ingress) expose HTTP/HTTPS routes from outside the cluster to

internal routing (Kubernetes Service), enabling control of external access to computing

components.

Create an Ingress to manage the external HTTP/HTTPS access to a Service.

WARNING

When creating multiple ingresses within the same namespace, different ingresses MUST NOT have

the same Domain, Protocol, and Path (i.e., duplicate access points are not allowed).

Implementation Method

Quick Start

Prerequisites

Example Ingress:

Creating a Ingress by using the web console

Creating a Ingress by using the CLI

Ingress rules depend on the implementation of the Ingress Controller, which is responsible for

listening to changes in Ingress and Service. After a new Ingress rule is created, a forwarding

rule matching the Ingress rule is automatically generated within the Ingress Controller. When

Creating Ingresses

TOC

Implementation Method

Menu ON THIS PAGE

Creating Ingresses - Alauda Container Platform

the Ingress Controller receives a request, it matches the forwarding rule from the Ingress rule

and distributes the traffic to the specified internal routes, as shown in the diagram below.

NOTE

For the HTTP protocol, Ingress only supports the 80 port as the external port. For the HTTPS

protocol, Ingress only supports the 443 port as the external port. The platform's load balancer will

automatically add the 80 and 443 listening ports.

Next, we will use the community version of Ingress-NGINX to demonstrate how to access your

own application using the NGINX controller.

1. deploy Ingress-NGINX controller.

The following resources are automatically created after using this command:

Quick Start

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/c

Creating Ingresses - Alauda Container Platform

Kind Name Description

Namespace ingress-nginx
Resources for Isolating

Controllers

ServiceAccount ingress-nginx
Service account for the

controller

ClusterRole ingress-nginx Cluster-wide permissions

ClusterRoleBinding ingress-nginx Bind ClusterRole to SA

ConfigMap
ingress-nginx-

controller

Configure controller behaviour

(e.g. logging levels, proxy

timeout, etc.)

ValidatingWebhookConfig
ingress-nginx-

admission

Webhook to verify Ingress

configuration legitimacy

(optional)

Service (TCP/UDP)
ingress-nginx-

controller

The type defaults to

LoadBalancer and can be

changed to NodePort .

Deployment
ingress-nginx-

controller

Pod
ingress-nginx-

controller-xxx

Role / RoleBinding admission 相关 Support for webhook

Job
ingress-nginx-

admission-create
webhook Registration

If you want to change the default registry address, you can use curl to download the YAML

file, change it, and then apply the YAML file.

curl -O https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller

Creating Ingresses - Alauda Container Platform

Waiting for the ingress-nginx-controller-xxx Pod to run

1.

Local testing

Creating a simple web server and the associated service:

Creating an ingress resource. This example uses a host that maps to localhost :

Forward a local port to the ingress controller:

Accessing your deployment using curl:

Note: This parameter temporarily resolves the domain name demo.local to IP 127.0.0.1

and is used on port 8080. When you visit http://demo.local:8080 , you are actually

visiting http://127.0.0.1:8080 . On the other hand, you should configure hosts :

Final you should see a HTML response containing text like "Welcome to nginx!".

Then you can access website http://demo.local:8080/ .

INFO

kubectl create deployment demo --image=nginx --port=80

kubectl expose deployment demo

kubectl create ingress demo-localhost --class=nginx \

 --rule="demo.local/*=demo:80"

kubectl port-forward --namespace=ingress-nginx service/ingress-nginx-cont

curl --resolve demo.local:8080:127.0.0.1 http://demo.local:8080

↗

↗

echo "127.0.0.1 demo.local" | sudo tee -a /etc/hosts

Creating Ingresses - Alauda Container Platform

http://demo.local:8080/
http://demo.local:8080/
http://demo.local:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/

ingress-nginx-controller default type is LoadBalancer , If EXTERNAL-IP field shows

pending , this means that your Kubernetes cluster wasn't able to provision the load balancer.

If you're integrating with a provider that supports specifying the load balancer IP address(es) for a

Service via a (provider specific) annotations, you should switch to doing that.

1. Online testing

When your ingress-nginx-controller (Service of LoadBalancer type) exists an

EXTERNAL-IP , Then you can create an ingress resource. The following example assumes

that you have set up a DNS record for www.developer.io :

You can access http://www.developer.io to see the same output.

There must be an available Service in the current namespace.

Please confirm with the administrator that a usable domain name has been allocated for

the project associated with the current namespace.

To access the domain via HTTPS, you need to first save the HTTPS certificate as a TLS

secret.

kubectl create ingress demo --class=nginx \

 --rule="www.developer.io/*=demo:80"

Prerequisites

Example Ingress:

Creating Ingresses - Alauda Container Platform

1 To see more configurations please refer to nginx-configuration .

2 Using ingress-nginx controller.

3 If you only want to run ingress locally, configure the hosts beforehand.

1.

Access the Container Platform.

2.

In the left navigation bar, click Network > Ingress.

3.

nginx-ingress.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: nginx-ingress

 namespace: k-1

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: / 1

spec:

 ingressClassName: nginx 2

 rules:

 - host: demo.local 3

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: nginx-service

 port:

 number: 80

↗

Creating a Ingress by using the web console

Creating Ingresses - Alauda Container Platform

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/

Click Create Ingress.

4.

Reference the instructions below to configure certain parameters.

Parameter Description

Ingress Class

Ingresses can be implemented by different controllers with different

IngressClass name. If multiple ingress controllers are available

on the platform, the user can select which one to use with this

option.

Domain

Name

Hosts can be precise matches (for example foo.bar.com) or a

wildcard (for example *.foo.com). The domain names available

are allocated by platform administrator.

Certificates TLS secret or Certificates allocated by platform administrator.

Match Type

and Path

Prefix: Matches path prefixes, e.g., /abcd can match

/abcd/efg or /abcde .

Exact: Matches exact paths, e.g., /abcd .

Implementation specific: If you are using a custom Ingress

controller to manage the Ingress rules, you may choose to have

the controller decide.

Service External traffic will be forwarded to this Service.

Service Port Specify which Service port the traffic will be forwarded to.

5.

Click Create.

Creating a Ingress by using the CLI

Creating Ingresses - Alauda Container Platform

NOTE

If the ingress has no Ingress Class, all the ALB instances that are allocated to this project will

handle this ingress.

kubectl apply -f nginx-ingress.yaml

Creating Ingresses - Alauda Container Platform

An inbound gateway (Gateway) is an instance deployed from the Gateway Class. It creates

listeners to capture external traffic on specified domain names and ports. Together with

routing rules, it can route the specified external traffic to the corresponding backend instances.

Create an inbound gateway to enable more granular allocation of network resources.

Terminology

Prerequisites

Example Gateway and Alb2 custom resource (CR)

Creating Gateway by using the web console

Creating Gateway by using the CLI

Viewing Resources Created by the Platform

Updating Gateways

Updating Gateway by using the web console

Add Listener

Prerequisites

Add Listener by using the web console

Add Listener by using the CLI

Creating Route Rules

Example HTTPRoute custom resource (CR)

Creating Route by using the web console

Creating Route by using the CLI

Configure Gateway

TOC

Menu ON THIS PAGE

Configure Gateway - Alauda Container Platform

Resource
Name

Overview
Usage

Instructions

Gateway

Class

In the standard Gateway API documentation, the

Gateway Class is defined as a template for

creating gateways. Different templates can

create inbound gateways for different business

scenarios, facilitating rapid traffic management.

The platform

includes dedicated

Gateway Classes.

Inbound

Gateway

The inbound gateway corresponds to specific

resource instances, and users can exclusively

utilize all listening and computing resources of

this inbound gateway. It is a configuration of

routing rules effective for the listener. When

external traffic is detected by the gateway, it will

be distributed to backend instances according to

the routing rules.

It can be viewed as

a load balancer

instance.

Route

Rule

Route rules define a series of guidelines for

traffic distribution from the gateway to services.

The currently standard supported types of

routing rules in the Gateway API include

HTTPRoute, TCPRoute, UDPRoute, etc.

The platform

currently supports

listening to HTTP,

HTTPS, TCP, and

UDP protocols.

The platform administrator must ensure that the cluster supports LoadBalancer type internal

routing. For public cloud clusters, the LoadBalancer Service Controller must be installed. In

non-public cloud clusters, the platform provides the external address pool feature, which

allows LoadBalancer type internal routing to automatically obtain an IP from the external

address pool for external access after configuration is complete.

Terminology

Prerequisites

Configure Gateway - Alauda Container Platform

Example Gateway and Alb2 custom resource (CR)

Configure Gateway - Alauda Container Platform

demo-gateway.yaml

apiVersion: gateway.networking.k8s.io/v1beta1

kind: Gateway

metadata:

 namespace: k-1

 name: test

 annotations:

 cpaas.io/display-name: ces

 listeners.cpaas.io/creationTimestamp: '["2025-05-26T02:05:56.135Z"]'

 listeners.cpaas.io/display-name: '[""]'

 labels:

 alb.cpaas.io/alb-ref: test-o93q7

spec:

 gatewayClassName: exclusive-gateway 1

 listeners:

 - allowedRoutes:

 namespaces:

 from: All

 name: gateway-metric

 protocol: TCP

 port: 11782

apiVersion: crd.alauda.io/v2beta1

kind: ALB2

metadata:

 namespace: k-1

 name: test-o93q7 2

spec:

 type: nginx

 config:

 enableAlb: false

 networkMode: container

 resources:

 limits:

 cpu: 200m

 memory: 256Mi

 requests:

 cpu: 200m

 memory: 256Mi

 vip:

 enableLbSvc: true

 lbSvcAnnotations: {}

 gateway:

d d l

Configure Gateway - Alauda Container Platform

1 See Gateway Class introduction below.

2 alb2 name is formatted as {gatewayName}-{random} .

3 gateway name.

1.

Go to Container Platform.

2.

In the left navigation bar, click Network > Inbound Gateway.

3.

Click Create Inbound Gateway.

4.

Refer to the following instructions to configure specific parameters.

Parameter Description

Name The name of the inbound gateway.

Gateway Class

The gateway class defines the behavior of the gateway, similar

to the concept of storage classes (StorageClasses); it is a

cluster resource.

Dedicated: The inbound gateway will correspond to a specific

resource instance, and the user can utilize all listeners and

computing resources of this gateway.

Specification
You can choose the recommended usage scenario based on

your needs or customize the resource limits.

 mode: standalone

 name: test # # [!code callout] 3

Creating Gateway by using the web console

Configure Gateway - Alauda Container Platform

Parameter Description

Access Address
The address of the inbound gateway, which is automatically

obtained by default.

Internal Routing

Annotation

Used to declare the configuration or capabilities for

LoadBalancer type internal routing. For specific annotation

information, please refer to LoadBalancer type internal routing

annotation instructions.

5.

Click Create.

After the inbound gateway is created, the platform automatically creates many resources. Do

not delete the resources below.

Default Created Resources Name

ALB2 Type Resource name-lb-random

Deployment name-lb-random

Internal Routing
name-lb-random

name-lb-random-lb-random

Creating Gateway by using the CLI

kubectl apply -f demo-gateway.yaml

Viewing Resources Created by the Platform

Configure Gateway - Alauda Container Platform

Default Created Resources Name

Configuration Dictionary
name-lb-random-port-info

name-lb-random

Service Account name-lb-random-serviceaccount

NOTE

Updating the inbound gateway will cause a service interruption of 3-5 minutes. Please choose an

appropriate time for this operation.

1.

Access the Container Platform.

2.

In the left navigation bar, click Network > Inbound Gateway.

3.

Click ⋮ > Update.

4.

Update the inbound gateway configuration as needed.

Note: Please set the specifications reasonably based on business requirements.

Updating Gateways

Updating Gateway by using the web console

Configure Gateway - Alauda Container Platform

5.

Click Update.

Monitor traffic under specified domain names and forward it to backend instances according to

the bound routing rules.

If you need to monitor HTTP protocol, please contact the administrator in advance to

prepare the domain name.

If you need to monitor HTTPS protocol, please contact the administrator in advance to

prepare the domain name and certificate.

1.

In the left navigation bar, click Network > Inbound Gateway.

2.

Click Inbound Gateway Name.

3.

Click Add Listener.

4.

Refer to the following instructions to configure specific parameters.

Add Listener

Prerequisites

Add Listener by using the web console

Configure Gateway - Alauda Container Platform

Parameter Description

Listener

Protocol and

Port

Currently supports monitoring HTTP, HTTPS, TCP, and UDP

protocols, and you can custom input the port to be monitored,

for example: 80 .

Note:

When the ports are the same, HTTP, HTTPS, and TCP

listener types cannot coexist; you can only select one of the

protocols.

When using HTTP or HTTPS protocol, if the ports are the

same, the domain names must be different.

Domain Name

Select an available domain name in the current namespace,

used to monitor network traffic accessing this domain name.

Hint: TCP and UDP protocols do not support selecting domain

names.

5.

Click Create.

Add Listener by using the CLI

Configure Gateway - Alauda Container Platform

kubectl patch gateway test \

 -n k-1 \

 --type=merge \

 -p '{

 "metadata": {

 "annotations": {

 "listeners.cpaas.io/creationTimestamp": "[\"2025-05-26T02:05:56.135Z\

 "listeners.cpaas.io/display-name": "[\"\",\"\"]"

 }

 },

 "spec": {

 "listeners": [

 {

 "allowedRoutes": {

 "namespaces": {

 "from": "All"

 }

 },

 "name": "gateway-metric",

 "protocol": "TCP",

 "port": 11782

 },

 {

 "allowedRoutes": {

 "namespaces": {

 "from": "All"

 }

 },

 "name": "demo-listener",

 "protocol": "HTTP",

 "port": 8088,

 "hostname": "developer.test.cn"

 }

]

 }

 }'

Creating Route Rules

Configure Gateway - Alauda Container Platform

Route rules provide routing policies for incoming traffic, similar to inbound rules (Kubernetes

Ingress). They expose network traffic monitored by the gateway to the internal routing of the

cluster (Kubernetes Service), facilitating routing forwarding strategies. The key difference is

that they target different service objects: inbound rules serve the Ingress Controller, while

route rules serve the Ingress Gateway.

Once the listening is set up in the ingress gateway, the gateway will monitor traffic from

specified domains and ports in real-time. The route rules can forward the incoming traffic to

backend instances as desired.

Example HTTPRoute custom resource (CR)

Configure Gateway - Alauda Container Platform

1 The available types are: HTTPRoute , TCPRoute , UDPRoute .

2 Gateway listener name.

NOTE

If there is no matching rule for the Path object in the HTTPRoute type route rule, a matching rule

with PathPrefix mode and a value of / will be automatically added.

example-httproute.yaml

apiVersion: gateway.networking.k8s.io/v1beta1

kind: HTTPRoute 1

metadata:

 namespace: k-1

 name: example-http-route

 annotations:

 cpaas.io/display-name: ""

spec:

 hostnames:

 - developer.test.cn

 parentRefs:

 - kind: Gateway

 namespace: k-1

 name: test

 sectionName: demo-listener 2

 rules:

 - matches:

 - path:

 type: Exact

 value: "/demo"

 filters: []

 backendRefs:

 - kind: Service

 name: test-service

 namespace: k-1

 port: 80

 weight: 100

Configure Gateway - Alauda Container Platform

1.

Access the Container Platform.

2.

In the left navigation bar, click Network > Route Rules.

3.

Click Create Route Rule.

4.

Follow the instructions below to configure some parameters.

Parameter Description

Route Type

The currently supported route types are: HTTPRoute, TCPRoute,

UDPRoute.

Tip: HTTPRoute supports publishing to HTTP and HTTPS protocol

listeners.

Publish to

Listener

In the left selection box, select the created Ingress Gateway, and in

the right selection box, select the created Listener. The platform will

publish the created route rules to the listener below, enabling the

gateway to forward captured traffic to specified backend instances.

Note: It is not allowed to publish route rules to a listener that is on

port 11782 or has already mounted TCP or UDP routes.

Match You can add one or more matching rules to capture traffic that meets

the requirements. For example, capture traffic with specified Path,

capture traffic with specified method, etc.

Note:

Creating Route by using the web console

Configure Gateway - Alauda Container Platform

Parameter Description

Click Add; when adding multiple route rules, the relationship

between the rules is 'AND', and all rules must be matched to be

effective.

Click Add Match; when adding multiple groups of route rules, the

relationship between the groups is 'OR', and any group matching

can be effective.

TCPRoute and UDPRoute do not support configuring match

rules.

When the matching object is path, and the matching method is

Exact or PathPrefix, the input value must start with "/" and

disallow characters like "//", "/./", "/../", "%2f", "%2F", "#", "/..", "/."

etc.

Action You can add one or more actions to process the captured traffic.

Header: The header of the HTTP message contains much

metadata that provides additional information about the request or

response. By modifying header fields, the server can influence

how the request and response are processed.

Redirect: The matched URL will be processed in the specified

manner, then the request will be initiated again.

Rewrite: The matched URL will be processed in the specified

manner, then the request will be redirected to a different resource

path or filename.

Note:

Click Add; when adding multiple action rules, the platform will

execute all actions in order based on the displayed sequence of

the rules.

TCPRoute and UDPRoute do not support configuring action rules.

Configure Gateway - Alauda Container Platform

Parameter Description

Within the same route rule, there cannot be multiple Header type

actions with the same value.

Within the same route rule, only one type of either Redirect or

Rewrite, and only one mode of either FullPath or PrefixPath can

exist.

If you wish to use the PrefixPath operation, please first add a

matching rule of PathPrefix mode.

Backend

Instance

After the rule takes effect, it will forward to the backend instance

according to the selected internal routes and ports in the current

namespace. You can also set weights, with higher weight values

resulting in a higher probability of being polled.

Tip: The percentage next to the weight indicates the probability of

forwarding to that instance, calculated as the ratio of the current

weight value to the sum of all weight values.

5.

Click Create.

Creating Route by using the CLI

kubectl apply -f example-httproute.yaml

Configure Gateway - Alauda Container Platform

Add domain name resources to the platform and allocate domains for use by all projects

under a cluster or resources under a specific project. When creating a domain name, binding

a certificate is supported.

NOTE

The domain names created on the platform should be resolved to the cluster's load balancing

address before they can be accessed via the domain name. Therefore, you need to ensure that the

domain names added on the platform have been successfully registered and that the domain

names resolve to the cluster's load balancing address.

Successfully created and allocated domain names on the platform can be utilized in the

following features of Container Platform:

Create Inbound Rules: Network Management > Inbound Rules > Create Inbound Rule

Create Native Applications: Application Management > Native Applications > Create

Native Application > Add Inbound Rule

Add Listening Ports for Load Balancing: Network Management > Load Balancer

Details > Add Listening Port

Once the domain name is bound to a certificate, application developers can simply select the

domain name when configuring the load balancer and inbound rules, allowing the use of the

certificate that comes with the domain name for https support.

Example Domain custom resource (CR)

Creating Domain by using the web console

Creating a Domain Name

TOC

Menu ON THIS PAGE

Creating a Domain Name - Alauda Container Platform

Creating Domain by using the CLI

Subsequent Actions

Additional resources

1 If certificates are enabled, an LTS-type Secret must be created in advance. The secret-

ref is secret name.

1.

Go to Platform Management.

2.

In the left navigation bar, click Network Management > Domain Names.

3.

Example Domain custom resource (CR)

test-domain.yaml

apiVersion: crd.alauda.io/v2

kind: Domain

metadata:

 name: "00000000003075575260129686e67ed4-917a-454a-8553-d55fc4030f81"

 annotations:

 cpaas.io/secret-ref: developer.test.cn-xfd8x 1

 labels:

 cluster.cpaas.io/name: global

 project.cpaas.io/name: cong

spec:

 name: developer.test.cn

 kind: full

Creating Domain by using the web console

Creating a Domain Name - Alauda Container Platform

Click Create Domain Name.

4.

Configure the relevant parameters according to the following instructions.

Parameter Description

Type

Domain: A complete domain name, e.g., developer.test.cn .

Wildcard Domain: A wildcard domain with a wildcard (*) character,

e.g., *.test.cn , which includes all subdomains under the

domain test.cn .

Domain
Enter a complete domain name or domain suffix based on the

selected domain name type.

Allocate

Cluster

If a cluster is allocated, you also need to select a project associated

with the allocated cluster, such as all projects associated with the

cluster.

Certificate

Includes the public key (tls.crt) and private key (tls.key) for creating a

domain name-bound certificate. The project to which the certificate is

allocated is the same as the bound domain name.

Notes:

Binary file imports are not supported.

The bound certificate should meet the conditions of correct format,

within the validity period, and signed for the domain name, etc.

After creating the bound certificate, the name format of the bound

certificate is: domain name - random characters.

After creating the bound certificate, the bound certificate can be

viewed in the certificate list, but updates and deletions of the

bound certificate are only supported on the domain detail page.

After creating the bound certificate, updating the certificate

content is supported, but replacing other certificates is not

supported.

Creating a Domain Name - Alauda Container Platform

5.

Click Create.

Domain Registration: Register the domain if the created domain has not been registered.

Domain Resolution: Perform domain resolution if the domain does not point to the

platform cluster's load balancing address.

Configure Certificate

Creating Domain by using the CLI

kubectl apply -f test-domain.yaml

Subsequent Actions

Additional resources

Creating a Domain Name - Alauda Container Platform

After the platform administrator imports the TLS certificate and assigns it to a specified

project, developers with corresponding project permissions can use the certificate imported

and assigned by the platform administrator when using inbound rules and load balancing

functionalities. Subsequently, in scenarios such as certificate expiration, the platform

administrator can update the certificate centrally.

NOTE

The certificate functionality is currently not supported for use in public cloud clusters. You can

create TLS type secret dictionaries as needed within the specified namespace.

Creating a certificate by using the web console

1.

Go to Platform Management.

2.

In the left navigation bar, click Network Management > Certificates.

3.

Click Create Certificate.

Creating Certificates

TOC

Creating a certificate by using the web console

Menu ON THIS PAGE

Creating Certificates - Alauda Container Platform

4.

Refer to the instructions below to configure the relevant parameters.

Parameter Description

Assign

Project

All Projects: Assign the certificate for use in all projects associated

with the current cluster.

Specified Project: Assign the certificate for use in the specified

project.

No Assignment: Do not assign a project for now. After the

certificate creation is completed, you can update the projects that

can use the certificate through the Update Project operation.

Public Key
This refers to tls.crt. When importing the public key, binary files are

not supported.

Private Key
This refers to tls.key. When importing the private key, binary files are

not supported.

5.

Click Create.

Creating Certificates - Alauda Container Platform

An external IP address pool is a collection of IPs that MetalLB utilizes to obtain external

access IPs for LoadBalancer type internal routes.

Prerequisites

Constraints and Limitations

Deploying the MetalLB Plugin

Example IPAddressPool custom resource (CR)

Creating an External IP Address Pool by using the web console

Creating an External IP Address Pool by using the CLI

View Alarm Policy

If you need to use a BGP type external IP address pool, please contact the administrator to

enable the relevant features.

The IP resources for the external address must meet the following conditions:

The external address pool must be layer 2 (L2) interconnected with available nodes.

Creating External IP Address Pool

TOC

Prerequisites

Constraints and Limitations

Menu ON THIS PAGE

Creating External IP Address Pool - Alauda Container Platform

The IPs must be usable by the platform and cannot include IPs already in use by the

physical network, such as gateway IPs.

There must be no overlap with the networks used by the cluster, including Cluster CIDR,

Service CIDR, subnets, etc.

In a dual-stack environment, ensure that both IPv4 and IPv6 addresses exist

simultaneously in the same external address pool, and their counts are both greater than 0.

Otherwise, dual-stack LoadBalancer type internal routes will not be able to obtain external

access addresses.

In an IPv6 environment, nodes' DNS must support IPv6; otherwise, the MetalLB plugin

cannot be successfully deployed.

Using the external address pool relies on the MetalLB plugin.

1.

Go to Platform Management.

2.

In the left navigation bar, click Marketplace > Cluster Plugin.

3.

Search MetalLB, click on MetalLB to the right of ⋮ > Deploy.

4.

Wait until the deployment status shows Deployment Successful to complete the

deployment.

Deploying the MetalLB Plugin

Example IPAddressPool custom resource (CR)

Creating External IP Address Pool - Alauda Container Platform

BGP mode:

ippool-with-L2advertisement.yaml

kind: IPAddressPool

apiVersion: metallb.io/v1beta1

metadata:

 name: test-ippool

 namespace: metallb-system

spec:

 addresses:

 - 13.1.1.1/24

 avoidBuggyIPs: true

kind: L2Advertisement

apiVersion: metallb.io/v1beta1

metadata:

 name: test-ippool

 namespace: metallb-system

spec:

 ipAddressPools:

 - test-ippool 1

 nodeSelectors:

 - matchLabels: {}

 matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - 192.168.66.210

Creating External IP Address Pool - Alauda Container Platform

1 Ip pool reference.

INFO

Q: What is L2Advertisement ?

A:

4.1. L2Advertisement is a Custom Resource (CRD) provided by the MetalLB to control

which IP address pool addresses should be broadcast via ARP (IPv4) or NDP (IPv6) in Layer 2

mode.

Q: What is the purpose of L2Advertisement ?

A:

4.1.

ippool-with-bgpadvertisement.yaml

kind: IPAddressPool

apiVersion: metallb.io/v1beta1

metadata:

 name: test-pool-bgp

 namespace: metallb-system

spec:

 addresses:

 - 4.4.4.3/23

 avoidBuggyIPs: true

kind: BGPAdvertisement

apiVersion: metallb.io/v1beta1

metadata:

 name: test-pool-bgp

 namespace: metallb-system

spec:

 ipAddressPools:

 - test-pool-bgp

 nodeSelectors:

 - matchLabels:

 alertmanager: "true"

 peers:

 - test-bgp-example

Creating External IP Address Pool - Alauda Container Platform

Specifying which IP addresses in the IPAddressPool to L2 broadcast to (ARP/NDP

advertisements);

4.2.

Control broadcast behaviour to prevent IP conflicts or cross-segment broadcasts;

4.3.

Restricting the broadcast range in multi-NIC, multi-network environments.

In short, it tells MetalLB: which IPs can broadcast and to whom (e.g., which nodes).

Without defining a L2Advertisement in Layer2 mode, MetalLB will not advertise any addresses.

Q: What is BGPAdvertisement in MetalLB?

A:

BGPAdvertisement is a Kubernetes Custom Resource Definition (CRD) used in MetalLB , a

load-balancer implementation for bare-metal Kubernetes clusters. It controls how IP address

ranges (defined in IPAddressPool) are advertised to external networks via BGP (Border

Gateway Protocol).

Q: Why is BGPAdvertisement Important?

A:

In MetalLB's BGP mode, the controller peers with external routers using BGP and advertises the

IPs assigned to Kubernetes Service objects. The BGPAdvertisement resource allows you to:

Control which address pools are advertised

Customize route advertisement settings like:

Route aggregation

BGP communities

Local preference (BGP priority)

Without defining a BGPAdvertisement , MetalLB will not advertise any addresses, even if you

have configured BGP peers.

↗

Creating External IP Address Pool - Alauda Container Platform

https://metallb.io/
https://metallb.io/
https://metallb.io/

1.

Go to Platform Management.

2.

In the left navigation bar, click Network Management > External IP Address Pool.

3.

Click Create External IP Address Pool.

4.

Refer to the following instructions to configure certain parameters.

Parameter Description

Type

L2: Communication and forwarding based on MAC addresses,

suitable for small-scale or local area networks that require simple

and fast layer 2 switching, with advantages in simple configuration

and low latency.

BGP (Alpha): Routing and forwarding based on IP addresses,

using BGP protocol to exchange routing information, suitable for

large-scale networks requiring complex routing across multiple

autonomous systems, with advantages in high scalability and

reliability.

IP

Resources

Support input in CIDR and IP range formats. Click Add to support

multiple entries, examples as follows:

CIDR: 192.168.1.1/24 .

IP Range: 192.168.2.1 ~ 192.168.2.255 .

Creating an External IP Address Pool by using the web
console

Creating External IP Address Pool - Alauda Container Platform

Parameter Description

Available

Nodes

In L2 mode, available nodes are those used to carry all VIP traffic; in

BGP mode, available nodes are those used to carry VIPs, establish

BGP connections with peers, and announce routes externally.

Node Name: Select available nodes based on node names.

Label Selector: Select available nodes based on labels.

Show Node Details: View final available nodes in a list format.

Note:

When using BGP type, the available nodes are the next-hop

nodes; ensure that the selected available nodes are a subset of

the BGP Connection Nodes.

You can configure either the label selector or the node name

separately to choose available nodes; if both are configured

simultaneously, the final available nodes are the intersection of

both.

BGP Peers
Select BGP peers; please refer to BGP Peers for specific

configurations.

5.

Click Create.

Creating an External IP Address Pool by using the CLI

kubectl apply -f ippool-with-L2advertisement.yaml -f ippool-with-bgpadvertise

View Alarm Policy

Creating External IP Address Pool - Alauda Container Platform

1.

Go to Platform Management.

2.

In the left navigation bar, click Network Management > External IP Address Pool.

3.

Click View Alarm Policy in the upper right corner of the page to view the general alarm

policy for MetalLB.

Creating External IP Address Pool - Alauda Container Platform

Nodes that establish connections to exchange routing information either between different AS

or within the same AS, which communicate via the BGP protocol.

Terminology

Prerequisites

Example BGPPeer custom resource (CR)

Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

Term Explanation

AS

Number

AS refers to a collection of routers managed by the same technical

administrative organization that use a unified routing policy. Each AS in a

BGP network is assigned a unique AS number to distinguish it from

different ASs. AS numbers are divided into 2-byte AS numbers and 4-byte

AS numbers.

The range of 2-byte AS numbers is 1~65535, where 1~64511 are

registered public AS numbers on the Internet, similar to public IP

addresses; 64512~65535 are private AS numbers, similar to private IP

addresses.

The range of 4-byte AS numbers is 1~4294967295.

Creating BGP Peers

TOC

Terminology

Menu ON THIS PAGE

Creating BGP Peers - Alauda Container Platform

Term Explanation

Devices that support 4-byte AS numbers can be compatible with devices

that support 2-byte AS numbers.

Please contact the administrator to enable the relevant features.

1.

Go to Platform Management.

Prerequisites

Example BGPPeer custom resource (CR)

test-bgb-example.yaml

apiVersion: metallb.io/v1beta2

kind: BGPPeer

metadata:

 name: example

 namespace: metallb-system

spec:

 myASN: 64512

 peerASN: 64512

 peerAddress: 172.30.0.3

 peerPort: 180

 nodeSelectors:

 - matchLabels:

 alertmanager: "true"

Creating a BGPPeer by using the web console.

Creating BGP Peers - Alauda Container Platform

2.

In the left navigation bar, click Network Management > BGP Peers.

3.

Click Create BGP Peer.

4.

Refer to the instructions below to configure the parameters.

Parameter Description

Local AS

Number

The AS number of the AS where the BGP connected node resides.

Note: If there are no special requirements, it is recommended to

use an IBGP configuration, meaning the local AS number should be

consistent with the peer AS number.

Peer AS

Number
The AS number of the AS where the BGP peer resides.

Peer IP
The IP address of the BGP peer, which must be a valid IP address

capable of establishing a BGP connection.

Local IP

The IP address of the BGP connected node. When the BGP

connected node has multiple IPs, select the specified local IP to

establish a BGP connection with the peer.

Peer Port The port number of the BGP peer.

BGP

Connected

Node

The node that establishes the BGP connection. If this parameter is

not configured, all nodes will establish BGP connections.

eBGP Multi-

Hop

Allows the establishment of BGP sessions between BGP routers

that are not directly connected. When this feature is enabled, the

default TTL value of BGP packets is 5, allowing the establishment of

BGP peer relationships across multiple intermediate network

devices, making network design more flexible.

Creating BGP Peers - Alauda Container Platform

Parameter Description

RouterID

A 32-bit numeric value (usually represented in dotted-decimal

format, similar to IPv4 address format) used to uniquely identify a

BGP router in the BGP network, generally used for establishing

BGP neighbor relationships, detecting routing loops, selecting

optimal paths, and troubleshooting network issues.

5.

Click Create.

Creating a BGPPeer by using the CLI

kubectl apply -f test-bgb-example.yaml

Creating BGP Peers - Alauda Container Platform

IP Allocation Rules

Calico Network

Constraints and Limitations

Example Subnet custom resource (CR) with Calico Network

Creating a Subnet in the Calico network by using the web console

Creating a Subnet in the Calico network by using the CLI

Reference Content

Kube-OVN Network

Example Subnet custom resource (CR) with Kube-OVN Overlay Network

Creating a Subnet in the Kube-OVN Overlay Network by using the web console

Creating a Subnet in the Kube-OVN Overlay Network by using the the CLI

Underlay Network

Usage Instructions

Add Bridge Network by using the web console (Optional)

Add Bridge Network by using the CLI

Add VLAN by using the web console (Optional)

Add VLAN by using the CLI

Example Subnet custom resource (CR) with Kube-OVN Underlay Network

Creating a Subnet in the Kube-OVN Underlay Network by using the web console

Creating a Subnet in the Kube-OVN Underlay Network by using the CLI

Related Operations

Subnet Management

Updating Gateway by using the web console

Updating Gateway by using the CLI

Configure Subnets

TOC

Menu ON THIS PAGE

Configure Subnets - Alauda Container Platform

Updating Reserved IPs by using the web console

Updating Reserved IPs by using the CLI

Assigning Projects by using the web console

Assigning Projects by using the CLI

Assigning Namespaces by using the web console

Assigning Namespaces by using the CLI

Expanding Subnets by using the web console

Expanding Subnets by using the CLI

Managing Calico Networks

Delete Subnet by using the web console

Delete Subnet by using the CLI

NOTE

If a project or namespace is assigned multiple subnets, an IP address will be randomly selected

from one of the subnets.

Project Allocation:

If a project is not bound to a subnet, Pods in all namespaces under that project can only

use IP addresses from the default subnet. If there are insufficient IP addresses in the

default subnet, the Pods will not be able to start.

If a project is bound to a subnet, Pods in all namespaces under that project can only use

IP addresses from that specific subnet.

Namespace Allocation:

If a namespace is not bound to a subnet, Pods in that namespace can only use IP

addresses from the default subnet. If there are insufficient IP addresses in the default

subnet, the Pods will not be able to start.

IP Allocation Rules

Configure Subnets - Alauda Container Platform

If a namespace is bound to a subnet, Pods in that namespace can only use IP

addresses from that specific subnet.

Creating subnets in the Calico network to achieve finer granularity of network isolation for

resources within the cluster.

In an IPv6 cluster environment, the subnets created within the Calico network, by default, use

VXLAN encapsulation. The ports required for VXLAN encapsulation differ from those of IPIP

encapsulation. You need to ensure that UDP port 4789 is open.

1 When default If true, use VXLAN encapsulation.

2 See Encapsulation Mode parameters and Encapsulation Protocol parameters.

3 See Outbound Traffic NAT parameters.

Calico Network

Constraints and Limitations

Example Subnet custom resource (CR) with Calico Network

test-calico-subnet.yaml

apiVersion: kubeovn.io/v1

kind: Subnet

metadata:

 name: test-calico

spec:

 cidrBlock: 10.1.1.1/24

 default: false 1

 ipipMode: Always 2

 natOutgoing: true 3

 private: false

 protocol: Dual

 v4blockSize: 30

Configure Subnets - Alauda Container Platform

1.

Go to Platform Management.

2.

In the left navigation bar, click Network Management > Subnets.

3.

Click Create Subnet.

4.

Refer to the following instructions to configure the relevant parameters.

Parameter Description

CIDR

After allocating the subnet to a project or namespace, the

container groups within the namespace will randomly use IP

addresses within this CIDR for communication.

Note: For the correspondence between CIDR and BlockSize,

please refer to Reference Content.

Encapsulation

Protocol

Select the encapsulation protocol. IPIP is not supported in dual-

stack mode.

IPIP: Implements inter-segment communication using the

IPIP protocol.

VXLAN (Alpha): Implements inter-segment communication

using the VXLAN protocol.

No Encapsulation: Directly connected through routing

forwarding.

Encapsulation

Mode

When the encapsulation protocol is IPIP or VXLAN, the

encapsulation mode must be set, defaulting to Always.

Always: Always enable IPIP / VXLAN tunnels.

Creating a Subnet in the Calico network by using the web
console

Configure Subnets - Alauda Container Platform

Parameter Description

Cross Subnet: Enable IPIP / VXLAN tunnels only when the

host is in different subnets; direct connection via routing

forwarding when the host is in the same subnet.

Outbound

Traffic NAT

Choose whether to enable outbound traffic NAT (Network

Address Translation), which is enabled by default.

It is primarily used to set the access addresses exposed to the

external network when the subnet container group accesses the

external network.

When outbound traffic NAT is enabled, the host IP will be used

as the access address for the current subnet container group;

when not enabled, the IPs of the container groups in the subnet

will be directly exposed to the external network.

5.

Click Confirm.

6.

On the subnet details page, select Actions > Allocate Project / Allocate Namespace.

7.

Complete the configuration and click Allocate.

The dynamic matching relationship between CIDR and blockSize is shown in the table below.

Creating a Subnet in the Calico network by using the CLI

kubectl apply -f test-calico-subnet.yaml

Reference Content

Configure Subnets - Alauda Container Platform

CIDR
blockSize

Size
Number of

Hosts
Size of a Single IP

Pool

prefix<=16 26 1024+ 64

16<prefix<=19 27 256~1024 32

prefix=20 28 256 16

prefix=21 29 256 8

prefix=22 30 256 4

prefix=23 30 128 4

prefix=24 30 64 4

prefix=25 30 32 4

prefix=26 31 32 2

prefix=27 31 16 2

prefix=28 31 8 2

prefix=29 31 4 2

prefix=30 31 2 2

prefix=31 31 1 2

NOTE

Subnet configurations with prefixes greater than 31 are not supported.

Kube-OVN Network

Configure Subnets - Alauda Container Platform

Creating a subnet in the Kube-OVN Overlay Network to achieve more granular network

isolation of resources in the cluster.

NOTE

The platform has a built-in join subnet for communication between nodes and Pods; please avoid

conflicts in network segments between join and newly created subnets.

1 See Outbound Traffic NAT parameters.

2 See Reserved IP parameters.

3 See Gateway Type parameters. The available values are distributed or

centralized .

4 See Gateway Nodes parameters.

5 See ECMP parameters. Provided that you contact the administrator to enable the feature

gate.

Example Subnet custom resource (CR) with Kube-OVN Overlay
Network

test-overlay-subnet.yaml

apiVersion: kubeovn.io/v1

kind: Subnet

metadata:

 name: test-overlay-subnet

spec:

 default: false

 protocol: Dual

 cidrBlock: 10.1.0.0/23

 natOutgoing: true 1

 excludeIps: 2

 - 10.1.1.2

 gatewayType: distributed 3

 gatewayNode: "" 4

 private: false

 enableEcmp: false 5

Configure Subnets - Alauda Container Platform

1.

Go to Platform Management.

2.

In the left navigation bar, click on Network Management > Subnet.

3.

Click on Create Subnet.

4.

Refer to the following instructions to configure the related parameters.

Parameter Description

Network

Segment

After assigning the subnet to the project or namespace, IPs within

this segment will be randomly allocated for use by Pods.

Reserved

IP

The set reserved IP will not be automatically allocated. For example,

it can be used as the IP address for computing components' fixed

IP.

Gateway

Type

Select the type of gateway for the subnet to control the outbound

traffic.

- Distributed: Each host in the cluster can act as an outbound node

for Pods on the current host, enabling distributed egress.

- Centralized: All Pods in the cluster use one or more specific hosts

as outbound nodes, facilitating external auditing and firewall control.

Setting multiple centralized gateway nodes can achieve high

availability.

ECMP

(Alpha)

When choosing a Centralized gateway, the ECMP feature can be

used. By default, the gateway operates in master-slave mode, with

only the master gateway processing traffic. When enabling ECMP

(Equal-Cost Multipath Routing), outbound traffic will be routed

through multiple equal-cost paths to all available gateway nodes,

Creating a Subnet in the Kube-OVN Overlay Network by using
the web console

Configure Subnets - Alauda Container Platform

Parameter Description

thereby increasing the total throughput of the gateway.

Note: Please enable ECMP-related features in advance.

Gateway

Nodes

When using a Centralized gateway, select one or more specific

hosts as gateway nodes.

Outbound

Traffic NAT

Choose whether to enable outbound traffic NAT (Network Address

Translation). By default, it is enabled.

It is mainly used to set the access address exposed to the external

network when the Pods in the subnet access the internet.

When outbound traffic NAT is enabled, the host IP will be used as

the access address for the Pods in the current subnet; when not

enabled, the IPs of the Pods within the subnet will be directly

exposed to the external network. In this case, using a centralized

gateway is recommended.

5.

Click Confirm.

6.

On the subnet details page, select Actions > Allocate Project / Namespace.

7.

Complete the configuration and click Allocate.

Creating a Subnet in the Kube-OVN Overlay Network by using
the the CLI

kubectl apply -f test-overlay-subnet.yaml

Underlay Network

Configure Subnets - Alauda Container Platform

Creating subnets in the Kube-OVN Underlay network not only enables finer-grained network

isolation for resources but also provides a better performance experience.

INFO

The container network in Kube-OVN Underlay requires support from the physical network. Please

refer to the best practices Preparing the Kube-OVN Underlay Physical Network to ensure network

connectivity.

The general process for creating subnets in the Kube-OVN Underlay network is: Add Bridge

Network > Add VLAN > Create Subnet.

1 Default Network Card Name.

2 Configure Network Card by Node.

1 Default Network Card Name.

2 Configure Network Card by Node.

Usage Instructions

Add Bridge Network by using the web console (Optional)

test-provider-network.yaml

kind: ProviderNetwork

apiVersion: kubeovn.io/v1

metadata:

 name: test-provider-network

spec:

 defaultInterface: eth1 1

 customInterfaces: 2

 - interface: eth2

 nodes:

 - node1

 excludeNodes:

 - node2

Configure Subnets - Alauda Container Platform

A bridge network refers to a bridge, and after binding the network card to the bridge, it can

forward container network traffic, achieving intercommunication with the physical network.

Procedure:

1.

Go to Platform Management.

2.

In the left navigation bar, click Network Management > Bridge Network.

3.

Click Add Bridge Network.

4.

Configure the relevant parameters based on the following instructions.

Note:

Target Pod refers to all Pods scheduled on the current node or Pods in namespaces

bound to specific subnets scheduled to the current node. This depends on the scope of

the subnet under the bridge network.

The nodes in the Underlay subnet must have multiple network cards, and the network

card used by the bridge network must be exclusively assigned to the Underlay and

cannot carry other traffic, such as SSH. For example, if the bridge network has three

nodes planning for eth0, eth0, eth1 for exclusive use by the Underlay, then the default

network card can be set as eth0, and the network card for node three can be eth1.

Parameter Description

Default Network

Card Name

By default, the target Pod will use this as the bridge network

card for intercommunication with the physical network.

Configure

Network Card

by Node

The target Pods on the configured nodes will bridge to the

specified network card instead of the default network card.

Configure Subnets - Alauda Container Platform

Parameter Description

Exclude Nodes

When nodes are excluded, all Pods scheduled to these nodes

will not bridge to any network card on these nodes.

Note: Pods on excluded nodes will not be able to communicate

with the physical network or cross-node container networks, and

care should be taken to avoid scheduling related Pods to these

nodes.

5.

Click Add.

1 VLAN ID.

2 Bridge network reference.

The platform has a pre-configured ovn-vlan virtual LAN, which will connect to the provider

bridge network. You can also configure a new VLAN to connect to other bridge networks,

thereby achieving network isolation between VLANs.

Procedure:

Add Bridge Network by using the CLI

kubectl apply -f test-provider-network.yaml

Add VLAN by using the web console (Optional)

test-vlan.yaml

kind: Vlan

apiVersion: kubeovn.io/v1

metadata:

 name: test-vlan

spec:

 id: 0 1

 provider: test-provider-network 2

Configure Subnets - Alauda Container Platform

1.

Navigate to Platform Management.

2.

In the left navigation bar, click Network Management > VLAN.

3.

Click Add VLAN.

4.

Configure the relevant parameters based on the following instructions.

Parameter Description

VLAN ID
The unique identifier for this VLAN, which will be used to

differentiate different virtual LANs.

Bridge

Network

The VLAN will connect to this bridge network for

intercommunication with the physical network.

5.

Click Add.

Add VLAN by using the CLI

kubectl apply -f test-vlan.yaml

Example Subnet custom resource (CR) with Kube-OVN
Underlay Network

Configure Subnets - Alauda Container Platform

1 VLAN reference.

NOTE

The platform also pre-configures a join subnet for communication between nodes and Pods in

Overlay transport mode. This subnet will not be used in Underlay transport mode, so it is crucial to

avoid IP segment conflicts between join and other subnets.

Procedure:

1.

Navigate to Platform Management.

2.

In the left navigation bar, click Network Management > Subnet.

3.

test-underlay-network.yaml

apiVersion: kubeovn.io/v1

kind: Subnet

metadata:

 name: test-underlay-network

spec:

 default: false

 protocol: Dual

 cidrBlock: 11.1.0.0/23

 gateway: 11.1.0.1

 excludeIps:

 - 11.1.0.3

 private: false

 allowSubnets: []

 vlan: test-vlan 1

 enableEcmp: false

Creating a Subnet in the Kube-OVN Underlay Network by using
the web console

Configure Subnets - Alauda Container Platform

Click Create Subnet.

4.

Configure the relevant parameters based on the following instructions.

Parameter Description

VLAN The VLAN to which the subnet belongs.

Subnet
After assigning the subnet to a project or namespace, IPs within the

physical subnet will be randomly allocated for use by Pods.

Gateway The physical gateway within the above subnet.

Reserved

IP

The specified reserved IP will not be automatically assigned. For

example, it can be used as the IP for the compute component fixed

IP.

5.

Click Confirm.

6.

On the subnet details page, select Action > Assign Project / Namespace.

7.

Complete the configuration and click Assign.

When both Underlay and Overlay subnets exist in a cluster, you can configure the Automatic

Intercommunication Between Underlay and Overlay Subnets as needed.

Creating a Subnet in the Kube-OVN Underlay Network by using
the CLI

kubectl apply -f test-underlay-network.yaml

Related Operations

Configure Subnets - Alauda Container Platform

This includes changing the outbound traffic method, gateway nodes, and NAT configuration.

1.

Go to Platform Management.

2.

In the left sidebar, click on Network Management > Subnets.

3.

Click the name of the subnet.

4.

Select Action > Update Gateway.

5.

Update the parameter configurations; refer to the Parameter Description for details.

6.

Click OK.

Subnet Management

Updating Gateway by using the web console

Updating Gateway by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[

 {"op": "replace", "path": "/spec/gatewayType", "value": "centralized"},

 {"op": "replace", "path": "/spec/gatewayNode", "value": "192.168.66.210"},

 {"op": "replace", "path": "/spec/natOutgoing", "value": true},

 {"op": "replace", "path": "/spec/enableEcmp", "value": true}

]'

Configure Subnets - Alauda Container Platform

The gateway IP cannot be removed from the reserved IPs, while other reserved IPs can be

edited, deleted, or added freely.

1.

Go to Platform Management.

2.

In the left sidebar, click on Network Management > Subnets.

3.

Click the name of the subnet.

4.

Select Action > Update Reserved IP.

5.

After completing the updates, click Update.

Assigning subnets to specific projects helps teams better manage and isolate network traffic

for different projects, ensuring that each project has sufficient network resources.

1.

Updating Reserved IPs by using the web console

Updating Reserved IPs by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[

 {

 "op": "replace",

 "path": "/spec/excludeIps",

 "value": ["10.1.0.1", "10.1.1.2", "10.1.1.4"]

 }

]'

Assigning Projects by using the web console

Configure Subnets - Alauda Container Platform

Navigate to Platform Management.

2.

In the left sidebar, click on Network Management > Subnets.

3.

Click the name of the subnet.

4.

Select Action > Assign Project.

5.

After adding or removing projects, click Assign.

Assigning subnets to specific namespaces allows for finer network isolation.

Note: The assignment process will rebuild the gateway, and outbound data packets will be

discarded! Please ensure no business applications are currently accessing external clusters.

1.

Assigning Projects by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[

 {

 "op": "replace",

 "path": "/spec/namespaceSelectors",

 "value": [

 {

 "matchLabels": {

 "cpaas.io/project": "cong"

 }

 }

]

 }

]'

Assigning Namespaces by using the web console

Configure Subnets - Alauda Container Platform

Navigate to Platform Management.

2.

In the left sidebar, click on Network Management > Subnets.

3.

Click the name of the subnet.

4.

Select Action > Assign Namespace.

5.

After adding or removing namespaces, click Assign.

When the reserved IP range of a subnet reaches its usage limit or is about to be exhausted, it

can be expanded based on the original subnet range without affecting the normal operation of

existing services.

1.

Navigate to Platform Management.

2.

In the left sidebar, click on Network Management > Subnets.

Assigning Namespaces by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[

 {

 "op": "replace",

 "path": "/spec/namespaces",

 "value": ["cert-manager"]

 }

]'

Expanding Subnets by using the web console

Configure Subnets - Alauda Container Platform

3.

Click the name of the subnet.

4.

Select Action > Expand Subnet.

5.

Complete the configuration and click Update.

Support for assigning projects and namespaces; for details, please refer to the project

assignment and namespace assignment.

NOTE

When a subnet is deleted, if there are still container groups using the IPs within the subnet, the

container groups can continue to run and the IP addresses will remain unchanged, but they will

be unable to communicate over the network. The container groups can be rebuilt to use IPs

within the default subnet, or assign a new subnet to the namespace where the container groups

reside for usage.

The default subnet cannot be deleted.

Expanding Subnets by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[

 {

 "op": "replace",

 "path": "/spec/cidrBlock",

 "value": "10.1.0.0/22"

 }

]'

Managing Calico Networks

Delete Subnet by using the web console

Configure Subnets - Alauda Container Platform

1.

Go to Platform Management.

2.

In the left navigation bar, click Network Management > Subnets.

3.

Click ⋮ > Delete, and proceed with the deletion.

Delete Subnet by using the CLI

kubectl delete subnet test-overlay-subnet

Configure Subnets - Alauda Container Platform

INFO

The platform now provides two different UIs for Network Policies. The old one is maintained for

compatibility reasons, while the new one is more flexible and provides a native YAML editor. We

recommend using the new version.

Please contact the platform administrator to enable the network-policy-next feature gate to

access the new UI.

NetworkPolicy is a namespace-scoped Kubernetes resource and implemented by CNI

plugins. Through network policies, you can control network traffic of Pods, achieving network

isolation and reducing the risk of attacks.

By default, all Pods can communicate freely, allowing ingress and egress traffic from any

source. When a NetworkPolicy is applied, the targeted Pods will only accept traffic that

matches the spec.

WARNING

Network policies only apply to container traffic. They don’t affect Pods running in hostNetwork

mode.

Example NetworkPolicy:

Creating Network Policies

Menu ON THIS PAGE

Configure Network Policies - Alauda Container Platform

1 from and 'to' peer support namespaceSelector , podSelector , 'ipBlock'

Creating NetworkPolicy by using the web console

Creating NetworkPolicy by using the CLI

example-network-policy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: example

 namespace: demo-1

 annotations:

 cpaas.io/display-name: test

spec:

 podSelector:

 matchLabels:

 pod-template-hash: 55c84b59bb

 ingress:

 - ports:

 - protocol: TCP

 port: 8989

 from: 1

 - podSelector:

 matchLabels:

 kubevirt.io/vm: test

 egress:

 - ports:

 - protocol: TCP

 port: 80

 to:

 - ipBlock:

 cidr: 192.168.66.221/23

 except: []

 policyTypes:

 - Ingress

 - Egress

TOC

Configure Network Policies - Alauda Container Platform

Reference

1.

Enter Container Platform.

2.

In the left navigation bar, click Network > Network Policies.

3.

Click Create Network Policy.

4.

Refer to the following instructions to complete the relevant configuration.

Area Parameter Description

Target

Pod

Pod Selector

Enter the labels of the target Pods in

key-value form; if not set, it will apply

to all Pods in the current

namespace.

Preview of Target Pods Affected by

Current Policy

Click Preview to see the target Pods

affected by this network policy.

Ingress Block all ingress traffic Block all ingress traffic to the target

Pod.

Note:

If Ingress is added to the

spec.policyTypes field in YAML

without configuring specific rules,

the Block all ingress traffic

Creating NetworkPolicy by using the web console

Configure Network Policies - Alauda Container Platform

Area Parameter Description

option will automatically be

checked when switching back to

the form.

If the spec.ingress ,

spec.egress , and

spec.policyTypes fields are

simultaneously deleted in YAML,

the Block all ingress traffic

option will automatically be

checked when switching back to

the form.

Rules

Description: If

multiple sources

are added in the

rules, there is a

logical OR

relationship

between them.

Pods in

Current

Namespace

Match Pods with specified labels in

the current namespace; only

matched Pods can access the target

Pod. You can click Preview to see

the Pods affected by the current rule.

If this item is not configured, all Pods

in the current namespace are

allowed to access the target Pod by

default.

Pods in

Current

Cluster

Match namespaces or Pods with

specified labels in the cluster; only

matched Pods can access the target

Pod. You can click Preview to see

the Pods affected by the current rule.

If both namespace and Pod

selectors are configured, it will

take the intersection of the two,

meaning Pods with specified

labels will be selected from the

specified namespace.

Configure Network Policies - Alauda Container Platform

Area Parameter Description

If this item is not configured, all

Pods from all namespaces in the

cluster can access the target Pod

by default.

IP Range

Enter the CIDR that can access the

target Pod and can exclude CIDR

ranges that are not allowed to

access the target Pod. If this item is

not configured, any traffic can

access the target Pod.

Description: You can add exclusion

items in the form of exampleip/32 to

exclude a single IP address.

Port

Match traffic on specified protocols

and ports; numeric ports or port

names on Pods can be added. If this

item is not configured, all ports will

be matched.

Egress

Block all egress traffic

Block all egress traffic to the target

Pod.

Note:

If Egress is added to the

spec.policyTypes field in YAML

without configuring specific rules,

the Block all egress traffic

option will automatically be

checked when switching back to

the form.

Configure Network Policies - Alauda Container Platform

Area Parameter Description

Other Parameters
Similar to the Ingress parameters,

this will not be elaborated on here.

1. Click Create.

If you want more details, check out the official docs on Network Policies .

Creating NetworkPolicy by using the CLI

kubectl apply -f example-network-policy.yaml

Reference

↗

Configure Network Policies - Alauda Container Platform

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

INFO

The platform now provides two different UIs for Cluster Network Policies. The old one is maintained

for compatibility reasons, while the new one is more flexible and provides a native YAML editor. We

recommend using the new version.

Please contact the platform administrator to enable the cluster-network-policy and

cluster-network-policy-next feature-gate to access the new UI.

The new cluster network policy adopts the Kubernetes community's Admin Network Policy

standard design, providing more flexible configuration methods and rich configuration options.

When multiple network policies are applied, they follow a strict priority order: Admin Network

Policy takes precedence over Network Policy, which in turn takes precedence over Baseline

Admin Network Policy.

The procedure is as follows：

Creating Admin Network Policies

↗

Menu ON THIS PAGE

Creating Admin Network Policies - Alauda Container Platform

https://network-policy-api.sigs.k8s.io/api-overview/
https://network-policy-api.sigs.k8s.io/api-overview/
https://network-policy-api.sigs.k8s.io/api-overview/

Evaluated First

Evaluated Last

AdminNetworkPolicy

NetworkPolicy

BaselineAdminNetworkPolicy

 Existing NetworkPolicy API Object

 AdminNetworkPolicy API Object

🔒💻
Sys Admin

💻💻
Developer

🔒💻
Sys Admin

User
P

rio
rit

y

Notes

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI

Additional resource

Only Kube-OVN CNI supports admin network policies.

In Kube-OVN network mode, this feature is at Alpha maturity level.

Only one Baseline Admin Network Policy can exist in the cluster.

TOC

Notes

Creating Admin Network Policies - Alauda Container Platform

AdminNetworkPolicy

1 The lower the number, the higher the priority.

example-anp.yaml

apiVersion: policy.networking.k8s.io/v1alpha1

kind: AdminNetworkPolicy

metadata:

 name: example-anp

spec:

 priority: 3 1

 subject: 2

 pods:

 namespaceSelector:

 matchLabels: {}

 podSelector:

 matchLabels:

 pod-template-hash: 55f66dd67d

 ingress:

 - name: ingress1

 action: Allow 3

 ports:

 - portNumber:

 protocol: TCP

 port: 8090

 from: 4

 - pods:

 namespaceSelector:

 matchLabels: {}

 podSelector:

 matchLabels:

 pod-template-hash: 55c84b59bb

 egress:

 - name: egress1

 action: Allow

 ports:

 - portNumber:

 protocol: TCP

 port: 8080

 to: 5

 - networks:

 - 10.1.1.1/23

Creating Admin Network Policies - Alauda Container Platform

2 subject : At most one of namespace selector or pod selector can be specified.

3 action : The available values are Allow, Deny, and Pass. Allow for allowing traffic

access, Deny for denying traffic access, Pass for allowing the traffic and skip subsequent low

priority cluster network policies and continue to have the traffic handled by other policies

(NetworkPolicy and BaselineAdminNetworkpolicy).

4 The available values are Namespace Selector, Pod Selector.

5 The available values are Namespace Selector, Pod Selector, Node Selector, IP Block.

BaselineAdminNetworkpolicy:

Creating Admin Network Policies - Alauda Container Platform

1 Only one baseline admin network policy with metadata.name= default can be created

in the cluster.

2 The available values are Allow, Deny.

default.yaml

apiVersion: policy.networking.k8s.io/v1alpha1

kind: BaselineAdminNetworkPolicy

metadata:

 name: default 1

spec:

 subject:

 pods:

 namespaceSelector:

 matchLabels: {}

 podSelector:

 matchLabels:

 pod-template-hash: 55c84b59bb

 ingress:

 - name: ingress1

 action: Allow

 ports:

 - portNumber:

 protocol: TCP

 port: 8888

 from:

 - pods:

 namespaceSelector:

 matchLabels: {}

 podSelector:

 matchLabels:

 pod-template-hash: 55f66dd67d

 egress:

 - name: egress1

 action: Allow 2

 ports:

 - portNumber:

 protocol: TCP

 port: 8080

 to:

 - networks:

 - 3.3.3.3/23

Creating Admin Network Policies - Alauda Container Platform

1.

Go to Platform Management.

2.

In the left navigation bar, click Network > Cluster Network Policies.

3.

Click Create Admin Network Policies or Configure the Baseline Admin Network

Policy.

4.

Follow the instructions below to complete the relevant configuration.

Area Parameter Description

Basic

Information

Name

The name of the Admin

Network Policy or Baseline

Admin Network Policy.

Priority

Determines the order in which

policies are evaluated and

applied. Lower numerical

values indicate higher priority.

Note: The baseline admin

network policy does not have

a priority.

Target Pod Namespace Selector Enter the labels of the target

Namespaces in key-value

form. If not set, the policy will

apply to all Namespaces in

the current cluster. When

Creating AdminNetworkPolicy or
BaselineAdminNetworkPolicy by using the web console

Creating Admin Network Policies - Alauda Container Platform

Area Parameter Description

specified, the policy will only

apply to pods within the

namespaces that match these

selectors.

Preview of Target Pods Affected

by Current Policy

Click Preview to see the

target Pods affected by this

network policy.

Pod Selector

Enter the labels of the target

Pods in key-value form. If not

set, the policy will apply to all

Pods in the current

namespace.

Preview of Target Pods Affected

by Current Policy

Click Preview to see the

target Pods affected by this

network policy.

Ingress

Traffic Action

Specifies how to handle

incoming traffic to target Pods.

Has three modes: Allow

(permits traffic), Deny (blocks

traffic), and Pass (skips all

lower-priority admin network

policies, allowing the traffic to

be handled by Network Policy,

or if no Network Policy exists,

by Baseline Admin Network

Policy).

Note: The baseline admin

network policy does not have

action Pass.

Rule

Description: If

Pod

Selector

Matches namespaces or Pods

with specified labels in the

cluster; only matching Pods

Creating Admin Network Policies - Alauda Container Platform

Area Parameter Description

multiple sources

are added in the

rule, there is a

logical OR

relationship

between them.

can access the target Pod.

You can click Preview to see

the Pods affected by the

current rule.

If both namespace and Pod

selectors are configured,

their intersection will be

taken, meaning Pods with

specified labels will be

selected from the specified

namespaces.

If this item is not

configured, all Pods in all

namespaces in the cluster

can access the target Pod

by default.

Namespace

Selector

Matches Pods with specified

labels in the current

namespace; only matching

Pods can access the target

Pod. You can click Preview to

see the Pods affected by the

current rule. If this item is not

configured, all Pods in the

current namespace are

allowed to access the target

Pod by default.

Ports Matches traffic on specified

protocols and ports; you can

add numeric ports or port

names on Pods. If this item is

Creating Admin Network Policies - Alauda Container Platform

Area Parameter Description

not configured, all ports will be

matched.

Egress

Rule

Description: If

multiple sources

are added in the

rule, there is a

logical OR

relationship

between them.

Node

Selector

Specifies which node IPs the

target Pods are allowed to

access. You can select nodes

by their labels to control which

node IPs are accessible from

the Pods.

IP Range

Specify CIDR ranges that

target Pods are allowed to

connect to. If this item is not

configured, target Pods can

connect to any IP by default.

Other

Parameters

Similar to the Ingress

parameters, with the same

configuration options and

behavior.

Configure Cluster Network Policies

Creating AdminNetworkPolicy or
BaselineAdminNetworkPolicy by using the CLI

kubectl apply -f example-anp.yaml -f default.yaml

Additional resource

Creating Admin Network Policies - Alauda Container Platform

Cluster network policies are responsible for managing project-level access control rules.

When this feature is enabled, different projects are isolated from each other by default, and

compute components in different projects cannot access each other over the network.

Communication can be achieved by adding single project access or IP segment access

rules.

Once configured, the cluster network policies will be synchronized to the namespaces under

the cluster, and can be viewed in the Network Policies feature module of the container

platform.

Notes

Procedure

The effectiveness of the cluster network policies depends on whether the network plugin

used by the cluster supports network policies.

Kube-OVN and Calico support network policies.

Flannel does not support network policies.

When accessing the cluster or using a custom network plugin, you can refer to the

relevant documentation to confirm support.

The functionality is in Alpha maturity under the Kube-OVN network mode.

Configure Cluster Network Policies

TOC

Notes

Menu ON THIS PAGE

Configure Cluster Network Policies - Alauda Container Platform

1.

Go to Platform Management.

2.

In the left navigation bar, click on Network Management > Cluster Network Policies.

3.

Click Configure Now.

4.

Follow the instructions below to complete the relevant configuration.

Configuration
Item

Description

Complete

Isolation

Between

Projects

Whether to enable the complete isolation switch between

projects, which is enabled by default and can be turned off by

clicking. When enabled, network isolation is achieved between

all projects in the current cluster, and other resources are not

allowed to access any project within the cluster (e.g., external

IPs, load balancers). This does not affect projects' access to

resources outside the cluster.

Single Project

Access

This parameter is only effective when the Complete Isolation

Between Projects switch is enabled.

Configure the source project and target project for one-way

access.

Click Add to add a configuration record, supporting multiple

records.

In the source project dropdown, select a project that will

access the target project or select all projects; in the target

project dropdown, select the target project to be accessed.

Procedure

Configure Cluster Network Policies - Alauda Container Platform

Configuration
Item

Description

IP Segment

Access

This parameter is only effective when the Complete Isolation

Between Projects switch is enabled.

Configure the specific IP/segment and target project for one-

way access.

Click Add to add a configuration record, supporting multiple

records.

In the source IP segment input box, enter the IP or CIDR

segment to access the target project; in the target project

dropdown, select the target project to be accessed.

5.

Click Configure.

Configure Cluster Network Policies - Alauda Container Platform

Deploy High Available VIP for ALB

Soft Data Center LB Solution (Alpha)

Preparing Kube-OVN Underlay Physical Network

Automatic Interconnection of Underlay and Overlay Subnets

How To

Method 1: Use LoadBalancer type internal routing to provide VIP

Method 2: Use external load balancer device to provide VIP

Prerequisites

Procedure

Verification

Usage Instructions

Terminology Explanation

Environment Requirements

Configuration Example

Menu

How To - Alauda Container Platform

Use OAuth Proxy with ALB

Creating GatewayAPI Gateway

Overview

Procedure

Result

Deploy MetalLB

Set Pod Security Policies to Privileged Mode

How To - Alauda Container Platform

Configure a Load Balancer

How to properly allocate CPU and memory resources

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster

Prerequisites

Example ALB2 custom resource (CR)

Creating a Load Balancer by using the web console.

Creating a Load Balancer by using the CLI.

Update Load Balancer by using the web console

Delete Load Balancer by using the web console

Delete Load Balancer by using the CLI

Configure Listener Ports (Frontend)

Prerequisites

Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by using the web console

Creating Listener Ports (Frontend) by using the CLI

Subsequent Actions

Related Operations

Example Rule custom resource (CR)

Creating Rule by using web console

Creating Rule by using the CLI

Logs and Monitoring

Viewing Logs

Monitoring Metrics

Additional resources

How To - Alauda Container Platform

Calico Network Supports WireGuard Encryption

Kube-OVN Overlay Network Supports IPsec Encryption

ALB Monitoring

Installation Status

Terminology

Notes

Prerequisites

Procedure

Result Verification

Terminology

Notes

Prerequisites

Procedure

Terminology

Procedure

Monitoring Metrics

How To - Alauda Container Platform

The high availability of the Load Balancer requires a VIP. There are two ways to obtain a VIP.

Method 1: Use LoadBalancer type internal routing to provide VIP

Method 2: Use external load balancer device to provide VIP

When creating a load balancer, the internal routing option is enabled, and the system

automatically creates a LoadBalancer type internal routing to provide a VIP for the load

balancer. Before using it, ensure that the current cluster supports LoadBalancer type internal

routing. You can use the platform's built-in LoadBalancer internal routing implementation, for

specific configuration, please refer to External Address Pool; if the internal routing option is

disabled, you need to configure an access address for the load balancer.

Please confirm with the network engineer the IP address (public IP, private IP, VIP) or

domain name of the load balancer service before deployment. If you want to use a domain

name as the address for external traffic to access the load balancer, you need to apply for

Deploy High Available VIP for ALB

TOC

Method 1: Use LoadBalancer type internal routing to
provide VIP

Method 2: Use external load balancer device to provide
VIP

Menu ON THIS PAGE

Deploy High Available VIP for ALB - Alauda Container Platform

a domain name in advance and configure domain name resolution. It is recommended to

use a commercial load balancer device to provide a VIP, if not, you can use the Pure

Software Data Center LB Solution (Alpha)

According to the business scenario, the external load balancer needs to configure health

checks for all the ports in use to reduce the downtime of ALB upgrade. The health check

configuration is as follows:

Health Check
Parameters

Description

Port
For global clusters, fill in: 11782.

For business clusters, fill in: 1936.

Protocol
The protocol type of the health check, it is recommended to use

TCP.

Response

Timeout

The time required to receive the health check response, it is

recommended to configure it to 2 seconds.

Check Interval
The time interval for the health check, it is recommended to

configure it to 5 seconds.

Unhealthy

Threshold

The number of consecutive failures after which the health check

status of the backend server is determined to be failed, it is

recommended to configure it to 3 times.

Deploy High Available VIP for ALB - Alauda Container Platform

Deploy a pure software data center load balancer (LB) by creating a highly available load

balancer outside the cluster, providing load balancing capabilities for multiple ALBs to ensure

stable business operations. It supports configuration for IPv4 only, IPv6 only, or both IPv4 and

IPv6 dual stack.

Prerequisites

Procedure

Verification

1.

Prepare two or more host nodes as LB. It is recommended to install Ubuntu 22.04

operating system on LB nodes to reduce the time for LB to forward traffic to abnormal

backend nodes.

2.

Pre-install the following software on all host nodes of the external LB (this chapter takes

two external LB host nodes as an example):

ipvsadm

Docker (20.10.7)

Soft Data Center LB Solution (Alpha)

TOC

Prerequisites

Menu ON THIS PAGE

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

3.

Ensure that the Docker service starts on boot for each host using the following command:

sudo systemctl enable docker.service .

4.

Ensure that the clock of each host node is synchronized.

5.

Prepare the image for Keepalived, used to start the external LB service; the platform

already contains this image. The image address is in the following format: <image

repository address>/tkestack/keepalived:<version suffix> . The version suffix may

vary slightly among different versions. You can obtain the image repository address and

version suffix as follows. This document uses build-

harbor.alauda.cn/tkestack/keepalived:v3.16.0-beta.3.g598ce923 as an example.

In the global cluster, execute kubectl get prdb base -o json | jq

.spec.registry.address to get the image repository address parameter.

In the directory where the installation package is extracted, execute cat

./installer/res/artifacts.json |grep keepalived -C 2|grep tag|awk '{print

$2}'|awk -F '"' '{print $2}' to get the version suffix.

Note: The following operations must be executed once on each external LB host node, and

the hostname of the host nodes must not be duplicated.

1.

Add the following configuration information to the file /etc/modules-

load.d/alive.kmod.conf .

Procedure

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

2.

Add the following configuration information to the file

/etc/sysctl.d/alive.sysctl.conf .

3.

Restart using the reboot command.

4.

Create a folder for the Keepalived configuration file.

5.

ip_vs

ip_vs_rr

ip_vs_wrr

ip_vs_sh

nf_conntrack_ipv4

nf_conntrack

ip6t_MASQUERADE

nf_nat_masquerade_ipv6

ip6table_nat

nf_conntrack_ipv6

nf_defrag_ipv6

nf_nat_ipv6

ip6_tables

net.ipv4.ip_forward = 1

net.ipv4.conf.all.arp_accept = 1

net.ipv4.vs.conntrack = 1

net.ipv4.vs.conn_reuse_mode = 0

net.ipv4.vs.expire_nodest_conn = 1

net.ipv4.vs.expire_quiescent_template = 1

net.ipv6.conf.all.forwarding=1

mkdir -p /etc/keepalived

mkdir -p /etc/keepalived/kubecfg

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

Modify the configuration items according to the comments in the following file and save

them in the /etc/keepalived/ folder, naming the file alive.yaml .

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

instances:

 - vip: # Multiple VIPs can be configured

 vip: 192.168.128.118 # VIPs must be different

 id: 20 # Each VIP's ID must be unique, optional

 interface: "eth0"

 check_interval: 1 # optional, default 1: interval to execute check sc

 check_timeout: 3 # optional, default 3: check script timeout period

 name: "vip-1" # Identifier for this instance, can only contain alphan

 peer: ["192.168.128.116", "192.168.128.75"] # Keepalived node IP, a

 kube_lock:

 kubecfgs: # The kube-config list used by kube-lock will sequentiall

 - "/live/cfg/kubecfg/kubecfg01.conf"

 - "/live/cfg/kubecfg/kubecfg02.conf"

 - "/live/cfg/kubecfg/kubecfg03.conf"

 ipvs: # Configuration for option IPVS

 ips: ["192.168.143.192", "192.168.138.100","192.168.129.100"] # IPV

 ports: # Configure health check logic for each port on the VIP

 - port: 80 # The port on the virtual server must match the real ser

 virtual_server_config: |

 delay_loop 10 # Interval for performing health checks on the r

 lb_algo rr

 lb_kind NAT

 protocol TCP

 raw_check: |

 TCP_CHECK {

 connect_timeout 10

 connect_port 1936

 }

 - vip:

 vip: 2004::192:168:128:118

 id: 102

 interface: "eth0"

 peer: ["2004::192:168:128:75","2004::192:168:128:116"]

 kube_lock:

 kubecfgs: # The kube-config list used by kube-lock will sequentiall

 - "/live/cfg/kubecfg/kubecfg01.conf"

 - "/live/cfg/kubecfg/kubecfg02.conf"

 - "/live/cfg/kubecfg/kubecfg03.conf"

 ipvs:

 ips: ["2004::192:168:143:192","2004::192:168:138:100","2004::192:168

 ports:

 - port: 80

 virtual_server_config: |

d l l

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

6.

Execute the following command in the business cluster to check the certificate expiration

date in the configuration file, ensuring that the certificate is still valid. The LB functionality

will become unavailable after the certificate expires, requiring contact with the platform

administrator for a certificate update.

7.

Copy the /etc/kubernetes/admin.conf file from the three Master nodes in the

Kubernetes cluster to the /etc/keepalived/kubecfg folder on the external LB nodes,

naming them with an index, e.g., kubecfg01.conf , and modify the apiserver node

addresses in these three files to the actual node addresses of the Kubernetes cluster.

Note: After the platform certificate is updated, this step needs to be executed again,

overwriting the original files.

8.

Check the validity of the certificates.

8.1.

Copy /usr/bin/kubectl from the Master node of the business cluster to the LB node.

8.2.

Execute chmod +x /usr/bin/kubectl to grant execution permissions.

8.3.

 delay_loop 10

 lb_algo rr

 lb_kind NAT

 protocol TCP

 raw_check: |

 TCP_CHECK {

 connect_timeout 1

 connect_port 1936

 }

openssl x509 -in <(cat /etc/kubernetes/admin.conf | grep client-certificate

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

Execute the following commands to confirm certificate validity.

If the following results are returned, the certificate is valid.

9.

Upload the Keepalived image to the external LB node and run Keepalived using Docker.

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg01.conf get node

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg02.conf get node

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg03.conf get node

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg01.conf get node

Output

NAME STATUS ROLES AGE VERSION

192.168.129.100 Ready <none> 7d22h v1.25.6

192.168.134.167 Ready control-plane,master 7d22h v1.25.6

192.168.138.100 Ready <none> 7d22h v1.25.6

192.168.143.116 Ready control-plane,master 7d22h v1.25.6

192.168.143.192 Ready <none> 7d22h v1.25.6

192.168.143.79 Ready control-plane,master 7d22h v1.25.6

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg02.conf get node

Output

NAME STATUS ROLES AGE VERSION

192.168.129.100 Ready <none> 7d22h v1.25.6

192.168.134.167 Ready control-plane,master 7d22h v1.25.6

192.168.138.100 Ready <none> 7d22h v1.25.6

192.168.143.116 Ready control-plane,master 7d22h v1.25.6

192.168.143.192 Ready <none> 7d22h v1.25.6

192.168.143.79 Ready control-plane,master 7d22h v1.25.6

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg03.conf get node

Output

NAME STATUS ROLES AGE VERSION

192.168.129.100 Ready <none> 7d22h v1.25.6

192.168.134.167 Ready control-plane,master 7d22h v1.25.6

192.168.138.100 Ready <none> 7d22h v1.25.6

192.168.143.116 Ready control-plane,master 7d22h v1.25.6

192.168.143.192 Ready <none> 7d22h v1.25.6

192.168.143.79 Ready control-plane,master 7d22h v1.25.6

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

10.

Run the following command on the node accessing keepalived : sysctl -w

net.ipv4.conf.all.arp_accept=1 .

1.

Run the command ipvsadm -ln to view the IPVS rules, and you will see IPv4 and IPv6

rules applicable to the business cluster ALBs.

2.

Shut down the LB node where the VIP is located and test whether the VIP of both IPv4 and

IPv6 can successfully migrate to another node, typically within 20 seconds.

3.

Use the curl command on a non-LB node to test if communication with the VIP is

normal.

docker run -dt --restart=always --privileged --network=host -v /etc/keepali

Verification

IP Virtual Server version 1.2.1 (size=4096)

Prot LocalAddress:Port Scheduler Flags

 -> RemoteAddress:Port Forward Weight ActiveConn InActCon

TCP 192.168.128.118:80 rr

 -> 192.168.129.100:80 Masq 1 0 0

 -> 192.168.138.100:80 Masq 1 0 0

 -> 192.168.143.192:80 Masq 1 0 0

TCP [2004::192:168:128:118]:80 rr

 -> [2004::192:168:129:100]:80 Masq 1 0 0

 -> [2004::192:168:138:100]:80 Masq 1 0 0

 -> [2004::192:168:143:192]:80 Masq 1 0 0

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

curl 192.168.128.118

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed and

<p>For online documentation and support please refer to <a href="http://ngi

Commercial support is available at nginx.com</a

<p>Thank you for using nginx.</p>

</body>

</html>

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

curl -6 [2004::192:168:128:118]:80 -g

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed and

<p>For online documentation and support please refer to <a href="http://ngi

Commercial support is available atnginx.com

<p>Thank you for using nginx.</p>

</body>

</html>

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

The container network under Kube-OVN Underlay transport mode relies on physical network

support. Before deploying the Kube-OVN Underlay network, please collaborate with the

network administrator to plan and complete the relevant configurations of the physical network

in advance, ensuring network connectivity.

Usage Instructions

Terminology Explanation

Environment Requirements

Configuration Example

Switch Configuration

Check Network Connectivity

Platform Configuration

Kube-OVN Underlay requires deployment with multiple network interface cards (NICs), and

the Underlay subnet must exclusively use one NIC. No other types of traffic, such as SSH,

should be on that NIC; they should utilize other NICs.

Before use, ensure that the node server has at least a dual-NIC environment, and it is

recommended that the NIC speed is at least 10 Gbps or higher (e.g., 10 Gbps, 25 Gbps, 40

Gbps).

Preparing Kube-OVN Underlay Physical
Network

TOC

Usage Instructions

Menu ON THIS PAGE

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

NIC One: The NIC with the default route, configured with an IP address, interconnected

with the external switch interface, which is set to Access mode.

NIC Two: The NIC without the default route and not configured with an IP address,

interconnected with the external switch interface, which is set to Trunk mode. The Underlay

subnet exclusively uses NIC Two.

VLAN (Virtual Local Area Network) is a technology that logically divides a local area network

into multiple segments (or smaller LANs) to facilitate data exchange for virtual workgroups.

The emergence of VLAN technology allows administrators to logically segment different users

within the same physical local area network into distinct broadcast domains based on actual

application needs. Each VLAN comprises a group of computer workstations with similar

Terminology Explanation

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

requirements and possesses the same properties as a physically formed LAN. Since VLANs

are logically divided rather than physically, workstations within the same VLAN are not

confined to the same physical area; they can exist across different physical LAN segments.

The main advantages of VLANs include:

Port Segmentation. Even on the same switch, ports in different VLANs cannot

communicate with each other. A physical switch can function as multiple logical switches.

This is commonly used to control mutual access between different departments and sites in

a network.

Network Security. Different VLANs cannot communicate directly, eliminating the insecurity

of broadcast information. Broadcast and unicast traffic within a VLAN will not be forwarded

to other VLANs, helping control traffic, reduce equipment investments, simplify network

management, and improve network security.

Flexible Management. When changing a user's network affiliation, there's no need to

replace ports or cables; it merely requires a software configuration change.

In Underlay mode, Kube-OVN bridges a physical NIC to OVS and sends packets directly to

the external through that physical NIC. The L2/L3 forwarding capability relies on the

underlying network devices. The corresponding gateway, VLAN, and security policies need to

be pre-configured on the underlying network devices.

Network Configuration Requirements

Kube-OVN checks the gateway's connectivity via ICMP protocol when starting

containers; the underlying gateway must respond to ICMP requests.

For service access traffic, Pods will first send packets to the gateway, which must have

the ability to forward packets back to the local subnet.

When the switch or bridge has Hairpin functionality enabled, Hairpin must be disabled.

If using a VMware virtual machine environment, set

Net.ReversePathFwdCheckPromisc on the VMware host to 1, and Hairpin does not

need to be disabled.

Environment Requirements

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

The bridging NIC cannot be a Linux Bridge.

NIC bonding modes support Mode 0 (balance-rr), Mode 1 (active-backup), Mode 4

(802.3ad), Mode 6 (balance-alb), with a recommendation to use 0 or 1. Other bonding

modes have not been tested; please use them with caution.

IaaS (Virtualization) Layer Configuration Requirements

For OpenStack VM environments, the PortSecurity for the corresponding network port

needs to be disabled.

For VMware's vSwitch network, MAC Address Changes, Forged Transmits, and

Promiscuous Mode Operation must all be set to Accept.

For public clouds such as AWS, GCE, and Alibaba Cloud, Underlay mode networks

cannot be supported due to their lack of user-defined MAC address capabilities.

The nodes in this example are dual-NIC physical machines. NIC One is the NIC with the

default route; NIC Two is the NIC without the default route and is not configured with an IP

address, exclusively used for the Underlay subnet. NIC Two is interconnected with the

external switch.

On the switch side, the interface connected to NIC Two should be configured in Trunk

mode, allowing the corresponding VLANs to pass through.

Configure the gateway address of the cluster subnet on the corresponding vlan-interface

interface. If dual-stack is needed, the IPv6 gateway address can also be configured

simultaneously.

If the gateway is behind a firewall, access from node nodes to the cluster-cidr network must

be permitted.

No configuration is needed for server NICs.

Configuration Example

Switch Configuration

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

Configure the VLAN Interface:

Configure the interface connected to NIC Two:

Test if NIC Two can communicate with the gateway address:

In the left navigation bar, click Cluster Management > Cluster, then click Create Cluster.

For specific configuration procedures, please refer to the Create Cluster document, with

container network configuration shown in the image below.

Note: The Join subnet has no practical significance in the Underlay environment and primarily

serves to create an Overlay subnet later, providing the IP address range necessary for

#

interface Vlan-interface74

 ip address 192.168.74.254 255.255.255.0 //IPv4 gateway address

 ipv6 address 2074::192:168:74:254/64 //IPv6 gateway address

#

#

interface Ten-GigabitEthernet1/0/19

 port link mode bridge

 port link-type trunk // Configure the interface to Trunk mode

 undo port trunk permit vlan 1

 port trunk permit vlan 74 // Allow the corresponding VLAN to pass through

#

Check Network Connectivity

ip link add ens224.74 link ens224 type vlan id 74 // The NIC name is ens224,

ip link set ens224.74 up

ip addr add 192.168.74.200/24 dev ens224.74 // Select a test address within

ping 192.168.74.254 // If able to ping the gateway, it confirms that the phy

ip addr del 192.168.74.200/24 dev ens224.74 // Delete the test address after

ip link del ens224.74 // Delete the sub-interface after testing

Platform Configuration

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

http://localhost:4173/container_platform/index.html

communication between nodes and container groups.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

If a cluster has both Underlay and Overlay subnets, by default, Pods under the Overlay

subnet can access Pods' IPs in the Underlay subnet through a gateway using NAT. However,

Pods in the Underlay subnet need to configure node routing to access Pods in the Overlay

subnet.

To achieve automatic interconnection between Underlay and Overlay subnets, you can

manually modify the YAML file of the Underlay subnet. Once configured, Kube-OVN will also

use an additional Underlay IP to connect the Underlay subnet and the ovn-cluster logical

router, setting the corresponding routing rules to enable interconnection.

1.

Go to Platform Management.

2.

In the left navigation bar, click on Cluster Management > Resource Management.

3.

Enter Subnet to filter resource objects.

4.

Click on ⋮ > Update next to the Underlay subnet to be modified.

5.

Modify the YAML file, adding the field u2oInterconnection: true in the Spec .

6.

Click Update.

Automatic Interconnection of Underlay and
Overlay Subnets

Procedure

Menu ON THIS PAGE

Automatic Interconnection of Underlay and Overlay Subnets - Alauda Container Platform

Note: Existing compute components in the Underlay subnet need to be recreated for the

changes to take effect.

Automatic Interconnection of Underlay and Overlay Subnets - Alauda Container Platform

Overview

Procedure

Result

This document demonstrates how to use OAuth Proxy with ALB to implement external

authentication.

Follow these steps to use the feature:

1. Deploy kind

1. Deploy alb

Use OAuth Proxy with ALB

TOC

Overview

Procedure

kind create cluster --name alb-auth --image=kindest/node:v1.28.0

kind get kubeconfig --name=alb-auth > ~/.kube/config

Menu ON THIS PAGE

Use OAuth Proxy with ALB - Alauda Container Platform

1. Deploy test application

Create github oauth app

Note that $GITHUB_CLIENT_ID $GITHUB_CLIENT_SECRET will be obtained in this step,

which needs to be set in the environment variable

Configure dns

Here we use echo.com as the application domain, auth.alb.echo.com and alb.echo.com

Deploy oauth-proxy

oauth2-proxy needs to access github, which may require setting the HTTPS_PROXY

environment variable

helm repo add alb https://alauda.github.io/alb/;helm repo update;helm search

helm install alb-operator alb/alauda-alb2

alb_ip=$(docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddress}}{

echo $alb_ip

cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

 name: alb-auth

spec:

 address: "$alb_ip"

 type: "nginx"

 config:

 networkMode: host

 loadbalancerName: alb-demo

 projects:

 - ALL_ALL

 replicas: 1

EOF

↗

Use OAuth Proxy with ALB - Alauda Container Platform

https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app

COOKIE_SECRET=$(python -c 'import os,base64; print(base64.urlsafe_b64encode(o

OAUTH2_PROXY_IMAGE="quay.io/oauth2-proxy/oauth2-proxy:v7.7.1"

kind load docker-image $OAUTH2_PROXY_IMAGE --name alb-auth

cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: oauth2-proxy

 name: oauth2-proxy

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: oauth2-proxy

 template:

 metadata:

 labels:

 k8s-app: oauth2-proxy

 spec:

 containers:

 - args:

 - --http-address=0.0.0.0:4180

 - --redirect-url=http://auth.alb.echo.com/oauth2/callback

 - --provider=github

 - --whitelist-domain=.alb.echo.com

 - --email-domain=*

 - --upstream=file:///dev/null

 - --cookie-domain=.alb.echo.com

 - --cookie-secure=false

 - --reverse-proxy=true

 env:

 - name: OAUTH2_PROXY_CLIENT_ID

 value: $GITHUB_CLIENT_ID

 - name: OAUTH2_PROXY_CLIENT_SECRET

 value: $GITHUB_CLIENT_SECRET

 - name: OAUTH2_PROXY_COOKIE_SECRET

 value: $COOKIE_SECRET

 image: $OAUTH2_PROXY_IMAGE

 imagePullPolicy: IfNotPresent

 name: oauth2-proxy

 ports:

 - containerPort: 4180

h

Use OAuth Proxy with ALB - Alauda Container Platform

1. Configure ingress

We will configure two ingresses, auth.alb.echo.com and alb.echo.com

 name: http

 protocol: TCP

 - containerPort: 44180

 name: metrics

 protocol: TCP

apiVersion: v1

kind: Service

metadata:

 labels:

 k8s-app: oauth2-proxy

 name: oauth2-proxy

spec:

 ports:

 - appProtocol: http

 name: http

 port: 80

 protocol: TCP

 targetPort: http

 - appProtocol: http

 name: metrics

 port: 44180

 protocol: TCP

 targetPort: metrics

 selector:

 k8s-app: oauth2-proxy

EOF

Use OAuth Proxy with ALB - Alauda Container Platform

cat <<EOF | kubectl apply -f -

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 nginx.ingress.kubernetes.io/auth-url: "https://auth.alb.echo.com/oauth2/a

 nginx.ingress.kubernetes.io/auth-signin: "https://auth.alb.echo.com/oauth

 name: echo-resty

spec:

 ingressClassName: alb-auth

 rules:

 - host: alb.echo.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: echo-resty

 port:

 number: 80

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: oauth2-proxy

spec:

 ingressClassName: alb-auth

 rules:

 - host: auth.alb.echo.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: oauth2-proxy

 port:

 number: 80

EOF

Use OAuth Proxy with ALB - Alauda Container Platform

After the operation is complete, an alb, oauth-proxy, and test application will be deployed.

After accessing alb.echo.com, you will be redirected to the github authentication page, and

after verification, you can see the output of the application

Result

Use OAuth Proxy with ALB - Alauda Container Platform

GatewayAPI is a new API for Kubernetes that provides a more flexible and extensible way to

manage ingress traffic. It allows you to define routing rules, traffic policies, and other

configurations in a more declarative manner.

This document provides a step-by-step guide on how to create a GatewayAPI gateway in the

Alauda Container Platform Kubernetes cluster.

Deploy MetalLB

Set Pod Security Policies to Privileged Mode

The GatewayAPI gateway requires MetalLB to allocate an IP address. Please refer to Create

MetalLB for instructions on how to deploy MetalLB.

If the namespace where you want to deploy the gateway is created via the UI, you need to

update its Pod Security Policy (PSP) to privileged mode.

Creating GatewayAPI Gateway

Requirements

TOC

Deploy MetalLB

Set Pod Security Policies to Privileged Mode

Menu ON THIS PAGE

Creating GatewayAPI Gateway - Alauda Container Platform

1.

Navigate to Platform Management.

2.

In the left sidebar, click on Network Management > Inbound Gateways.

3.

Click on Create Inbound Gateways.

4.

Follow the instructions below to complete the network configuration:

Parameter Description

Name The name of the gateway.

GatewayClass

The embedded exclusive-gateway is provided by Alauda

Container Platform and backed by ALB. It will create a container-

network-mode ALB to implement the GatewayAPI gateway

specification.

Specification Set the specifications appropriately based on your business

needs. You can also refer to How to properly allocate CPU and

Procedure

Creating GatewayAPI Gateway - Alauda Container Platform

Parameter Description

memory resources for guidance.

5.

Click Create. The creation process may take some time; please be patient.

Creating GatewayAPI Gateway - Alauda Container Platform

A Load Balancer is a service that distributes traffic to container instances. By utilizing load

balancing functionality, it automatically allocates access traffic for computing components and

forwards it to the container instances of those components. Load balancing can improve the

fault tolerance of computing components, scale the external service capability of those

components, and enhance the availability of applications.

Platform administrators can create single-point or high-availability load balancers for any

cluster on the platform, and uniformly manage and allocate load balancer resources. For

example, load balancing can be assigned to projects, ensuring that only users with the

appropriate project permissions can utilize the load balancing.

Please refer to the table below for explanations of related concepts in this section.

Parameter Description

Load

Balancer

A software or hardware device that distributes network requests to

available nodes in a cluster. The load balancer used in the platform is a

Layer 7 software load balancer.

VIP

Virtual IP address (Virtual IP Address) is an IP address that does not

correspond to a specific computer or a specific network interface card.

When the load balancer is of high-availability type, the access address

should be the VIP.

Prerequisites

Example ALB2 custom resource (CR)

Creating a Load Balancer by using the web console.

Creating a Load Balancer by using the CLI.

Configure a Load Balancer

TOC

Menu ON THIS PAGE

Configure a Load Balancer - Alauda Container Platform

Update Load Balancer by using the web console

Delete Load Balancer by using the web console

Delete Load Balancer by using the CLI

Configure Listener Ports (Frontend)

Prerequisites

Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by using the web console

Creating Listener Ports (Frontend) by using the CLI

Subsequent Actions

Related Operations

Example Rule custom resource (CR)

dslx

Creating Rule by using web console

Creating Rule by using the CLI

Logs and Monitoring

Viewing Logs

Monitoring Metrics

Additional resources

The high availability of the Load Balancer requires a VIP. Please refer to Configure VIP.

Prerequisites

Example ALB2 custom resource (CR)

Configure a Load Balancer - Alauda Container Platform

1 When enableLbSvc is true, it will create an internal LoadBalancer type service for the

load balancer's access address. lbSvcAnnotations Configuration Reference LoadBalancer

Type Service Annotations.

2 Check the Network Mode configuration below.

3 Check the Resource Allocation Method below.

4 Check the Assigned Project below.

5 Check the Specification below.

test-alb.yaml

apiVersion: crd.alauda.io/v2beta1

kind: ALB2

metadata:

 name: alb-demo

 namespace: cpaas-system

 annotations:

 cpaas.io/display-name: ""

spec:

 address: 192.168.66.215

 config:

 vip: 1

 enableLbSvc: false

 lbSvcAnnotations: {}

 networkMode: host 2

 enablePortProject: false 3

 nodeSelector:

 cpu-model.node.kubevirt.io/Nehalem: "true"

 projects: 4

 - ALL_ALL

 replicas: 1

 resources: 5

 limits:

 cpu: 200m

 memory: 256Mi

 requests:

 cpu: 200m

 memory: 256Mi

 type: nginx

Configure a Load Balancer - Alauda Container Platform

1.

Navigate to Platform Management.

2.

In the left sidebar, click on Network Management > Load Balancer.

3.

Click on Create Load Balancer.

4.

Follow the instructions below to complete the network configuration.

Parameter Description

Network Mode

Host Network Mode: Only one load balancer replica is

allowed to be deployed on a single node, with multiple

services sharing one ALB, resulting in superior network

performance.

Container Network Mode: Multiple load balancer replicas can

be deployed on a single node to meet the requirements of

separate ALBs for each service, with slightly lower network

performance.

Service and

Annotations

(Alpha)

Service: When enabled, it will create an internal LoadBalancer

type service for the load balancer's access address. Before

use, ensure that the current cluster supports LoadBalancer

type service. You can implement the platform's built-in

LoadBalancer type service; when disabled, you need to

configure an External Address Pool for the load balancer.

Annotations: Used to declare the configuration or capabilities

of Internal LoadBalancer type routing; for specifics, please

Creating a Load Balancer by using the web console.

Configure a Load Balancer - Alauda Container Platform

Parameter Description

refer to Annotations for Internal LoadBalancer Type Routing.

Access

Address

The access address for load balancing, i.e., the service address

of the load balancer instance. After the load balancer is

successfully created, it can be accessed via this address.

In host network mode, please fill out according to actual

conditions; it can be a domain name or an IP address (internal

IP, external IP, VIP).

In container network mode, it will be acquired automatically.

5.

Follow the instructions below to complete the resource configuration.

Parameter Description

Specification

Please set the specifications reasonably according to business

needs. You can also refer to How to properly allocate CPU and

memory resources for reference.

Deployment

Type

Single Point: The container group of the load balancer is

deployed on a single node, which may result in the risk of

load balancer unavailability if a machine failure occurs.

High Availability: Multiple container groups of the load

balancer are deployed across the corresponding number of

nodes, usually 3. This satisfies the load balancing needs of

large business volumes while providing emergency disaster

recovery capabilities.

Replicas

The number of replicas is the number of container groups for the

load balancer.

Tip: To ensure high availability of the load balancer, it is

recommended that the number of replicas be no less than 3.

Configure a Load Balancer - Alauda Container Platform

Parameter Description

Node Labels

Filter nodes using labels to deploy the load balancer.

Tip:

It is recommended that the number of nodes meeting the

requirements be greater than the number of load balancer

replicas.

A label with the same key can only select one (if multiple are

selected, no matching hosts will be available).

Resource

Allocation

Method

Instance: Any port within the range of 1-65535 that the load

balancer instance can listen on can be provided for project

use.

Port (Alpha): Only ports within the specified range can be

allocated for project use. This method allows for finer-grained

resource control when port resources are limited.

Assigned

Project
When Resource Allocation Method is set to Instance, the

load balancer can be allocated to all projects associated with

the current cluster or to specified projects. In allocated

projects, all Pods in all namespaces can receive requests

distributed by the load balancer.

All Projects: Allocates the load balancer for use by all

projects associated with the current cluster.

Specified Projects (Alpha): Click the dropdown box

under Specified Projects and click the checkbox on the

left of the project name to select one or more projects,

allocating the load balancer for use by those specified

projects.

Tip: You can filter projects by entering project names in the

dropdown box.

No Allocation (Alpha): Temporarily does not allocate any

project. After the load balancer is created, you can use the

Configure a Load Balancer - Alauda Container Platform

Parameter Description

Update Project operation to update the allocation project

parameters for the created load balancer.

When Resource Allocation Method is set to Port, this item

does not need to be configured. Please manually allocate port

information after creating the load balancer.

6.

Click Create. The creation process will take some time; please be patient.

NOTE

Updating the load balancer will cause a service interruption for 3 to 5 minutes. Please choose an

appropriate time for this operation!

1.

Enter Platform Management.

2.

In the left navigation bar, click Network Management > Load Balancer.

3.

Creating a Load Balancer by using the CLI.

kubectl apply -f test-alb.yaml -n cpaas-system

Update Load Balancer by using the web console

Configure a Load Balancer - Alauda Container Platform

Click ⋮ > Update.

4.

Update the network and resource configuration as needed.

Please set specifications reasonably according to business needs. You can also refer to

the relevant How to properly allocate CPU and memory resources for guidance.

Internal routing only supports updating from Disabled state to Enabled state.

5.

Click Update.

NOTE

After deleting the load balancer, the associated ports and rules will also be deleted and cannot be

restored.

1.

Enter Platform Management.

2.

In the left navigation bar, click Network Management > Load Balancer.

3.

Click ⋮ > Delete, and confirm.

Delete Load Balancer by using the web console

Delete Load Balancer by using the CLI

Configure a Load Balancer - Alauda Container Platform

The load balancer supports receiving client connection requests through listener ports and

corresponding protocols, including HTTPS, HTTP, gRPC, TCP, and UDP.

If you need to add an HTTPS listener port, you should also contact the administrator to assign

a TLS certificate to the current project for encryption.

kubectl delete alb2 test-alb -n cpaas-system

Configure Listener Ports (Frontend)

Prerequisites

Example Frontend custom resource (CR)

Configure a Load Balancer - Alauda Container Platform

1 Required, indicate the ALB instance to which this Frontend belongs to.

2 Format as alb_name-port .

3 Format as $secret_ns/$secret_name .

4 Protocol of this Frontend itself.

http|https|grpc|grpcs for l7 proxy.

tcp|udp for l4 proxy.

5 For l4 proxy, serviceGroup is required. For l7 proxy, serviceGroup is. optional. When

a request arrives, ALB will first try to match it against rules associated with this Frontend .

Only if the request doesn't match any rule, ALB will then forward it to the default

serviceGroup specified in the Frontend configuration.

6 weight configuration applicable to Round Robin and Weighted Round Robin

scheduling algorithms.

NOTE

alb-frontend-demo.yaml

apiVersion: crd.alauda.io/v1

kind: Frontend

metadata:

 labels:

 alb2.cpaas.io/name: alb-demo 1

 name: alb-demo-00080 2

 namespace: cpaas-system

spec:

 backendProtocol: "http"

 certificate_name: "" 3

 port: 80

 protocol: http 4

 serviceGroup: 5

 services:

 - name: hello-world

 namespace: default

 port: 80

 weight: 100 6

Configure a Load Balancer - Alauda Container Platform

ALB listens to ingress and automatically creates a Frontend or Rule. source field is defined as

follows:

3.1. spec.source.type currently only supports ingress .

3.2. spec.source.name is ingress name.

3.3. spec.source.namespace is ingress namespace.

1.

Go to Container Platform.

2.

In the left navigation bar, click Network > Load Balancing.

3.

Click the name of the load balancer to enter the details page.

4.

Click Add Listener Port.

5.

Refer to the following instructions to configure the relevant parameters.

Parameter Description

Protocol Supported protocols include HTTPS, HTTP, gRPC, TCP, and UDP.

When selecting HTTPS, a certificate must be added; adding a

certificate is optional for the gRPC protocol.

Note:

Creating Listener Ports (Frontend) by using the web
console

Configure a Load Balancer - Alauda Container Platform

Parameter Description

When selecting the gRPC protocol, the backend protocol

defaults to gRPC, which does not support session persistence.

If a certificate is set for the gRPC protocol, the load balancer

will unload the gRPC certificate and forward the unencrypted

gRPC traffic to the backend service.

If using a Google GKE cluster, a load balancer of the same

container network type cannot have both TCP and UDP

listener protocols simultaneously.

Internal

Routing

Group

- When the load balancing algorithm is set to Round Robin (RR),

traffic will be distributed to the internal routing ports in the order of

the internal routing group.

- When the load balancing algorithm is set to Weighted Round

Robin (WRR), internal routes with higher weight values have a

higher probability of being selected; traffic will be distributed to the

internal routing ports based on the configured weight.

Tip: The probability calculation is the ratio of the current weight

value to the sum of all weight values.

Session

Persistence

Always forward specific requests to the backend service

corresponding to the aforementioned internal routing group.

Specific requests include (choose one):

Source Address Hash: All requests from the same IP address.

Note: In public cloud environments, the source address often

changes, which may cause requests from the same client to

have different source IP addresses at different times, leading to

the source address hash technique not achieving the expected

effect.

Cookie key: Requests that carry a specified cookie.

Header name: Requests that carry a specified header.

Configure a Load Balancer - Alauda Container Platform

Parameter Description

Backend

Protocol

The protocol used for forwarding traffic to the backend services.

For example, if forwarding to backend Kubernetes or dex services,

the HTTPS protocol must be selected.

6.

Click OK.

For traffic from HTTP, gRPC, and HTTPS ports, in addition to the default internal routing

group, you can set more varied back-end service matching rules. The load balancer will

initially match the corresponding backend service according to the set rules; if the rule match

fails, it will then match the backend services corresponding to the aforementioned internal

routing group.

You can click the ⋮ icon on the right side of the list page or click Actions in the upper right

corner of the details page to update the default route or delete the listener port as needed.

NOTE

Creating Listener Ports (Frontend) by using the CLI

kubectl apply -f alb-frontend-demo.yaml -n cpaas-system

Subsequent Actions

Related Operations

Configure a Load Balancer - Alauda Container Platform

If the resource allocation method of the load balancer is Port, only administrators can delete the

related listener ports in the Platform Management view.

Add forwarding rules for the listener ports of HTTPS, HTTP, and gRPC protocols. The load

balancer will match the backend services based on these rules.

NOTE

Forwarding rules cannot be added for TCP and UDP protocols.

Configure Rules

Example Rule custom resource (CR)

Configure a Load Balancer - Alauda Container Platform

alb-rule-demo.yaml

apiVersion: crd.alauda.io/v1

kind: Rule

metadata:

 labels:

 alb2.cpaas.io/frontend: alb-demo-00080 1

 alb2.cpaas.io/name: alb-demo 2

 name: alb-demo-00080-test

 namespace: cpaas-system

spec:

 backendProtocol: "" 3

 certificate_name: "" 4

 dslx:

 - type: METHOD

 values:

 - - EQ

 - POST

 - type: URL

 values:

 - - STARTS_WITH

 - /app-a

 - - STARTS_WITH

 - /app-b

 - type: PARAM

 key: group

 values:

 - - EQ

 - vip

 - type: HOST

 values:

 - - ENDS_WITH

 - .app.com

 - type: HEADER

 key: LOCATION

 values:

 - - IN

 - east-1

 - east-2

 - type: COOKIE

 key: uid

 values:

 - - EXIST

 - type: SRC_IP

l

Configure a Load Balancer - Alauda Container Platform

1 Required, indicate the Frontend to which this rule belongs.

2 Required, indicate the ALB to which this rule belongs.

3 As same as Frontend .

4 As same as Frontend .

5 The lower the number, the higher the priority.

6 As same as Frontend .

dslx is a domain specific language, it is used to describe the matching criteria.

For example, below rule matches a request that satisfies all the following criteria:

url starts with /app-a or /app-b

method is post

url param's group is vip

host is *.app.com

header's location is east-1 or east-2

has a cookie name is uid

source IPs come from 1.1.1.1-1.1.1.100

 values:

 - - RANGE

 - "1.1.1.1"

 - "1.1.1.100"

 enableCORS: false

 priority: 4 5

 serviceGroup: 6

 services:

 - name: hello-world

 namespace: default

 port: 80

 weight: 100

dslx

Configure a Load Balancer - Alauda Container Platform

1.

dslx:

 - type: METHOD

 values:

 - - EQ

 - POST

 - type: URL

 values:

 - - STARTS_WITH

 - /app-a

 - - STARTS_WITH

 - /app-b

 - type: PARAM

 key: group

 values:

 - - EQ

 - vip

 - type: HOST

 values:

 - - ENDS_WITH

 - .app.com

 - type: HEADER

 key: LOCATION

 values:

 - - IN

 - east-1

 - east-2

 - type: COOKIE

 key: uid

 values:

 - - EXIST

 - type: SRC_IP

 values:

 - - RANGE

 - "1.1.1.1"

 - "1.1.1.100"

Creating Rule by using web console

Configure a Load Balancer - Alauda Container Platform

Go to Container Platform.

2.

Click on Network > Load Balancing in the left navigation bar.

3.

Click on the name of the load balancer.

4.

Click on the name of the listener port.

5.

Click Add Rule.

6.

Refer to the following descriptions to configure the relevant parameters.

Parameter Description

Internal Route

Group

- When the load balancing algorithm selects Round Robin (RR),

the access traffic will be distributed to the ports of the internal

routes in the order of the internal route group.

- When the load balancing algorithm selects Weighted Round

Robin (WRR), the higher the weight value of the internal route,

the higher the probability it will be polled, and the access traffic

will be distributed to the ports of the internal routes according to

the probability calculated based on the configured weight.

Tip: The calculation method for probability is the ratio of the

current weight value to the sum of all weight values.

Rule Refers to the criteria for the load balancer to match backend

services, including rule indicators and their values. The

relationship between different rule indicators is 'and'.

Domain Name: Supports adding wildcard domains and exact

domain names. In cases of equal priority for the same rule, if

both wildcard and exact domain name rule configurations exist,

the exact domain name forwarding rule will take effect first.

Configure a Load Balancer - Alauda Container Platform

Parameter Description

URL: RegEx corresponds to URL regular expressions starting

with / ; StartsWith corresponds to URL prefixes starting with

/ .

IP: Equal corresponds to a specific IP address; Range

corresponds to an IP address range.

Header: In addition to entering the key of the header, matching

rules must also be set. Equal corresponds to the specific value

of the header; Range corresponds to the range of the header

value; RegEx corresponds to the header's regular expression.

Cookie: In addition to entering the key of the cookie, matching

rules must also be set. Equal corresponds to the specific value

of the cookie.

URL Param: In matching rules, Equal corresponds to a specific

URL parameter; Range corresponds to the URL parameter

range.

Service Name: The Service Name refers to the name of the

service that uses the gRPC protocol. When using the gRPC

protocol, this item can be configured, enabling traffic to be

forwarded to the corresponding service based on the provided

Service Name, for example: /helloworld.Greeter .

Session

Persistence

Always forwards specific access requests to the backend services

corresponding to the aforementioned internal route group.

Specific access requests refer to (choose one):

Source Address Hash: All access requests originating from the

same IP address.

Cookie Key: Access requests carrying the specified cookie.

Header Name: Access requests carrying the specified header.

URL Rewrite Rewrites the accessed address to the address of the platform's

backend service. This feature requires the StartsWith rule

indicator of the URL to be configured, and the rewrite address

Configure a Load Balancer - Alauda Container Platform

Parameter Description

(rewrite-target) must start with /.

For example: After setting the domain name to bar.example.com

and the starting path of the URL to / , enabling the URL Rewrite

functionality and setting the rewrite address to /test. The access to

bar.example.com will rewrite the URL to bar.example.com/test.

Backend

Protocol

The protocol used to forward access traffic to the backend

service. For example: If forwarding to the backend's Kubernetes

or dex service, choose HTTPS protocol.

Redirection

Forwards access traffic to a new redirected address rather than

the backend services corresponding to the internal route group.

For example: When a page at the original access address is

upgraded or updated, to avoid users receiving a 404 or 503 error

page, the traffic can be redirected to the new address by

configuration.

HTTP Status Code: The status code presented to the user by

the browser before redirecting to the new address.

Redirect Address: When entering a relative address (for

example, /index.html), the purpose of the forwarded traffic will

be load balancer address/index.html; when entering an

absolute address (for example, https://www.example.com),

the purpose of the forwarded traffic will be the entered address.

Rule Priority

The priority of rule matching: there are 10 levels from 1 to 10, with

1 being the highest priority, and the default priority is 5.

When two or more rules are satisfied at the same time, the higher

priority rule is selected and applied; if the priority is the same, the

system uses the default matching rule.

Cross-Origin

Resource

Sharing

(CORS)

CORS (Cross-origin resource sharing) is a mechanism that

utilizes additional HTTP headers to instruct the browser that a

web application running on one origin (domain) is permitted to

access specified resources from a different origin server. When a

↗

Configure a Load Balancer - Alauda Container Platform

https://www.example.com/
https://www.example.com/
https://www.example.com/

Parameter Description

resource requests another resource that is from a server with a

different domain, protocol, or port than its own, it initiates a cross-

origin HTTP request.

Allowed

Origins

Used to specify the origins that are allowed to access.

*: Allows requests from any origin.

Domain Name: Allows requests from the current domain.

Allowed

Headers

Used to specify the HTTP request headers allowed in CORS

(Cross-Origin Resource Sharing) to avoid unnecessary preflight

requests and improve request efficiency. Example entries are as

follows:

Note: Other commonly used or custom request headers will not

be listed one by one here; please fill in according to actual

conditions.

Origin: Indicates the origin of the request, i.e., the domain that

sends the request.

Authorization: Used to specify the authorization information

for the request, usually for identification, such as Basic

Authentication or Token.

Content-Type: Used to specify the content type of the

request/response, such as application/json, application/x-www-

form-urlencoded, etc.

Accept: Used to specify the content types that the client can

accept, typically used when the client hopes to receive a

specific type of response.

7.

Click Add.

Configure a Load Balancer - Alauda Container Platform

By combining visualized logs and monitoring data, issues or failures with the load balancer

can be quickly identified and resolved.

1.

Go to Platform Management.

2.

In the left navigation bar, click on Network Management > Load Balancer.

3.

Click on Load Balancer Name.

4.

In the Logs tab, view the logs of the load balancer's runtime from the container's

perspective.

Creating Rule by using the CLI

kubectl apply -f alb-rule-demo.yaml -n cpaas-system

Logs and Monitoring

Viewing Logs

Monitoring Metrics

Configure a Load Balancer - Alauda Container Platform

NOTE

The cluster where the load balancer is located must deploy monitoring services.

1.

Go to Platform Management.

2.

In the left navigation bar, click on Network Management > Load Balancer.

3.

Click on Load Balancer Name.

4.

In the Monitoring tab, view the metric trend information of the load balancer from the

node's perspective.

Usage Rate: The real-time usage of CPU and memory by the load balancer on the

current node.

Throughput: The overall incoming and outgoing traffic of the load balancer instance.

ALB Monitoring

Additional resources

Configure a Load Balancer - Alauda Container Platform

For the platform's proposed specifications for small, medium, large, and custom production

environments, as well as the resource allocation methods for instances and ports, the

following suggestions can be referenced for deployment.

For smaller business scales, such as having no more than 5 nodes in the cluster and only

used for running standard applications, a single load balancer is sufficient. It is recommended

to use it in a high availability mode with at least 2 replicas to ensure stability in the

environment.

You can isolate the load balancer using port isolation, allowing multiple projects to share it.

The peak QPS measured in a lab environment for this specification is approximately 300

requests per second.

How to properly allocate CPU and memory
resources

Small Production Environment

Menu ON THIS PAGE

How to properly allocate CPU and memory resources - Alauda Container Platform

When the business volume reaches a certain scale, such as having no more than 30 nodes in

the cluster and needing to handle high-concurrency business alongside running standard

applications, a single load balancer will still be adequate. It is advisable to employ a high

availability mode with at least 3 replicas to maintain stability in the environment.

You can utilize either port isolation or instance allocation methods to share the load balancer

among multiple projects. Of course, you can also create new load balancers for dedicated use

by core projects.

The peak QPS measured in a lab environment for this specification is around 10,000 requests

per second.

For larger business volumes, such as having more than 30 nodes in the cluster and needing

to handle high-concurrency business as well as long-lived data connections, it is

recommended to use multiple load balancers, each in a high availability type with at least 3

replicas to ensure stability in the environment.

You can isolate the load balancer using either port isolation or instance allocation methods

for multiple projects to share it. You may also create new load balancers for exclusive use by

Medium Production Environment

Large Production Environment

How to properly allocate CPU and memory resources - Alauda Container Platform

core projects.

The peak QPS measured in a lab environment for this specification is approximately 20,000

requests per second.

Scenario Deployment Recommendations

Function

Testing
It is advisable to deploy a single instance of the load balancer.

Testing

Environment

If the testing environment meets the definitions of small or medium

as stated above, using a single point load balancer is sufficient.

The load balancer instance can be shared among multiple

projects.

Core

Applications

It is recommended to use specific load balancers exclusively for

core applications.

Transferring

Large Scale

Data

Due to minimal memory consumption caused by the load balancer

itself, it is sufficient to reserve 2Gi of memory even for the large

specification. However, if the business requires transferring large-

Special Scenario Deployment Recommendations

How to properly allocate CPU and memory resources - Alauda Container Platform

Scenario Deployment Recommendations

scale data, which will lead to substantial memory consumption, the

memory allocation for the load balancer should be increased

accordingly.

It is recommended to gradually expand the memory of the load

balancer in custom specification scenarios, closely monitoring

memory usage to ultimately arrive at an acceptable memory size for

reasonable usage rates.

Usage Mode Advantages Disadvantages

(Recommended)

Allocate the load

balancer as an

instance resource to a

single project

Management is

relatively simple.

Each project has its

own load balancer,

ensuring rule

isolation and

resource separation,

with no interference.

In host network mode, the

cluster must possess a

significant number of nodes

available for the load balancer,

resulting in high resource

consumption requirements.

Allocate the load

balancer as an

instance resource to

multiple projects

Management is

relatively

straightforward.

Since all assigned projects

hold full permissions for the

load balancer instance, when

one project configures the

ports and rules of the load

balancer, the following

situations may arise:

The rules configured by that

project may affect other

projects.

Load Balancer Usage Mode Selection

How to properly allocate CPU and memory resources - Alauda Container Platform

Usage Mode Advantages Disadvantages

Misoperations during load

balancer configuration

might alter other projects'

settings.

Traffic requests from a

particular business may

impact the overall

availability of the load

balancer instance.

Dynamically allocate

load balancer

resources by port, with

different projects

using different ports

The rules between

projects isolate them,

ensuring no

interference.

Management complexity

increases. Platform

administrators must actively

plan and allocate ports for

projects and configure

external service mappings.

The maturity of port-based

allocation is lower.

Currently, it is used by

fewer clients and requires

further refining of features.

Resource conflicts. All

services using the same

load balancer may face

scenarios where a single

service negatively impacts

the entire load balancer.

How to properly allocate CPU and memory resources - Alauda Container Platform

By configuring an external load balancer for the cluster, we can forward IPv6 traffic to the

internal IPv4 addresses within the cluster. This allows us to introduce IPv6 capabilities over

the existing IPv4 network, providing greater flexibility and scalability to our system

architecture, and better addressing diverse network demands.

1.

Configure the IPv6 address for the node where the load balancer is located.

2.

Ensure that the external load balancer has an IPv6 address, and make sure that traffic

accessing the load balancer's IPv6 address can be forwarded to the IPv6 address of the

Forwarding IPv6 Traffic to IPv4 Addresses
within the Cluster

Configuration Method

Menu ON THIS PAGE

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster - Alauda Container Platform

node where the load balancer resides.

Once the above configuration is completed, the IPv4 services mounted on the load balancer

can provide external IPv6 access capabilities through the load balancer.

After the configuration, accessing the IPv6 address of the external load balancer should allow

normal access to the application.

Result Verification

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster - Alauda Container Platform

Calico supports WireGuard encryption for both IPv4 and IPv6 traffic, which can be

independently enabled via parameters in the FelixConfiguration resource.

Installation Status

Default Installation

Not Installed by Default

Terminology

Notes

Prerequisites

Procedure

Result Verification

IPv4 Traffic Verification

Operating System Kernel Version

Linux 5.6 and above are installed by default

Ubuntu 20.04 5.4.0-135-generic

Calico Network Supports WireGuard
Encryption

TOC

Installation Status

Default Installation

Menu ON THIS PAGE

Calico Network Supports WireGuard Encryption - Alauda Container Platform

Operating System Kernel Version

Kylin Linux Advanced Server V10 - SP3 4.19.90-52.22.v2207.ky10.x86_64

Operating System Kernel Version

openEuler
4.18.0-

147.5.2.13.h996.eulerosv2r10.x86_64

CentOS 7 3.10.0-1160.el7.x86_64

Redhat 8.7 4.18.0-425.3.1.el8.x86_64

Kylin Linux Advanced Server V10 -

SP2
4.19.90-24.4.v2101.ky10.x86_64

Kylin Linux Advanced Server V10 -

SP1
4.19.90-23.8.v2101.ky10.x86_64

Kylin Linux Advanced Server V10 4.19.90-11.ky10.x86_64

Term Explanation

wireguardEnabled
Enable encryption for IPv4 traffic over the IPv4 Underlay

network.

wireguardEnabledV6
Enable encryption for IPv6 traffic over the IPv6 Underlay

network.

Not Installed by Default

Terminology

Notes

Calico Network Supports WireGuard Encryption - Alauda Container Platform

1.

When using the Calico network plugin, ensure that the natOutgoing parameter is set to

true to support WireGuard encryption. By default, this parameter is correctly configured

for the Calico subnet when creating the cluster, requiring no additional configuration.

2.

WireGuard supports encryption for both IPv4 and IPv6 traffic; if you need to encrypt both

types of traffic, configuration must be done separately. For detailed parameter

configuration, refer to the Felix Configuration Documentation , configuring both

wireguardEnabled and wireguardEnabledV6 parameters.

3.

If WireGuard is not installed by default, refer to the WireGuard Installation Guide for

manual installation, although there may be cases where manual installation of the

WireGuard module fails.

4.

Traffic between containers across nodes will be encrypted, including network traffic from

one host to another; however, communication between Pods on the same node and traffic

between a Pod and its host node will not be encrypted.

WireGuard must be installed on all nodes in the cluster beforehand. For details, refer to the

WireGuard Installation Documentation . Nodes without WireGuard installed do not support

encryption.

1.

↗

↗

Prerequisites

↗

Procedure

Calico Network Supports WireGuard Encryption - Alauda Container Platform

https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/

Enable or disable IPv4 and IPv6 encryption.

Note: The following commands must be executed in the CLI tool on the Master node where

the node resides.

Enable IPv4 encryption only

Enable IPv6 encryption only

Enable both IPv4 and IPv6 encryption

Disable both IPv4 and IPv6 encryption

Method 1: Execute the command in the CLI tool to disable encryption.

Method 2: Modify the felixconfiguration configuration file to disable encryption.

1.1.

Execute the following command to open the felixconfiguration configuration file.

1.2.

Set wireguardEnabled and wireguardEnabledV6 parameters to false to

disable WireGuard encryption.

kubectl patch felixconfiguration default --type='merge' -p '{"spec":{"wir

kubectl patch felixconfiguration default --type='merge' -p '{"spec":{"wir

kubectl patch felixconfiguration default --type='merge' -p '{"spec":{"wir

kubectl patch felixconfiguration default --type='merge' -p '{"spec":{"

kubectl get felixconfiguration -o yaml default

Calico Network Supports WireGuard Encryption - Alauda Container Platform

2.

After completing the Calico WireGuard encryption configuration, execute the following

command to confirm the WireGuard encryption status. If both IPv4 and IPv6 encryption are

enabled, the presence of wireguardPublicKey or wireguardPublicKeyV6 under the

Status field indicates successful activation; if both IPv4 and IPv6 encryption are disabled,

these fields will not contain wireguardPublicKey or wireguardPublicKeyV6 , indicating

successful deactivation.

Output:

apiVersion: crd.projectcalico.org/v1

kind: FelixConfiguration

metadata:

 annotations:

 projectcalico.org/metadata: '{"uid":"f5facabd-8304-46d6-81c1-f18

 generation: 2

 name: default

 resourceVersion: "890216"

spec:

 bpfLogLevel: ""

 floatingIPs: Disabled

 logSeverityScreen: Info

 reportingInterval: 0s

 wireguardEnabled: false # Change to true to enable IPv4 encryption

 wireguardEnabledV6: false # Change to true to enable IPv6 encrypti

calicoctl get node <NODE-NAME> -o yaml # Replace <NODE-NAME> with the name

Status:

 wireguardPublicKey: L/MUP9+Yxx/xxxxxxxxxxxx/xxxxxxxxxx =

Result Verification

Calico Network Supports WireGuard Encryption - Alauda Container Platform

This document uses IPv4 traffic verification as an example; IPv6 traffic verification is similar to

IPv4 and will not be repeated here.

1.

After configuring WireGuard encryption, check the routing information, where traffic

between nodes preferentially uses the wireguard.cali interface for message forwarding.

IPv4 Traffic Verification

Calico Network Supports WireGuard Encryption - Alauda Container Platform

2.

root@test:~# ip rule # View current routing rules

 0: from all lookup local

 99: not from all fwmark 0x100000/0x100000 lookup 1 # For all packe

 32766: from all lookup main

 32767 : from all lookup default

root@test:~# ip route show table 1 # Display routing entries for table 1

 10.3.138.0 dev wireguard.cali scope link

 10.3.138.0/26 dev wireguard.cali scope link

 throw 10.3.231.192

 10.3.236.128 dev wireguard.cali scope link # Traffic to reach IP ad

 10.3.236.128/26 dev wireguard.cali scope link

 throw 10.10.10.124/30

 10.10.10.200/30 dev wireguard.cali scope link

 throw 10.10.20.124/30

 10.10.20.200/30 dev wireguard.cali scope link

 throw

 10.13.138.0 dev wireguard.cali scope link

 10.13.138.0/26 dev wireguard.cali scope link

 throw 10.13.231.192/26

 10.13.236.128 dev wireguard.cali scope link

 10.13.236.128/26 dev wireguard.cali scope link

root@test:~# ip r get 10.10.10.202 # Routing path from the current node

 10.10.10.202 dev wireguard.cali table 1 src 10.10.10.127 uid 0 cache

root@test:~# ip route # Show the main routing table

 default via 192.168.128.1 dev eth0 proto static

 10.3.138.0/26 via 10.3.138.0 dev vxlan.

 blackhole 10.3.231.193

 10.3.231.194

 10.3.231.195

 10.3.231.196

 10.3.231.197

 3.231.192/26 proto 80

 dev cali8dcd31cIdOO scope link

 dev cali3012b5b29b scope link

 dev calibeefea2ff87 scope link

 dev cali2b27d5e4053 scope link

 dev cali1a35dbdd639 scope link

 calico on link

Calico Network Supports WireGuard Encryption - Alauda Container Platform

Capture packets on the node to observe cross-node traffic.

3.

Testing shows that IPv4 type traffic is forwarded via the wireguard.cali interface.

root@test:~# ip a s wireguard.cali # View detailed information about the

 30: wireguard.cali: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1440 qdisc noqu

 link/none

 inet 10.10.10.127/32 scope global wireguard.cali # The IP address ass

 valid_lft forever preferred_lft forever

root@test:~# tcpdump -i wireguard.cali -nnve icmp # Capture and display I

 tcpdump: listening on wireguard.cali, link-type RAW (Raw IP), capture s

 08:58:36.987559 ip: (tos 0x0, ttl 63, id 29731, offset 0, flags [DF], p

 10.10.10.125 > 10.10.10.202: ICMP echo request, id 1110, seq 0, length

 08:58:36.988683 ip: (tos 0x0, ttl 63, id 1800, offset 0, flags [none],

 10.10.10.202 > 10.10.10.125: ICMP echo reply, id 1110, seq 0, length 64

 2 packets captured

 2 packets received by filter

 0 packets dropped by kernel

Calico Network Supports WireGuard Encryption - Alauda Container Platform

This document provides a detailed guide on enabling and disabling IPsec encrypted tunnel

traffic in the Kube-OVN Overlay network. Since OVN tunnel traffic is transmitted through

physical routers and switches, which may be located in untrusted public networks or at risk of

attacks, enabling IPsec encryption can effectively prevent traffic data from being monitored

and tampered with.

Terminology

Notes

Prerequisites

Procedure

Enable IPsec

Disable IPsec

Term Explanation

IPsec A protocol and technology used to protect and validate data transmitted over

the internet. It provides secure communication at the IP layer and is primarily

used to create virtual private networks (VPNs) and protect the transmission of

IP packets. IPsec ensures data security primarily through the following

methods:

Kube-OVN Overlay Network Supports IPsec
Encryption

TOC

Terminology

Menu ON THIS PAGE

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Term Explanation

Data Encryption: Through encryption technology, IPsec can ensure that

data is not stolen or altered during transmission. Common encryption

algorithms include AES, 3DES, etc.

Data Integrity Check: IPsec uses hash functions (such as SHA-1, SHA-

256) to verify the integrity of data, ensuring that data has not been modified

during transmission.

Authentication: IPsec can verify the identity of both parties involved in

communication using various methods (such as pre-shared keys, digital

certificates) to prevent unauthorized access.

Key Management: IPsec uses the Internet Key Exchange (IKE) protocol to

negotiate and manage encryption keys.

Enabling IPsec may cause a few seconds of network interruption.

If the kernel version is 3.10.0-1160.el7.x86_64, enabling the IPsec feature of Kube-OVN

may encounter compatibility issues.

Please execute the following command to check whether the current operating system kernel

supports IPsec-related modules. If the output shows that all XFRM-related modules are y or

m , it indicates support for IPsec.

Output:

Notes

Prerequisites

cat /boot/config-$(uname -r) | grep CONFIG_XFRM

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Note: Unless otherwise specified, the following commands must be executed in the CLI tool

on the cluster Master node.

1.

Modify the configuration file of kube-ovn-controller.

1.1.

Execute the following command to edit the YAML configuration file of kube-ovn-

controller.

1.2.

Modify the specified fields according to the following instructions.

CONFIG_XFRM_ALGO=y

CONFIG_XFRM_USER=y

CONFIG_XFRM_SUB_POLICY=y

CONFIG_XFRM_MIGRATE=y

CONFIG_XFRM_STATISTICS=y

CONFIG_XFRM_IPCOMP=m

Procedure

Enable IPsec

kubectl edit deploy kube-ovn-controller -n kube-system

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Field explanations:

spec.template.spec.containers[0].args: Add - --enable-ovn-ipsec=true under

this field.

spec.template.spec.containers[0].securityContext.runAsUser: Change the value

of this field to 0.

1.3.

Save the changes.

2.

Modify the kube-ovn-cni configuration file.

2.1.

Execute the following command to edit the YAML configuration file of kube-ovn-cni.

2.2.

Modify the specified fields according to the following instructions.

spec:

 template:

 spec:

 containers:

 - args:

 - --enable-ovn-ipsec=true # Add this field

 securityContext:

 runAsUser: 0 # Change the value to 0

kubectl edit ds kube-ovn-cni -n kube-system

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Field explanations:

spec.template.spec.containers[0].args: Add - --enable-ovn-ipsec=true under

this field.

spec.template.spec.containers[0].volumeMounts: Add the mount path and mount

the volume named ovs-ipsec-keys to the container.

spec.template.spec.volumes: Add a volume named ovs-ipsec-keys of type hostPath

under this field.

2.3.

Save the changes.

3.

Verify whether the feature has been successfully enabled.

3.1.

Execute the following command to enter the kube-ovn-cni Pod.

3.2.

spec:

 template:

 spec:

 containers:

 - args:

 - --enable-ovn-ipsec=true # Add this field

 volumeMounts: # Add mount path, mount the volume named ovs-ipse

 - mountPath: /etc/ovs_ipsec_keys

 name: ovs-ipsec-keys

 volumes: # Add a volume named ovs-ipsec-keys of type hostPath

 - name: ovs-ipsec-keys

 hostPath:

 path: /etc/origin/ovs_ipsec_keys

kubectl exec -it -n kube-system $(kubectl get pods -n kube-system -l app=

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Execute the following command to check the number of Security Associations

connections. If there are (number of nodes - 1) up, it indicates a successful enablement.

Output:

1.

Modify the configuration file of kube-ovn-controller.

1.1.

Execute the following command to edit the YAML configuration file of kube-ovn-

controller.

1.2.

Modify the specified fields according to the following instructions.

Field explanations:

ipsec status | grep "Security"

Security Associations (2 up, 0 connecting): # Since there are 3 nodes in

Disable IPsec

kubectl edit deploy kube-ovn-controller -n kube-system

spec:

 template:

 spec:

 containers:

 - args:

 - --enable-ovn-ipsec=false # Change to false

 securityContext:

 runAsUser: 65534 # Change the value to 65534

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

spec.template.spec.containers[0].args: Change the value of this field enable-

ovn-ipsec to false.

spec.template.spec.containers[0].securityContext.runAsUser: Change the value

of this field to 65534.

1.3.

Save the changes.

2.

Modify the kube-ovn-cni configuration file.

2.1.

Execute the following command to edit the YAML configuration file of kube-ovn-cni.

2.2.

Modify the specified fields according to the following instructions.

Configuration before modification

Field explanations:

kubectl edit ds kube-ovn-cni -n kube-system

spec:

 template:

 spec:

 containers:

 - args:

 - --enable-ovn-ipsec=true # Change to false

 volumeMounts: # Remove the mount path named ovs-ipsec-keys

 - mountPath: /etc/ovs_ipsec_keys

 name: ovs-ipsec-keys

 volumes: # Remove the volume named ovs-ipsec-keys, type hostPath

 - name: ovs-ipsec-keys

 hostPath:

 path: /etc/origin/ovs_ipsec_keys

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

spec.template.spec.containers[0].args: Change the value of this field enable-

ovn-ipsec to false.

spec.template.spec.containers[0].volumeMounts: Remove the mount path

named ovs-ipsec-keys under this field.

spec.template.spec.volumes: Remove the volume named ovs-ipsec-keys, type

hostPath under this field.

Configuration after modification

2.3.

Save the changes.

3.

Verify whether the feature has been successfully disabled.

3.1.

Execute the following command to enter the kube-ovn-cni Pod.

3.2.

Execute the following command to check the connection status. If there is no output, it

indicates successful disabling.

spec:

 template:

 spec:

 containers:

 - args:

 - --enable-ovn-ipsec=false

 volumeMounts:

 volumes:

kubectl exec -it -n kube-system $(kubectl get pods -n kube-system -l app=

ipsec status

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Terminology

Procedure

Monitoring Metrics

ALB Traffic Monitoring

ALB Resource Usage

Ingress, HTTPRoute, Rule Traffic Monitoring

Term Description

ALB A self-developed layer-7 load balancer by the platform.

1.

Go to Platform Management.

2.

In the left navigation bar, click on Operation Center > Monitoring > Monitoring

Dashboard.

ALB Monitoring

TOC

Terminology

Procedure

Menu ON THIS PAGE

ALB Monitoring - Alauda Container Platform

3.

Click on Cluster at the top of the page to switch to the cluster you want to monitor.

4.

Click on Switch in the upper right corner of the page.

5.

You can enter the ALB Status monitoring dashboard through the following two methods:

Method 1: Click on the container-platform card to expand the monitoring directory, then

click on the ALB Status name to enter the monitoring dashboard. You can set this

monitoring dashboard as the main dashboard if needed.

Method 2: Enter a keyword (e.g., alb) in the search box and search, then click on the

ALB Status name to enter the monitoring dashboard. You can set this monitoring

dashboard as the main dashboard if needed.

6.

View various monitoring metrics through the dashboard.

Select the namespace to monitor: Click on the namespace at the top of the page to

select the namespace to monitor, defaulting to all, meaning monitoring all namespaces.

Select the ALB to monitor: Click on the name at the top of the page to select the ALB

to monitor, defaulting to all, meaning monitoring all ALBs.

Displays the monitoring metrics of total traffic, resource usage, Ingress (inbound rules),

HTTPRoute (routing rules of type HTTPRoute), and Rule (rules that are neither Ingress nor

HTTPRoute) for the selected ALB within the last 5 minutes.

Note: All data are monitoring data collected in the last 5 minutes.

Monitoring Metrics

ALB Traffic Monitoring

ALB Monitoring - Alauda Container Platform

Monitoring Metric Description

Active

Connections
The number of active connections on the selected ALB.

Requests Per

Second

The total number of requests received per second on the

selected ALB.

Error Rate
The proportion of 4XX (such as 404) and 5XX error requests

occurring per second on the selected ALB.

Latency The average latency of requests on the selected ALB.

Monitoring Metric Description

CPU Usage The CPU usage of the selected ALB.

Memory Usage The memory usage of the selected ALB.

Network Receive/Transmit The network I/O throughput of the selected ALB.

Disk Read/Write Rate The disk I/O throughput of the selected ALB.

Monitoring
Metric

Description

QPS (Queries

Per Second)

The number of requests received per second by the

Ingress/HTTPRoute/Rule on the selected ALB, with the default unit

being req/s.

Request BPS

(Bytes Per

Second)

The total size of requests received per second by the

Ingress/HTTPRoute/Rule on the selected ALB.

ALB Resource Usage

Ingress, HTTPRoute, Rule Traffic Monitoring

ALB Monitoring - Alauda Container Platform

Monitoring
Metric

Description

Response BPS

(Bytes Per

Second)

The total size of responses sent by the Ingress/HTTPRoute/Rule on

the selected ALB.

Error Rate
The percentage of errors that occurred when processing requests

by the Ingress/HTTPRoute/Rule on the selected ALB.

P50, P90, P99

The response times for requests on the selected ALB, specifically

the median response time. It indicates that 50%, 90%, and 99% of

requests have a response time less than or equal to this value.

Note: The principle of P50, P90, and P99 is to sort the collected

data from smallest to largest and take the data values at the 50%,

90%, and 99% positions; thus, 50%, 90%, and 99% of the data

collected are below this value. Percentiles help analyze the

distribution of the data and identify various extreme situations.

Upstream P50,

Upstream P90,

Upstream P99

The request response times for upstream services. It indicates that

50%, 90%, and 99% of requests sent to upstream services have

response times less than or equal to this value.

ALB Monitoring - Alauda Container Platform

How to Solve Inter-node Communication Issues in ARM Environments?

Find Who Cause the Error

Trouble Shooting

Menu

Trouble Shooting - Alauda Container Platform

When using lower kernel versions and certain domestic network cards, there may be an issue

where the network card computes checksums incorrectly after enabling Checksum Offload.

This can lead to communication failures between nodes in the Kube-OVN Overlay network.

The specific solutions are as follows:

Solution 1: Upgrade the Kernel Version. It is recommended to upgrade the kernel

version to 4.19.90-25.16.v2101 or a higher version.

Solution 2: Disable Checksum Offload. If it is not possible to immediately upgrade the

kernel version and inter-node communication issues occur, you can disable the Checksum

Offload for the physical network card using the following command.

How to Solve Inter-node Communication
Issues in ARM Environments?

ethtool -K eth0 tx off

Menu

How to Solve Inter-node Communication Issues in ARM Environments? - Alauda Container Platform

The X-ALB-ERR-REASON field in the response header of the error request will indicate the

reason for the error.

The error reason might be:

Find Who Cause the Error

InvalidBalancer : no balancer found for xx # it means no endpoint found for t

BackendError : read xxx byte data from backend # it means the backend did giv

InvalidUpstream : no rule match # it means the request does not match any rul

Menu

Find Who Cause the Error - Alauda Container Platform

	Networking
	Introduction
	TOC
	Advantages
	Application Scenarios
	Usage Limitations

	Architecture
	Understanding Kube-OVN
	TOC
	Upstream OVN/OVS Components
	ovn-central
	ovs-ovn

	Core Controller and Agent
	kube-ovn-controller
	kube-ovn-cni

	Monitoring, Operation and Maintenance Tools and Extension Components
	kube-ovn-speaker
	kube-ovn-pinger
	kube-ovn-monitor
	kubectl-ko

	Understanding ALB
	TOC
	Core components
	Quick Start
	Deploy the ALB Operator
	Deploy an ALB Instance
	Run a demo application

	ALB Common Concepts
	Auth
	Network Mode
	Host Network Mode
	Advantages:
	Disadvantages:

	Container Network Mode
	Advantages:
	Disadvantages:

	Frontend
	Additional resources

	Rules
	dslx

	Project Isolation
	Project Mode
	Port Project Mode

	Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project
	Ingress
	Ingress Controller
	ALB
	ALB Instance
	ALB-Operator
	Frontend (abbreviation: FT)
	RULE

	ALB Leader
	Project

	Additional resources:

	Understanding MetalLB
	TOC
	Terminology
	Principles of High Availability in MetalLB
	MetalLB's Algorithm for Selecting VIP Host Nodes
	External Address Pools and Number of Nodes
	Calculation Formula
	Application Example

	Additional resources

	Concepts
	Auth
	TOC
	Basic Concept
	What is Auth
	Supported Auth Methods
	Auth Configuration Methods
	Auth Result Handling

	Quick Start
	Deploy ALB
	Configure Secret and Ingress
	Verify

	Related Ingress Annotations
	forward-auth
	Construct Related Annotations
	auth-url
	auth-method
	auth-proxy-set-headers

	Construct app-request related annotations
	auth-response-headers

	cookie handling
	Redirect sign related configuration
	auth-signin
	auth-signin-redirect-param
	auth-request-redirect

	basic-auth
	auth-realm
	auth-type
	auth-secret
	auth-secret-type

	CR
	ALB Special Ingress Annotation
	Auth-Enable

	Ingress-Nginx Auth Related Other Features
	Global-Auth
	No-Auth-Locations

	Note: Incompatible Parts with Ingress-Nginx
	Troubleshooting

	Ingress-nginx Annotation Compatibility
	TOC
	Basic concepts
	Supported ingress-nginx annotations

	TCP/HTTP Keepalive
	TOC
	Basic Concept
	CRD

	ModSecurity
	TOC
	Terminology
	Procedure to Operate
	Method One: Add Annotations
	Method Two: Configure CR

	Related Explanations
	Override

	Configuration Example

	Comparison Among Different Ingress Method
	TOC
	For L4(TCP/UDP) Traffic
	For L7(HTTP/HTTPS) Traffic
	Ingress
	GatewayAPI
	ALB Rule

	HTTP Redirect
	TOC
	Basic Concept
	CRD
	Ingress Annotation
	SSL-Redirect

	Port Level Redirect
	Rule Level Redirect

	L4/L7 Timeout
	TOC
	Basic Concept
	CRD
	What Timeout Means
	Ingress Annotation
	Port Level Timeout

	GatewayAPI
	OTel
	TOC
	Terminology
	Prerequisites
	Procedure
	Update ALB Configuration

	Related Operations
	Configuring OTel in Ingress
	Using OTel in Applications
	Inheritance

	Additional Notes
	Sampling Strategies
	Attributes

	Configuration Example

	Guides
	Creating Services
	TOC
	Why Service is Needed
	Example ClusterIP type Service:
	Headless Services
	Creating a service by using the web console
	Creating a service by using the CLI
	Example: Accessing an Application Within the Cluste
	Example: Accessing an Application Outside the Cluste
	Example: ExternalName type of Servce
	LoadBalancer Type Service Annotations
	AWS EKS Cluster
	Huawei Cloud CCE Cluster
	Azure AKS Cluster
	Google GKE Cluster

	Creating Ingresses
	TOC
	Implementation Method
	Quick Start

	Prerequisites
	Example Ingress:
	Creating a Ingress by using the web console
	Creating a Ingress by using the CLI

	Configure Gateway
	TOC
	Terminology
	Prerequisites
	Example Gateway and Alb2 custom resource (CR)
	Creating Gateway by using the web console
	Creating Gateway by using the CLI
	Viewing Resources Created by the Platform
	Updating Gateways
	Updating Gateway by using the web console
	Add Listener
	Prerequisites

	Add Listener by using the web console
	Add Listener by using the CLI
	Creating Route Rules
	Example HTTPRoute custom resource (CR)
	Creating Route by using the web console
	Creating Route by using the CLI

	Creating a Domain Name
	TOC
	Example Domain custom resource (CR)
	Creating Domain by using the web console
	Creating Domain by using the CLI
	Subsequent Actions
	Additional resources

	Creating Certificates
	TOC
	Creating a certificate by using the web console

	Creating External IP Address Pool
	TOC
	Prerequisites
	Constraints and Limitations
	Deploying the MetalLB Plugin
	Example IPAddressPool custom resource (CR)
	Creating an External IP Address Pool by using the web console
	Creating an External IP Address Pool by using the CLI
	View Alarm Policy

	Creating BGP Peers
	TOC
	Terminology
	Prerequisites
	Example BGPPeer custom resource (CR)
	Creating a BGPPeer by using the web console.
	Creating a BGPPeer by using the CLI

	Configure Subnets
	TOC
	IP Allocation Rules
	Calico Network
	Constraints and Limitations
	Example Subnet custom resource (CR) with Calico Network
	Creating a Subnet in the Calico network by using the web console
	Creating a Subnet in the Calico network by using the CLI
	Reference Content

	Kube-OVN Network
	Example Subnet custom resource (CR) with Kube-OVN Overlay Network
	Creating a Subnet in the Kube-OVN Overlay Network by using the web console
	Creating a Subnet in the Kube-OVN Overlay Network by using the the CLI
	Underlay Network
	Usage Instructions
	Add Bridge Network by using the web console (Optional)
	Add Bridge Network by using the CLI
	Add VLAN by using the web console (Optional)
	Add VLAN by using the CLI
	Example Subnet custom resource (CR) with Kube-OVN Underlay Network
	Creating a Subnet in the Kube-OVN Underlay Network by using the web console
	Creating a Subnet in the Kube-OVN Underlay Network by using the CLI
	Related Operations

	Subnet Management
	Updating Gateway by using the web console
	Updating Gateway by using the CLI
	Updating Reserved IPs by using the web console
	Updating Reserved IPs by using the CLI
	Assigning Projects by using the web console
	Assigning Projects by using the CLI
	Assigning Namespaces by using the web console
	Assigning Namespaces by using the CLI
	Expanding Subnets by using the web console
	Expanding Subnets by using the CLI
	Managing Calico Networks
	Delete Subnet by using the web console
	Delete Subnet by using the CLI

	Creating Network Policies
	TOC
	Creating NetworkPolicy by using the web console
	Creating NetworkPolicy by using the CLI
	Reference

	Creating Admin Network Policies
	TOC
	Notes
	Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console
	Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI
	Additional resource

	Configure Cluster Network Policies
	TOC
	Notes
	Procedure

	How To
	Deploy High Available VIP for ALB
	TOC
	Method 1: Use LoadBalancer type internal routing to provide VIP
	Method 2: Use external load balancer device to provide VIP

	Soft Data Center LB Solution (Alpha)
	TOC
	Prerequisites
	Procedure
	Verification

	Preparing Kube-OVN Underlay Physical Network
	TOC
	Usage Instructions
	Terminology Explanation
	Environment Requirements
	Configuration Example
	Switch Configuration
	Check Network Connectivity
	Platform Configuration

	Automatic Interconnection of Underlay and Overlay Subnets
	Procedure

	Use OAuth Proxy with ALB
	TOC
	Overview
	Procedure
	Result

	Creating GatewayAPI Gateway
	Requirements
	TOC
	Deploy MetalLB
	Set Pod Security Policies to Privileged Mode

	Procedure
	Configure a Load Balancer
	TOC
	Prerequisites
	Example ALB2 custom resource (CR)
	Creating a Load Balancer by using the web console.
	Creating a Load Balancer by using the CLI.
	Update Load Balancer by using the web console
	Delete Load Balancer by using the web console
	Delete Load Balancer by using the CLI
	Configure Listener Ports (Frontend)
	Prerequisites
	Example Frontend custom resource (CR)
	Creating Listener Ports (Frontend) by using the web console
	Creating Listener Ports (Frontend) by using the CLI
	Subsequent Actions
	Related Operations

	Configure Rules
	Example Rule custom resource (CR)
	dslx

	Creating Rule by using web console
	Creating Rule by using the CLI
	Logs and Monitoring
	Viewing Logs
	Monitoring Metrics
	Additional resources

	How to properly allocate CPU and memory resources
	Small Production Environment
	Medium Production Environment
	Large Production Environment
	Special Scenario Deployment Recommendations
	Load Balancer Usage Mode Selection

	Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster
	Configuration Method
	Result Verification

	Calico Network Supports WireGuard Encryption
	TOC
	Installation Status
	Default Installation
	Not Installed by Default

	Terminology
	Notes
	Prerequisites
	Procedure
	Result Verification
	IPv4 Traffic Verification

	Kube-OVN Overlay Network Supports IPsec Encryption
	TOC
	Terminology
	Notes
	Prerequisites
	Procedure
	Enable IPsec
	Disable IPsec

	ALB Monitoring
	TOC
	Terminology
	Procedure
	Monitoring Metrics
	ALB Traffic Monitoring
	ALB Resource Usage
	Ingress, HTTPRoute, Rule Traffic Monitoring

	Trouble Shooting
	How to Solve Inter-node Communication Issues in ARM Environments?
	Find Who Cause the Error

