
Overview

Overview

Creating an On-Premise Cluster

Creating an On-Premise Cluster

How to

Add External Address for Built-in Registry

Choosing a Container Runtime

Updating Public Repository Credentials

Clusters

Menu

Clusters - Alauda Container Platform

A cluster is the foundational resource collection for running containerized applications,

encompassing nodes, load balancers, storage, and other critical components. It is a

prerequisite for successfully running containerized applications on the platform. During initial

platform installation, a standard Kubernetes cluster, known as the global cluster, is created.

Subsequently, multiple clusters can be integrated into the global cluster for unified

management.

Cluster Type

On-Premises Cluster

Managed Cluster

Multi-Cloud and Hybrid Cloud Support

Implementation Considerations and Limitations

Version Compatibility

Network and Security Requirements

Best Practices for Cluster Management

1. Pre-Implementation Assessment

2. Security and Compliance

3. Monitoring and Observability

4. Backup and Disaster Recovery

5. Continuous Optimization

Overview

TOC

Cluster Type

Menu ON THIS PAGE

Overview - Alauda Container Platform

On-Premises cluster is Kubernetes clusters directly created by the platform. Users provide

virtual or physical machines, and the platform installs and configures Kubernetes clusters on

these machines. This approach is suitable for enterprises with existing hardware resources,

allowing full utilization of infrastructure.

Managed cluster is Kubernetes clusters provided by cloud service providers, which are

integrated into the platform for unified management. Supported integration methods include:

Method Description Use Case Key Characteristics

Import
Integrating existing

Kubernetes clusters

Existing clusters

with direct

network access

Cluster information

submitted to global

cluster

global cluster must

have network access to

the cluster

Register

Integrating clusters

with strict security

requirements

Clusters with high

security

constraints

Specific plugins

installed on the target

cluster

Reverse proxy

establishes a secure

tunnel

Maintains cluster

security while enabling

management

Proxy

Create

Creating clusters

through cloud

service providers

Leveraging public

cloud Kubernetes

services

Cloud service provider

credentials required

On-Premises Cluster

Managed Cluster

Overview - Alauda Container Platform

Method Description Use Case Key Characteristics

Platform creates

Kubernetes clusters

using provided

credentials

These cluster management approaches meet enterprise needs in multi-cloud and hybrid cloud

scenarios, supporting container transformation at different stages:

Existing Hardware: Create platform-provided clusters

Existing Clusters: Import or register into the platform

Elastic Demands: Quickly create public cloud clusters

Supported Kubernetes versions: 1.28, 1.29, 1.30, 1.31

Both On-Premises and Managed clusters must ensure version compatibility

Version mismatches may result in feature limitations or compatibility issues

Ensure network connectivity between global and target clusters

Implement appropriate firewall and network security policies

Manage access credentials and authentication mechanisms securely

Multi-Cloud and Hybrid Cloud Support

Implementation Considerations and Limitations

Version Compatibility

Network and Security Requirements

Overview - Alauda Container Platform

Conduct thorough infrastructure and workload analysis

Identify specific requirements for each cluster

Develop a comprehensive migration and integration strategy

Implement role-based access control (RBAC)

Use network policies to restrict cluster communication

Regularly audit and update security configurations

Ensure compliance with industry standards and regulations

Set up centralized logging and monitoring

Implement proactive alerting mechanisms

Use platform-provided observability tools

Track cluster performance, resource utilization, and health

Establish regular backup procedures

Create and test disaster recovery plans

Implement multi-cluster backup strategies

Ensure minimal downtime and data loss

Regularly review cluster configurations

Best Practices for Cluster Management

1. Pre-Implementation Assessment

2. Security and Compliance

3. Monitoring and Observability

4. Backup and Disaster Recovery

5. Continuous Optimization

Overview - Alauda Container Platform

Optimize resource allocation

Update to the latest supported Kubernetes versions

Leverage platform features for automatic updates and scaling

Overview - Alauda Container Platform

Prerequisites

Node Requirements

Load Balancing

Connecting global Cluster and Workload Cluster

Image Registry

Container Networking

Creation Procedure

Basic Info

Container Network

Node Settings

Extended Parameters

Post-Creation Steps

Viewing Creation Progress

Associating with Projects

1. If you downloaded a single-architecture installation package from Download Installation

Package, ensure your node machines have the same architecture as the package.

Otherwise, nodes won't start due to missing architecture-specific images.

Creating an On-Premise Cluster

TOC

Prerequisites

Node Requirements

Menu ON THIS PAGE

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/install/prepare/download.html#download_installation_package
http://localhost:4173/container_platform/install/prepare/download.html#download_installation_package

2. Verify that your node operating system and kernel are supported. See Supported OS

and Kernels for details.

3. Perform availability checks on node machines. For specific check items, refer to Node

Preprocessing > Node Checks.

4. If node machine IPs cannot be directly accessed via SSH, provide a SOCKS5 proxy for

the nodes. The global cluster will access nodes through this proxy service.

For production environments, a load balancer is required for cluster control plane nodes to

ensure high availability. You can provide your own hardware load balancer or enable Self-

built VIP , which provides software load balancing using haproxy + keepalived. We

recommend using a hardware load balancer because:

Better Performance: Hardware load balancing performs better than software load

balancing.

Lower Complexity: If you're unfamiliar with keepalived, misconfigurations could make the

cluster unavailable, leading to lengthy troubleshooting and seriously affecting cluster

reliability.

When using your own hardware load balancer, you can use the load balancer's VIP as the IP

Address / Domain parameter. If you have a domain name that resolves to the load

balancer's VIP, you can use that domain as the IP Address / Domain parameter. Note:

The load balancer must correctly forward traffic to ports 6443 , 11780 , and 11781 on all

control plane nodes in the cluster.

If your cluster has only one control plane node and you use that node's IP as the IP

Address / Domain parameter, the cluster cannot be scaled from a single node to a highly

available multi-node setup later. Therefore, we recommend providing a load balancer even

for single-node clusters.

When enabling Self-built VIP , you need to prepare:

1. An available VRID

2. A host network that supports the VRRP protocol

3. All control plane nodes and the VIP must be on the same subnet, and the VIP must be

different from any node IP.

Load Balancing

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/install/prepare/prerequisites.html#supported_os_and_kernels
http://localhost:4173/container_platform/install/prepare/prerequisites.html#supported_os_and_kernels
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks

The platform requires mutual access between the global cluster and workload clusters. If

they're not on the same network, you need to:

1. Provide External Access for the workload cluster to ensure the global cluster can

access it. Network requirements must ensure global can access ports 6443 , 11780 ,

and 11781 on all control plane nodes.

2. Add an additional address to global that the workload cluster can access. When

creating a workload cluster, add this address to the cluster's annotations with the key

cpaas.io/platform-url and the value set to the public access address of global .

Cluster images support Platform Built-in, Private Repository, and Public Repository options.

Platform Built-in: Uses the image registry provided by the global cluster. If the cluster

cannot access global , see Add External Address for Built-in Registry.

Private Repository: Uses your own image registry. For details on pushing required images

to your registry, contact technical support.

Public Repository: Uses the platform's public image registry. Before using, complete

Updating Public Repository Credentials.

If you plan to use Kube-OVN's Underlay for your cluster, refer to Preparing Kube-OVN

Underlay Physical Network.

1.

Enter the Platform Management view, and click Clusters/Clusters in the left navigation

bar.

Connecting global Cluster and Workload Cluster

Image Registry

Container Networking

Creation Procedure

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html
http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html

2.

Click Create Cluster.

3.

Configure the following sections according to the instructions below: Basic Info, Container

Network, Node Settings, and Extended Parameters.

Parameter Description

Kubernetes

Version

All optional versions are rigorously tested for stability and

compatibility.

Recommendation: Choose the latest version for optimal features

and support.

Container

Runtime

Containerd is provided as the default container runtime.

If you prefer using Docker as the container runtime, please refer to

Choosing a Container Runtime.

Cluster

Network

Protocol

Supports three modes: IPv4 single stack, IPv6 single stack,

IPv4/IPv6 dual stack.

Note: If you select dual stack mode, ensure all nodes have correctly

configured IPv6 addresses; the network protocol cannot be changed

after setting.

Basic Info

Creating an On-Premise Cluster - Alauda Container Platform

Cluster

Endpoint

IP Address / Domain : Enter the pre-prepared domain name or

VIP if no domain name is available.

Self-Built VIP : Disabled by default. Only enable if you haven't

provided a LoadBalancer. When enabled, the installer will

automatically deploy keepalived for software load balancing

support.

External Access : Enter the externally accessible address

prepared for the cluster when it's not in the same network

environment as the global cluster.

Container Network

An enterprise-grade Cloud Native Kubernetes container network orchestration system

developed by Alauda. It brings mature networking capabilities from the OpenStack domain

to Kubernetes, supporting cross-cloud network management, traditional network

architecture and infrastructure interconnection, and edge cluster deployment scenarios,

while greatly enhancing Kubernetes container network security, management efficiency, and

performance.

Parameter Description

Subnet
Also known as Cluster CIDR, represents the default subnet segment.

After cluster creation, additional subnets can be added.

Transmit

Mode
Overlay: A virtual network abstracted over the infrastructure that

doesn't consume physical network resources. When creating an

Overlay default subnet, all Overlay subnets in the cluster use the same

cluster NIC and node NIC configuration.

Kube-OVN

Creating an On-Premise Cluster - Alauda Container Platform

Underlay: This transmission method relies on physical network

devices. It can directly allocate physical network addresses to Pods,

ensuring better performance and connectivity with the physical

network. Nodes in an Underlay subnet must have multiple NICs, and

the NIC used for bridge networking must be exclusively used by

Underlay and not carry other traffic like SSH. When creating an

Underlay default subnet, the cluster NIC is actually a default NIC for

bridge networking, and the node NIC is the node NIC configuration in

the bridge network.

Default Gateway: The physical network gateway address, which is

the gateway address for the Cluster CIDR segment (must be within

the Cluster CIDR address range).

VLAN ID: Virtual LAN identifier (VLAN number), e.g., 0 .

Reserved IPs: Set reserved IPs that won't be automatically

allocated, such as IPs in the subnet that are already used by other

devices.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the default subnet range.

Join CIDR

In Overlay transmission mode, this is the IP address range used for

communication between nodes and pods. Cannot overlap with the

default subnet or Service CIDR.

Calico is a layer 3 networking solution that provides secure network connections for

containers.

Parameter Description

Default

Subnet

Also known as Cluster CIDR, represents the default subnet

segment. After cluster creation, additional subnets can be added.

Calico

Creating an On-Premise Cluster - Alauda Container Platform

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the default subnet range.

Flannel provides a flat network environment for all containers in the cluster, giving

containers created on different node hosts a unique virtual IP address across the entire

cluster. The pod subnet is divided evenly among the cluster nodes according to the mask,

and pods on each node are assigned IP addresses from the segment allocated to that

node. This improves communication efficiency between containers without having to

consider IP translation issues.

Parameter Description

Cluster

CIDR

IP address range used by pods created when the cluster starts.

Supports setting the maximum number of IP addresses that can be

allocated to pods on each node under the current container network.

Note: The platform will automatically calculate the maximum number

of nodes the cluster can accommodate based on the above

configuration and display it in the hint below the input field.

Important: After cluster creation, the cluster network cannot be

changed, so please plan the network carefully.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the container subnet range.

Flannel

Custom

Creating an On-Premise Cluster - Alauda Container Platform

Parameter Description

Network

Interface

Card

The name of the host network interface device used by the cluster

network plugin.

Note:

When selecting Underlay transmission mode for the Kube-OVN

default subnet, you must specify the network interface name, which

will be the default NIC for bridge networking.

- The platform's network interface traffic monitoring by default

recognizes traffic on interfaces named like eth.|en.|wl.|ww. . If

you use interfaces with different naming conventions, please refer to

Collect Network Data from Custom-Named Network Interfaces after

cluster onboarding to modify the relevant resources and ensure the

platform can properly monitor network interface traffic.

Node Name
You can choose to use either the node IP or hostname as the node

name on the platform.

If you need to install other network plugins, select Custom mode. You can manually install

network plugins after the cluster is successfully created.

Parameter Description

Cluster

CIDR
IP address range used by pods created when the cluster starts.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the container subnet range.

Node Settings

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/how_to/special_network_card_name.html

Note: When choosing to use hostname as the node name, ensure that

the hostnames of nodes added to the cluster are unique.

Nodes

Add nodes to the cluster, or Recovery from draft temporarily saved

node information. See the detailed parameter descriptions for adding

nodes below.

Monitoring

Type

Supports Prometheus and VictoriaMetrics.

When selecting VictoriaMetrics as the monitoring component, you

must configure the Deploy Type:

- Deploy VictoriaMetrics: Deploys all related components, including

VMStorage, VMAlert, VMAgent, etc.

- Deploy VictoriaMetrics Agent: Only deploys the log collection

component, VMAgent. When using this deployment method, you need

to associate with a VictoriaMetrics instance already deployed on

another cluster in the platform to provide monitoring services for the

cluster.

Monitoring

Nodes

Select nodes for deploying cluster monitoring components. Supports

selecting compute nodes and control plane nodes that allow application

deployment.

To avoid affecting cluster performance, it's recommended to prioritize

compute nodes. After the cluster is successfully created, monitoring

components with storage type Local Volume will be deployed on the

selected nodes.

Node Addition Parameters

Parameter Description

Creating an On-Premise Cluster - Alauda Container Platform

Type

Control Plane Node: Responsible for running components such as

kube-apiserver, kube-scheduler, kube-controller-manager, etcd,

container network, and some platform management components in

the cluster. When Application Deployable is enabled, control

plane nodes can also be used as compute nodes.

Worker Node: Responsible for hosting business pods running on

the cluster.

IPv4 Address
The IPv4 address of the node. For clusters created in internal

network mode, enter the node's private IP.

IPv6 Address
Valid when the cluster has IPv4/IPv6 dual stack enabled. The IPv6

address of the node.

Application

Deployable

Valid when Node Type is Control Plane Node. Whether to allow

business applications to be deployed on this control plane node,

scheduling business-related pods to this node.

Display Name The display name of the node.

SSH

Connection IP

The IP address that can connect to the node when accessing it via

SSH service.

If you can log in to the node using ssh <username>@<node's IPv4

address> , this parameter is not required; otherwise, enter the

node's public IP or NAT external IP to ensure the global cluster

and proxy can connect to the node via this IP.

Creating an On-Premise Cluster - Alauda Container Platform

Network

Interface Card

Enter the name of the network interface used by the node. The

priority of network interface configuration effectiveness is as follows

(from left to right, in descending order):

Kube-OVN Underlay: Node NIC > Cluster NIC

Kube-OVN Overlay: Node NIC > Cluster NIC > NIC corresponding

to the node's default route

Calico: Cluster NIC > NIC corresponding to the node's default

route

Flannel: Cluster NIC > NIC corresponding to the node's default

route

Associated

Bridge Network

Note: When creating a cluster, bridge network configuration is not

supported; this option is only available when adding nodes to a

cluster that already has Underlay subnets created.

Select an existing Add Bridge Network. If you don't want to use the

bridge network's default NIC, you can configure the node NIC

separately.

SSH Port SSH service port number, e.g., 22 .

SSH Username
SSH username, needs to be a user with root privileges, e.g.,

root .

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_subnet.html#kube-ovn_underlay_bridge_network

Proxy

Whether to access the node's SSH port through a proxy. When the

global cluster cannot directly access the node to be added via

SSH (e.g., the global cluster and workload cluster are not in the

same subnet; the node IP is an internal IP that the global cluster

cannot directly access), this switch needs to be turned on and

proxy-related parameters configured. After configuring the proxy,

node access and deployment can be achieved through the proxy.

Note: Currently, only SOCKS5 proxy is supported.

Access URL: Proxy server address, e.g., 192.168.1.1

.

Username: Username for accessing the proxy server.

Password: Password for accessing the proxy server.

SSH

Authentication

Authentication method and corresponding authentication

information for logging into the added node. Options include:

Password: Requires a username with root privileges and the

corresponding SSH password.

Key: Requires a private key with root privileges and the private

key password .

Save Draft
Saves the currently configured data in the dialog as a draft and

closes the Add Node dialog.

Without leaving the Create Cluster page, you can select Restore

from draft to open the Add Node dialog and restore the

Creating an On-Premise Cluster - Alauda Container Platform

configuration data saved as a draft.

Note: The data restored from the draft is the most recently saved

draft data.

Note:

Apart from required configurations, it's not recommended to set extended parameters, as

incorrect settings may make the cluster unavailable and cannot be modified after cluster

creation.

If a entered Key duplicates a default parameter Key, it will override the default

configuration.

Procedure

1. Click Extended Parameters to expand the extended parameter configuration area. You

can optionally set the following extended parameters for the cluster:

Parameter Description

Docker

Parameters

dockerExtraArgs , additional configuration parameters for Docker,

which will be written to /etc/sysconfig/docker . Modification is not

recommended. To configure Docker through the daemon.json file, it

must be configured as key-value pairs.

Kubelet

Parameters
kubeletExtraArgs , additional configuration parameters for

Kubelet.

Note: When the Container Network's Node IP Count parameter is

entered, a default Kubelet Parameter configuration with the key

max-pods and a value of Node IP Count is automatically

Extended Parameters

Creating an On-Premise Cluster - Alauda Container Platform

generated. This sets the maximum number of pods that can run on

any node in the cluster. This configuration is not displayed in the

interface.

Adding a new max-pods: maximum number of runnable pods

key-value pair in the Kubelet Parameters area will override the

default value. Any positive integer is allowed, but it's recommended

to use the default value (Node IP Count) or enter a value not

exceeding 256 .

Controller

Manager

Parameters

controllerManagerExtraArgs , additional configuration parameters

for the Controller Manager.

Scheduler

Parameters

schedulerExtraArgs , additional configuration parameters for the

Scheduler.

APIServer

Parameters

apiServerExtraArgs , additional configuration parameters for the

APIServer.

APIServer

URL

publicAlternativeNames , APIServer access addresses issued in

the certificate. Only IPs or domain names can be entered, with a

maximum of 253 characters.

Cluster

Annotations

Cluster annotation information, marking cluster characteristics in

metadata in the form of key-value pairs for platform components or

business components to obtain relevant information.

1. Click Create. You'll return to the cluster list page where the cluster will be in the Creating

state.

Creating an On-Premise Cluster - Alauda Container Platform

On the cluster list page, you can view the list of created clusters. For clusters in the Creating

state, you can check the execution progress.

Procedure

1.

Click the small icon View Execution Progress to the right of the cluster status.

2.

In the execution progress dialog that appears, you can view the cluster's execution

progress (status.conditions).

Tip: When a certain type is in progress or in a failed state with a reason, hover your cursor

over the corresponding reason (shown in blue text) to view detailed information about the

reason (status.conditions.reason).

After the cluster is created, you can add it to projects in the project management view.

Post-Creation Steps

Viewing Creation Progress

Associating with Projects

Creating an On-Premise Cluster - Alauda Container Platform

Add External Address for Built-in Registry

Choosing a Container Runtime

Updating Public Repository Credentials

How to

Menu

How to - Alauda Container Platform

Overview

Prerequisites

Procedure

Configure Certificate and Routing Rules for the Platform Registry

When the global cluster uses the Platform Built-in registry, workload clusters typically

also use this registry to pull images. The registry not only serves components within the

global cluster but must also be accessible to workload cluster nodes.

In certain scenarios, workload cluster nodes cannot directly access the global cluster's

registry address - for example, when the global cluster is in a private data center while

workload clusters are in public clouds or edge environments.

This guide explains how to configure an externally accessible address for the platform's

default registry to allow workload clusters to pull images.

Before you begin, prepare the following:

A domain name accessible by workload cluster nodes

Add External Address for Built-in Registry

TOC

Overview

Prerequisites

Menu ON THIS PAGE

Add External Address for Built-in Registry - Alauda Container Platform

The IP address that the domain name points to

A valid SSL certificate for the domain name

WARNING

The domain name must be different from the platform access address

Ensure the domain's IP address can forward traffic to all control plane nodes of the global

cluster

1.

Copy the domain's valid certificate to any control plane node of the global cluster

2.

Create a TLS secret containing the domain certificate:

Example:

Note: After creating the certificate, monitor the expiration date of the registry-address.tls

secret in the kube-system namespace of the global cluster. Replace the certificate

before it expires.

3.

Procedure

Configure Certificate and Routing Rules for the Platform
Registry

kubectl create secret tls registry-address.tls --cert=<certificate-filename

kubectl create secret tls registry-address.tls --cert=custom.crt --key=cust

Add External Address for Built-in Registry - Alauda Container Platform

Create ingress rules on any control plane node of the global cluster:

Add External Address for Built-in Registry - Alauda Container Platform

REGISTRY_DOMAIN_NAME=<www.registry.com> # Replace with your accessible doma

cat << EOF | kubectl create -f -

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 nginx.ingress.kubernetes.io/backend-protocol: HTTPS

 name: registry-address

 namespace: kube-system

 labels:

 service_name: registry

spec:

 rules:

 - host: $REGISTRY_DOMAIN_NAME

 http:

 paths:

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/_catalog

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/tags/list

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/manifests/[A-Za-z0-9_+.-:]+

h l i ifi

Add External Address for Built-in Registry - Alauda Container Platform

A response similar to ... created indicates successful ingress creation.

4.

Check if a Registry Service resource exists:

If the Service doesn't exist, create it with:

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/blobls/[A-Za-z0-9-:]+

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/blobls/uploads/[A-Za-z0-9-:]+

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /auth/token

 pathType: ImplementationSpecific

 tls:

 - secretName: registry-address.tls

 hosts:

 - $REGISTRY_DOMAIN_NAME

EOF

kubectl -n kube-system get svc | grep registry

Add External Address for Built-in Registry - Alauda Container Platform

5.

Test the configuration by pulling an image from the registry using the domain name:

Or

cat << EOF | kubectl create -f -

apiVersion: v1

kind: Service

metadata:

 labels:

 name: registry

 service_name: registry

 name: registry

 namespace: kube-system

spec:

 ports:

 - protocol: TCP

 port: 443

 targetPort: 60080

 selector:

 component: registry

 type: ClusterIP

EOF

crictl pull <registry-domain-name>/automation/qaimages:helloworld

docker pull <registry-domain-name>/automation/qaimages:helloworld

Add External Address for Built-in Registry - Alauda Container Platform

Overview

Quick Selection Guide

Differences Between Docker and Containerd

Common Commands

Call Chain Differences

Log and Parameter Comparison

CNI Network Comparison

Container Runtime is a core component of Kubernetes, responsible for managing the lifecycle

of images and containers.

When creating clusters through the platform, you can choose either Containerd or Docker as

your runtime component.

Note: Kubernetes version 1.24 and above no longer officially supports Docker runtime. The

officially recommended runtime is Containerd. If you still need to use Docker runtime, you

must first enable cri-docker in the feature gate before you can select Docker as the

runtime component when creating a cluster. For details on using feature gates, see Feature

Gate Configuration.

Choosing a Container Runtime

TOC

Overview

Menu ON THIS PAGE

Choosing a Container Runtime - Alauda Container Platform

http://localhost:4173/container_platform/configure/feature_toggles.html#feature_toggles
http://localhost:4173/container_platform/configure/feature_toggles.html#feature_toggles

Choose Containerd Choose Docker

Shorter call chain

Fewer components

More stable

Consumes fewer node

resources

Supports docker-in-docker

Allows use of docker build/push/save/load

commands on nodes

Can call Docker API

Supports docker compose or docker swarm

Containerd Docker Description

crictl ps docker ps View running containers

crictl inspect docker inspect View container details

crictl logs docker logs View container logs

crictl exec docker exec Execute commands in container

crictl attach docker attach Attach to container

crictl stats docker stats Display container resource usage

crictl create docker create Create container

crictl start docker start Start container

crictl stop docker stop Stop container

Quick Selection Guide

Differences Between Docker and Containerd

Common Commands

Choosing a Container Runtime - Alauda Container Platform

Containerd Docker Description

crictl rm docker rm Remove container

crictl images docker images View image list

crictl pull docker pull Pull image

None docker push Push image

crictl rmi docker rmi Delete image

crictl pods None View pod list

crictl inspectp None View pod details

crictl runp None Start pod

crictl stopp docker images View images

ctr images ls None Stop pod

crictl stopp docker load/save Import/export images

ctr images import/export None Stop pod

ctr images pull/push docker pull/push Pull/push images

ctr images tag docker tag Tag images

Docker as Kubernetes container runtime has the following call relationship:

kubelet > cri-dockerd > dockerd > containerd > runC

Containerd as Kubernetes container runtime has the following call relationship:

kubelet > cri plugin (in containerd process) > containerd > runC

Summary: Although dockerd adds features like swarm cluster, docker build, and Docker API,

it can introduce bugs and adds an extra layer in the call chain. Containerd has a shorter call

chain, fewer components, greater stability, and consumes fewer node resources.

Call Chain Differences

Choosing a Container Runtime - Alauda Container Platform

Comparison Docker Contai

Storage Path

When Docker serves as the Kubernetes

container runtime, container logs are stored by

Docker in directories like

/var/lib/docker/containers/$CONTAINERID .

Kubelet creates symbolic links in

/var/log/pods and /var/log/containers

pointing to the container log files in this

directory.

When Containerd s

Kubernetes contain

container logs are s

Kubelet in the

/var/log/pods/$C

directory, with symb

created in the

/var/log/contain

pointing to the log f

Configuration

Parameters

Specified in the Docker configuration file:

"log-driver": "json-file",

"log-opts": {"max-size": "100m","max-

file": "5"}

Method 1: Specified

parameters:

--container-log-

--container-log-

size="100Mi"

Method 2: Specified

KubeletConfiguratio

"containerLogMax

"100Mi",

"containerLogMax

Saving

Container

Logs to Data

Disk

Mount the data disk to "data-root" (default is

/var/lib/docker).

Create a symbolic l

/var/log/pods p

directory under the

point.

Comparison Docker Containerd

Who Calls CNI cri-dockerd
cri-plugin built into Containerd

(after containerd 1.1)

Log and Parameter Comparison

CNI Network Comparison

Choosing a Container Runtime - Alauda Container Platform

Comparison Docker Containerd

How to

Configure CNI

cri-dockerd parameters --cni-

conf-dir --cni-bin-dir --

cni-cache-dir

Containerd configuration file

(toml):

[plugins.cri.cni]

bin_dir = "/opt/cni/bin"

conf_dir =

"/etc/cni/net.d"

Choosing a Container Runtime - Alauda Container Platform

Overview

Procedure

The Public Repository is a platform-provided image registry service available on the

public internet. When you want your clusters to use the Public Repository as their image

registry, you need to update the built-in public-registry-credential Cloud Credentials.

This ensures your platform has permission to pull images from the public registry.

1.

Log in to the Customer Portal and download your organization's authentication file from

the Enterprise Management section located in the User Information dropdown in the

upper right corner.

2.

Navigate to Clusters > Cloud Credential in the left navigation bar of the Platform

Management console.

3.

Updating Public Repository Credentials

TOC

Overview

Procedure

Menu ON THIS PAGE

Updating Public Repository Credentials - Alauda Container Platform

Locate the cloud credential named public-registry-credential and click Update from

the dropdown menu on the right.

4.

In the Upload Public Repository Address section, upload the authentication file you

downloaded from the Customer Portal.

5.

Click Update to apply the changes.

Updating Public Repository Credentials - Alauda Container Platform

	Clusters
	Overview
	TOC
	Cluster Type
	On-Premises Cluster
	Managed Cluster

	Multi-Cloud and Hybrid Cloud Support
	Implementation Considerations and Limitations
	Version Compatibility
	Network and Security Requirements

	Best Practices for Cluster Management
	1. Pre-Implementation Assessment
	2. Security and Compliance
	3. Monitoring and Observability
	4. Backup and Disaster Recovery
	5. Continuous Optimization

	Creating an On-Premise Cluster
	TOC
	Prerequisites
	Node Requirements
	Load Balancing
	Connecting global Cluster and Workload Cluster
	Image Registry
	Container Networking

	Creation Procedure
	Basic Info
	Container Network
	Node Settings
	Extended Parameters

	Post-Creation Steps
	Viewing Creation Progress
	Associating with Projects

	How to
	Add External Address for Built-in Registry
	TOC
	Overview
	Prerequisites
	Procedure
	Configure Certificate and Routing Rules for the Platform Registry

	Choosing a Container Runtime
	TOC
	Overview
	Quick Selection Guide
	Differences Between Docker and Containerd
	Common Commands
	Call Chain Differences
	Log and Parameter Comparison
	CNI Network Comparison

	Updating Public Repository Credentials
	TOC
	Overview
	Procedure

